05. Dynamics--Momentum

Topics:

- 1. Three Basic Concepts
- 2. Newtonian Momentum
- 3. Relativistic Momentum

Theory of motion = kinematics + dynamics

- Kinematics = Description of motion in the absence of forces.
 - spacetime diagrams
 - relativity of simultaneity
 - time dilation
 - length contraction
 - structure of spacetime (Minkowski metric)
- Dynamics = Description of motion in the presence of forces.

Let's now consider aspects of the dynamics of special relativity.

- End up with the famous expression $E = mc^2$

1. Three Basic Concepts of Newtonian Dynamics

- (i) *Momentum* = quantity of motion of an object = $(mass) \times (velocity)$.
- (ii) *Energy* = ability of an object to do work.

<u>Fundamental principle of Newtonian dynamics</u>: When objects interact, they exchange energy and momentum.

<u>Conservation of energy and momentum in Newtonian dynamics</u>: In all interactions, the total amount of energy and the total amount of momentum stay the same.

interaction (collision) between A and B

transfer of momentum and energy

1. Three Basic Concepts of Newtonian Dynamics

- (i) *Momentum* = quantity of motion of an object = $(mass) \times (velocity)$.
- (ii) *Energy* = ability of an object to do work.
- (iii) *Force* = the cause of changes in momentum and energy.

Two simple relations between Energy, Momentum, and Force:

$$\begin{bmatrix} Momentum gained \end{bmatrix} = \begin{bmatrix} Force \end{bmatrix} \times \begin{bmatrix} Time through which force acts \end{bmatrix}$$
$$\begin{bmatrix} Energy gained \end{bmatrix} = \begin{bmatrix} Force \end{bmatrix} \times \begin{bmatrix} Distance through which force acts \end{bmatrix}$$

2. Newtonian Momentum

• Newtonian 3-momentum:
$$\vec{\mathbf{p}} = m\vec{\mathbf{v}} = m(v_x\hat{\mathbf{x}} + v_y\hat{\mathbf{y}} + v_z\hat{\mathbf{z}})$$

<u>Newton's 2nd Law of Motion:</u>

The change of motion is proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed.

• <u>Restate as</u>: The rate of change of momentum is equal to the impressed force.

small change
in momentum
$$\rightarrow d\vec{p} = \vec{F}$$

small change
in time

$$\frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} = m \frac{d\vec{v}}{dt} = m\vec{a} \text{ , where } \vec{a} \text{ is acceleration.}$$

• <u>So</u>: Can also express Newton's 2nd Law as $\vec{F} = m\vec{a}$

Conservation of Newtonian Momentum

- A closed system is one on which no external forces are acting: $\vec{F} = 0$
- *<u>Claim</u>*: The total momentum of a closed system is conserved.

<u>*Proof*</u>: $\vec{\mathbf{F}} = \frac{d\vec{\mathbf{p}}}{dt} = 0$, thus $\vec{\mathbf{p}}$ doesn't change over time.

Example:

- Initial momentum = $\vec{\mathbf{p}}_A + \vec{\mathbf{p}}_B = (2kg \cdot m/s)\hat{\mathbf{x}} + 0 = (2kg \cdot m/s)\hat{\mathbf{x}}$
- Final momentum = $\vec{\mathbf{p}}_A + \vec{\mathbf{p}}_B = 0 + (2kg \cdot m/s)\hat{\mathbf{x}} = (2kg \cdot m/s)\hat{\mathbf{x}}$

Conservation of Newtonian Momentum

- A closed system is one on which no external forces are acting: $\vec{F} = 0$
- *<u>Claim</u>*: The total momentum of a closed system is conserved.

<u>*Proof*</u>: $\vec{\mathbf{F}} = \frac{d\vec{\mathbf{p}}}{dt} = 0$, thus $\vec{\mathbf{p}}$ doesn't change over time.

- Initial momentum = $\vec{\mathbf{p}}_A + \vec{\mathbf{p}}_B = (1kg \cdot m/s)\hat{\mathbf{x}} + -(1kg \cdot m/s)\hat{\mathbf{x}} = 0$
- Final momentum = $\vec{\mathbf{p}}_A + \vec{\mathbf{p}}_B = -(1kg \cdot m/s)\hat{\mathbf{x}} + (1kg \cdot m/s)\hat{\mathbf{x}} = 0$

Claim: Newtonian momentum can be used to produce arbitrarily large velocities.

Apply huge Transfer correspondingly huge force to object amount of momentum to object.

- $(momentum) = (mass) \times (velocity).$
- No upper limit for Newtonian momentum; Newtonian mass is constant.
- Thus no upper limit for Newtonian velocities! Possible velocities > c!

Example:

<u>*Claim*</u>: Newtonian momentum can be used to produce arbitrarily large velocities.

Apply hugeTransfer correspondingly hugeforce to objectamount of momentum to object.

- $(momentum) = (mass) \times (velocity).$
- No upper limit for Newtonian momentum; Newtonian mass is constant.
- Thus no upper limit for Newtonian velocities! Possible velocities > *c*!

• In asteroid frame, ping-pong ball approaches at 100,000*mi/s*, and ricochets off at effectively the same speed.

Example:

Why can't this happen in special relativity?

Kinematical Explanation

- In special relativity, we can't simply add velocities together.
 - The final speed of the ball is not simply 100,000mi/s + 100,000mi/s = 200,000mi/s.
- Recall the rule for velocity composition in special relativity:

<i>v</i> =	$v_0 + v'$
	$\overline{1 + \frac{v_0 v'}{c^2}}$

v = final speed of ball *w.r.t.* stationary frame

v' = final speed of ball *w.r.t.* moving frame (asteroid)

 v_0 = final speed of moving frame (asteroid) *w.r.t.* stationary frame

• According to this rule, the final speed of the ball is:

$$v = \frac{100,000 mi/s + 100,000 mi/s}{1 + \frac{100,000 mi/s \times 100,000 mi/s}{(186,000 mi/s)^2}} = 155,000 mi/s$$

Why can't this happen in special relativity?

Dynamical Explanation

```
(momentum) = (mass) \times (velocity)
```

- Suppose we retain the assumption of no upper limit on momentum.
- In special relativity, there's an upper limit on velocity for things like ping-pong balls; namely, *c*.
- Thus, we have to give up the Newtonian assumption that mass is constant!

We have to re-define Newtonian momentum for special relativity!

3. Relativistic Momentum

<u>Claim</u>: Relativistic 3-momentum satisfies Properties (1) and (2).

- Recall that $\gamma = \frac{1}{\sqrt{1 \frac{v^2}{c^2}}}$ has the following properties: $\begin{cases} \gamma \approx 1, & \text{when } v \ll c \\ \gamma \to \infty, & \text{when } v \to c \end{cases}$
- <u>So</u>: When $v \ll c$, $m\gamma \vec{\mathbf{v}} \approx m\vec{\mathbf{v}}$
- <u>And</u>: When $v \to c$, $m\gamma \vec{\mathbf{v}} \to \infty$

<u>Terminology</u>

 $m\gamma \vec{\mathbf{v}} = relativistic momentum$ $m\gamma = relativistic mass \ (v \neq 0)$ $m = rest mass \ (v = 0)$

- Relativistic mass is *not* constant: It *varies with velocity*.
 - As $v \rightarrow c$, relativistic mass $\rightarrow \infty$.
- Why can't we boost a ping-pong ball past *c*?
 - Because as $v \rightarrow c$, the ping-pong's relativistic mass approaches ∞ !
- What about objects that travel at v = c? $\vec{\mathbf{p}}_{SR} = m\gamma \vec{\mathbf{v}} \xrightarrow{?} \infty$
 - Such objects (light signals, etc.) do possess finite momentum.
 - So their rest mass m must be zero!