## Assignment \#3: Simultaneity Shift

## Set-Up

If $B^{\prime}$ and $B$ are simultaneous with respect to $S^{\prime}$, what is the time difference between them with respect to $S$ ? Consider the following spacetime diagram.


Physically: $S^{\prime}$ moves at speed $v$ with respect to $S$. $S^{\prime}$ emits a light signal at $A$, which is reflected at $B$ and received by $S^{\prime}$ at $C$.

Given the standard definition of simultaneity, the time according to $S^{\prime}$ from emission to reflection equals the time from reflection to final reception:

$$
A B^{\prime}=B^{\prime} C
$$

Note that $B^{\prime} B$ is a simultaneity line for $S^{\prime}$. It's slope $\Delta t / \Delta x$ in $S$-coordinates will give the change in time $\Delta t$ with respect to $S$ between the two simultaneous events $B^{\prime}$ and $B$ in $S^{\prime}$, provided we know $\Delta x$, the distance in $S$-coordinates between $B^{\prime}$ and $B$. The change in time $\Delta t$ is called the simultaneity shift for $S$. In this assignment, you will derive an expression for this shift and apply it to a particular problem.

## Given:

Slope of $B^{\prime} B$ in $S$-coordinates $=\frac{\Delta t}{\Delta x}=\frac{t(B)-t\left(B^{\prime}\right)}{x(B)-x\left(B^{\prime}\right)}$
From the geometry of the diagram, we have:
(1) $\frac{1}{\text { slope } A B}=\frac{x(B)}{t(B)}=c$
(2) $\frac{1}{\text { slope } A C}=\frac{x(C)}{t(C)}=v$
(3) $\frac{1}{\text { slope } B C}=\frac{x(C)-x(B)}{t(C)-t(B)}=-c$ $t\left(B^{\prime}\right)=\frac{1}{2} t(C)$

(5)
$x\left(B^{\prime}\right)=\frac{1}{2} x(C)$


In both of these triangles, $A B^{\prime}=B^{\prime} C$


1. Now use (1)-(5) to solve for $x(B), x\left(B^{\prime}\right), t\left(B^{\prime}\right)$ in terms of $t(B)$ :
(a) From (1): $x(B)=$ ?
(b) From (2): $x(C)=$ ?
(c) Substitute your expressions for $x(B)$ and $x(C)$ into (3) and solve for $t(C)$ in terms of $t(B)$.
(d) Substitute your expression for $t(C)$ into (4) and solve for $t\left(B^{\prime}\right)$ in terms of $t(B)$.
(e) Substitute your expression for $t(C)$ into (2) and solve for $x(C)$ in terms of $t(B)$.
(f) Substitute this expression for $x(C)$ into (5) and solve for $x\left(B^{\prime}\right)$ in terms of $t(B)$.
2. You now have expressions for $x(B), x\left(B^{\prime}\right)$, and $t\left(B^{\prime}\right)$ in terms of $t(B)$. Substitute these into the expression for the slope of $B^{\prime} B$ and solve for $\Delta t$ in terms of $\Delta x$. This is the simultaneity shift.
3. Alfred is traveling at $v=0.9 c$ with respect to Batman. Acccording to Alfred, two events $B^{\prime}$ and $B$ are simultaneous. According to Batman, if these events are separated by a distance of $\Delta x=10$ meters, how much time $\Delta t$ elapses between them? ( Recall: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )
