08. Non-Euclidean Geometry

1. Euclidean Geometry

- The Elements. ~300 B.C.

Earliest existing copy

1570 A.D.
First English translation

1. Euclidean Geometry
2. Non-Euclidean Geometry

Vol. 1 (Books land II)

EUCLID

THE THIRTEEN BOOKS OF THE ELEMENTS
Translated with introduction and commentary by Sir Thomas L. Heath

Second Edition Unabridged

1956
Dover Edition

- 13 books of propositions, based on 5 postulates.

Euclid's 5 Postulates

1. A straight line can be drawn from any point to any point.

2. A finite straight line can be produced continuously in a straight line.

3. A circle may be described with any center and distance.

4. All right angles are equal to one another.

5. If a straight line falling on two straight lines makes the interior angles on the same side together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the angles are together less than two right angles.

$$
\theta+\varphi<180^{\circ}
$$

- Euclid's Accomplishment: showed that all geometric claims then known follow from these 5 postulates.
- Is 5th Postulate necessary? (1st cent.-19th cent.)
- Basic strategy: Attempt to show that replacing 5th Postulate with alternative leads to contradiction.
- Equivalent to 5th Postulate (Playfair 1795):

5'. Through a given point, exactly one line can be drawn parallel to a given line (that does not contain the point).
------------------ -

- Only two logically possible alternatives:
$5^{\text {none }}$. Through a given point, no lines can be drawn parallel to a given line.

Parallel straight lines are straight lines which, being in the same plane and being produced indefinitely in either direction, do not meet one another in either direction.
(The Elements: Book I, Def. 23)

2. Non-Euclidean Geometry

Case of $5^{\text {none }}$

- Pick any straight line.
- Erect perpendiculars.
- Perpendiculars must meet at some point, call it O.
- Thus: Angles of $\triangle O A B$ sum to more than 2 right angles!

- Take same straight line. Mark off equal intervals $A B=B C$.
- Perpendiculars from A and B must meet at some point O, and perpendiculars from B and C must meet at some point O^{\prime}, not necessarily identical to O.
- But: $\triangle O B A$ is congruent to $\triangle O^{\prime} B C$ ("angle-side-angle") and $A B=B C$.
- So: Side $O B=$ side $O^{\prime} B$. Thus O must indeed be identical to O^{\prime}.

- Take same straight line. Mark off equal intervals $A B=B C$.
- Perpendiculars from A and B must meet at some point O, and perpendiculars from B and C must meet at some point O^{\prime}, not necessarily identical to O.
- But: $\triangle O B A$ is congruent to $\triangle O^{\prime} B C$ ("angle-side-angle") and $A B=B C$.
- So: Side $O B=$ side $O^{\prime} B$. Thus O must indeed be identical to O^{\prime}.

Case of $5^{\text {none }}$

- Repeat construction.
- All triangles are congruent: $\triangle O A B \cong \triangle O B C \cong \triangle O C D \cong$...
- All angles at O are equal: $\measuredangle A O B=\angle B O C=\measuredangle C O D=\ldots$
- All lines from O are equal: $O A=O B=O C=O D=$...

Case of $5^{\text {none }}$

- Distance in direction of $A G$ is proportional to angle subtended at O.

Case of $5^{\text {none }}$

- Distance in direction of $A G$ is proportional to angle subtended at O.

Case of $5^{\text {none }}$

- Distance in direction of $A G$ is proportional to angle subtended at O.

Case of $5^{\text {none }}$

- Distance in direction of $A G$ is proportional to angle subtended at O.

Case of $5^{\text {none }}$

- Distance in direction of $A G$ is proportional to angle subtended at O.

Case of $5^{\text {none }}$

- Distance in direction of $A G$ is proportional to angle subtended at O.

Case of $5^{\text {none }}$

- Distance in direction of $A G$ is proportional to angle subtended at O.
- Maximum angle subtended at O is 360°, which must correspond to a maximum distance in direction of $A G$.

Result \#2: All straight lines eventually close on themselves!

Case of $5^{\text {none }}$

- Note: There exists a point K on the (straight!) line AG such that $\measuredangle A O K=1$ right angle.
- Sum of angles of $\triangle O A K=3$ right angles!
- For small triangles, sum of angles ≈ 2 right angles.

Case of $5^{\text {none }}$

- $\triangle O A K$ is equilateral (all angles equal). So $O A=A K$.
- Same for $\triangle O K L, \triangle O L M, \triangle O M A$. So radius $O A=A K=K L=L M=M A$.
- So circumference $=A K+K L+L M+M A=4 \times$ radius $<2 \pi \times$ radius
- Can also show: area $=8 / \pi \times(\text { radius })^{2}<\pi \times(\text { radius })^{2}$

Case of $5^{\text {none }}$

- Our construction maps 1-1 to the top hemisphere of a 3-dim sphere!

Case of $5^{\text {none }}$

- Our construction maps 1-1 to the top hemisphere of a 3-dim sphere!
- $5^{\text {none }}$ geometry $=$ spherical geometry $=2$-dim geometry of surface of a 3-dim sphere.
- Generalized $5^{\text {none }}$ geometry $=n$-dim geometry of surface of $(n+1)$-dim sphere.
- Euclidean geometry is "flat". Spherical geometry is "positively curved".

Def. 1. A great circle on a sphere of radius R and center C, is any circle with radius R and center C.

Def. 2. A geodesic is the shortest distance between two points.

Claim:
(a) On the surface of a sphere, the geodesics are given by great circles.
(b) Any two great circles on the surface of a sphere intersect at two points.

On the surface of a sphere:

- There are no parallel straight lines.
- The sum of angles of a triangle >2 right angles.

- The circumference of any circle $<2 \pi \times$ radius.

Tighten up a Euclidean circle -remove wedges from it.

On the surface of a sphere:

- There are no parallel straight lines.
- The sum of angles of a triangle >2 right angles.

- The circumference of any circle $<2 \pi \times$ radius.

Tighten up a Euclidean circle -remove wedges from it.

On the surface of a sphere:

- There are no parallel straight lines.
- The sum of angles of a triangle >2 right angles.

- The circumference of any circle $<2 \pi \times$ radius.

Tighten up a Euclidean circle -remove wedges from it.

On the surface of a sphere:

- There are no parallel straight lines.
- The sum of angles of a triangle >2 right angles.

- The circumference of any circle $<2 \pi \times$ radius.

Tighten up a Euclidean circle -remove wedges from it.

Case of $5^{\text {many }}$

- $5^{\text {many }}$ geometry $=$ hyperbolic geometry $=$ geometry of surfaces of negative curvature.
- Example: surface of a saddle (hyperbolic paraboloid)

Case of $5^{\text {many }}$

- $5^{\text {many }}$ geometry $=$ hyperbolic geometry $=$ geometry of surfaces of negative curvature.
- Example: surface of a saddle (hyperbolic paraboloid)

On the surface of a saddle

- There are indefinitely many lines through a given point that are parallel to any given straight line.
- The sum of angles of a triangle <2 right angles.

- The circumference of a circle $>2 \pi \times$ radius.

Loosen up a Euclidean circle -add wedges to it.

Euclidean circle (dotted line) with circumference $=2 \pi R$.

Wavey hyperbolic circle with circumference $>2 \pi R$.

Question: How could we determine what type of space we live in? Answer: Use "geodesic deviation" to detect intrinsic curvature.

- Draw base line.
- Erect perpendiculars.
- Determine whether geodesics deviate in other regions of space.

Question: How could we determine what type of space we live in? Answer: Use "geodesic deviation" to detect intrinsic curvature.

- Draw base line.
- Erect perpendiculars.
- Determine whether geodesics deviate in other regions of space.

Question: How could we determine what type of space we live in? Answer: Use "geodesic deviation" to detect intrinsic curvature.

- Draw base line.
- Erect perpendiculars.
- Determine whether geodesics deviate in other regions of space.

Question: How could we determine what type of space we live in? Answer: Use "geodesic deviation" to detect intrinsic curvature.

- Draw base line.
- Erect perpendiculars.
- Determine whether geodesics deviate in other regions of space.

Question: How could we determine what type of space we live in? Answer: Use "geodesic deviation" to detect intrinsic curvature.

- Draw base line.
- Erect perpendiculars.
- Determine whether geodesics deviate in other regions of space.

Question: How could we determine what type of space we live in? Answer: Use "geodesic deviation" to detect intrinsic curvature.

- Draw base line.
- Erect perpendiculars.
- Determine whether geodesics deviate in other regions of space.
- 1868: Eugenio Beltrami demonstrates that hyperbolic geometry is logically consistent.
- 1871: Felix Klein demonstrates that elliptical (spherical) geometry is logically consistent. (1835-1900)
- So: Euclidean geometry is not a necessary precondition for a consistent description of the spatial aspects of the physical world.

Immanuel Kant (1724-1804)

- Euclidean geometry is a consistent axiomatic system: Given Euclid's 5 postulates, all other Euclidean claims can be derived, and no contradictory claims can be derived.
- Kant: Euclidean geometry is necessary and universal; a necessary precondition for experiencing the world.
- Can this still be maintained?
- Perhaps humans are predisposed to perceive the world in Euclidean terms, even though the world might not be Euclidean.
- But: Kant's claim is stronger than this. Statements in Euclidean geometry are necessary and universal truths about the world.
- And: With the development of consistent non-Euclidean geometries, this can no longer be the case.
- Is Euclid's 5th Postulate a necessary and universal truth?
- Not if hyperbolic or elliptic geometry is true of the world.
- What geometry is true of the world is now a matter of empirical inquiry, and no longer a matter of pure reason alone.
- One can thus distinguish between:
(a) pure geometery: statements are analytic a priori.
(b) applied geometry: statements are synthetic a posteriori.

