Assignment \#8. Non-Euclidean Geometry

1. Consider a geometry in which Euclid's 5th postulate is replaced by:

Through any point NO line can be drawn parallel to a given line.
Show that there is at least one triangle in this geometry whose angles sum to more than two right angles.
Hint: On a line $P Q$ select two points A and B. Construct lines $A C$ and $B D$ perpendicular to $P Q$. What happens if $A C$ and $B D$ are extended in both directions?

2. In a Euclidean space, what is
(a) the sum of the angles of any triangle;
(b) the circumference of a circle with radius $10,000 \mathrm{~km}$;
(c) the area of a right triangle if the lengths of the sides enclosing the right angle are both $10,000 \mathrm{~km}$?
3. The geometry of \#1 above is, suitably treated, the geometry of the surface of a sphere. The Earth is, to good approximation, a sphere of circumference $40,000 \mathrm{~km}$.
(a) On this sphere, what is the sum of the angles of a triangle all of whose sides are $10,000 \mathrm{~km}$? (An example of such a triangle is shown as triangle $A B C$. It has one vertex at the North Pole and extends down to the equator.)
(b) What is the circumference of a circle of radius $10,000 \mathrm{~km}$ in this surface?
(c) The triangle $A B C$ is a right triangle all of whose sides are $10,000 \mathrm{~km}$ long. What is its area? (Hint: The area of the Earth is $509,300,000 \mathrm{~km}^{2}$.)

4. If you had before you a two dimensional surface of constant curvature, how could you determine whether the curvature was positive, negative or zero by measuring:
(a) the sum of angles of a triangle;
(b) the circumference of a circle of known radius?
5. How could you check whether our three dimensional space has a positive, negative or zero curvature by measuring:
(a) the sum of angles of a triangle;
(b) the surface area of a sphere of known radius?

