Assignment #3: Simultaneity Shift

<u>Set-Up</u>

If *B*' and *B* are simultaneous with respect to *S*', what is the time difference between them with respect to *S*? Consider the following spacetime diagram.

Physically: S' moves at speed *v* with respect to *S*. *S'* emits a light signal at *A*, which is reflected at *B* and received by *S'* at *C*.

Given the standard definition of simultaneity, the time according to *S'* from emission to reflection equals the time from reflection to final reception:

Note that *B'B* is a simultaneity line for *S'*. It's slope $\Delta t/\Delta x$ in *S*-coordinates will give the change in time Δt with respect to *S* between the two simultaneous events *B'* and *B* in *S'*, provided we know Δx , the distance in *S*-coordinates between *B'* and *B*. The change in time Δt is called the *simultaneity shift* for *S*. In this assignment, you will derive an expression for this shift and apply it to a particular problem.

<u>Given:</u>

Slope of *B'B* in *S*-coordinates =
$$\frac{\Delta t}{\Delta x} = \frac{t(B) - t(B')}{x(B) - x(B')}$$

From the geometry of the diagram, we have:

- 1. Now use (1)-(5) to solve for x(B), x(B'), t(B') in terms of t(B):
 - (a) From (1): x(B) = ?
 - (b) From (2): x(C) = ?
 - (c) Substitute your expressions for x(B) and x(C) into (3) and solve for t(C) in terms of t(B).
 - (d) Substitute your expression for t(C) into (4) and solve for t(B') in terms of t(B).
 - (e) Substitute your expression for t(C) into (2) and solve for x(C) in terms of t(B).
 - (f) Substitute this expression for x(C) into (5) and solve for x(B') in terms of t(B).
- 2. You now have expressions for x(B), x(B'), and t(B') in terms of t(B). Substitute these into the expression for the slope of B'B and solve for Δt in terms of Δx . This is the simultaneity shift.
- 3. Alfred is traveling at v = 0.9c with respect to Batman. According to Alfred, two events B' and B are simultaneous. According to Batman, if these events are separated by a distance of $\Delta x = 10$ *meters*, how much time Δt elapses between them? (*Recall*: $c = 3 \times 10^8 m/s$)