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Time	Dilation	as	a	Real	Effect
Muon	detection	experiment
Muons	are	elementary	particles	with	the	following	properties:
(1) Created	in	upper	atmosphere	at	altitudes	of	about	9000	meters.
(2) Average	life	span	is	2	× 10−6𝑠 =	2𝑚𝑠 (note:	𝑚𝑠= "millisecond")
(3) Typical	speed	is	0.998𝑐

So	we	would	expect	that	they	could	only	travel	at	most

0.998𝑐 × (2	× 10−6𝑠)	≈ 600𝑚

But	they	can	be	observed	at	ground	level.

Why? In	the	rest	frame	of	the	Earth,	the	lifespan	of	a	traveling	muon	experiences	time	dilation:

where	the	dilation	factor	𝛾 is	given	by

𝑡 =	𝛾𝑡′ 𝑡 =	lifespan	of	muon	with	respect	to	Earth
𝑡′ =	lifespan	of	traveling	muon

So: In	the	Earth's	reference	frame,	a	typical	muon	lives	on	the	average	(2	× 15)𝑚𝑠=	30𝑚𝑠.
So: With	respect	to	the	Earth,	a	typical	muon	can	travel	0.998𝑐 × 30𝑚𝑠≈ 9000𝑚.
So: Special	relativity	predicts	we	should	be	able	to	observe	muons	at	ground	level,	and	we	do.

Note:	In	the	traveling	muon's	reference	frame,	it	is	at	rest	and	the	Earth	is	rushing	up	to	meet	it	at	
0.998𝑐.	The	distance	between	it	and	the	Earth	thus	is	shorter	than	9000𝑚 by	length	contraction.	With	
respect	to	the	muon,	this	distance	is	9000𝑚/15	=	600𝑚.

•

90
00
𝑚

Earth	frame

•

60
00
𝑚

muon	frame

STS-UY.3284	Relativity	and	Spacetime

𝛾 =
1

1− 0.998𝑐 "/𝑐"
≈ 15



Pragmatics	of	Space	Travel

Let's	investigate	how	time	dilation	effects	space	travel.
First,	note	that	the	time	dilation	formula	is	only for	inertial	reference	frames:

𝑡 =	𝛾𝑡′

What	about	a	rocket	that	accelerates	away	from	the	earth?

𝑥

𝑡 𝑡′

Worldline of 𝑆′-clock is straight 
(constant, non-accelerated motion).

Here	we	use	𝜏 instead	of	𝑡′ just	to	indicate	that	the	moving	clock's	worldline	is	curved.	For	such	an	
accelerating clock,	𝑡 ≠ 𝛾𝜏.

BUT:We	can	look	at	very	small	(infinitesimal)	𝑡-intervals	𝑑𝑡 and	𝜏-intervals	𝑑𝜏.	If	they	are	small	
enough,	they	will	be	effectively	"straight"	and	so	be	related	by

𝑑𝑡 = γ𝑑𝜏

𝑡

𝑥

𝜏

Curved worldline of 
accelerating rocket -
labeled by 𝜏.

Worldline 
of Earth

A

P •

𝑡 = time	of	stationary	𝑆-clock
𝑡′ = time	of	𝑆′-clock	in	constant,	non-accelerating,	motionwith	respect	to	S.

𝑑𝑡
𝑡

𝑑𝜏

𝜏

To	relate	the	𝑡-time	between	events	A and	P to	the	𝜏-time	between	them,	we	now	sum	all	the	
infinitesimal	pieces	𝑑𝑡 that	correspond	to	𝑑𝜏 pieces	between	A and	P:

for 𝑁 pieces

where	𝛾 𝜏 = #

#$#(%)
'

('

and	𝑣(𝜏) is	 #
%&'()

of	the	𝜏-clock's	worldline	at	value	𝜏.

An integral is just a sum of infinitely 
many infinitesimal pieces

ASIDE: 𝜏 is	called	the	"proper	time"	of	
the	rocket's	worldline.	It's	the	time	read	
by	a	clock	that	moves	with	the	rocket.	
In	general,	any	timelike	worldline	
(straight	or	curved)	has	a	proper	time	
associated	with	it;	namely,	the	time	as	
read	by	a	clock	moving	along	it.		
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We	can	now	decide	on	the	"shape"	of	the	rocket's	trajectory;	i.e.,	how	much	acceleration	we	want	to	
give	it.	Let's	accelerate	it	at	constant	acceleration	g= 9.8m/s2.	This	is	the	acceleration	due	to	gravity	
on	the	Earth	(so	the	astronaut	will	feel	comfortable).	So	the	velocity	𝑣(𝜏) of	the	rocket	is	changing	at	a	
constant	rate.	Note	that,	from	the	Earth's	perspective,	we	can't	simply	add	on	the	changes	to	𝑣(𝜏)--we	
have	to	be	careful	about	velocity	composition.	Given	this	care	(see	technical	derivation	on	next	page),	
the	solution	to	the	integral	for	𝑡 is:

We	can	now	use	this	formula	to	relate	Earth	time	𝑡 to	rocket	time	𝜏.	To	do	this,	we	will	make	a	
simplifying	approximation.	First	note	that	for	large	𝜏,	the	first	exponential	𝑒𝑔𝜏/𝑐 dominates	the	second	
𝑒−𝑔𝜏/𝑐 (which	is	just	1/𝑒𝑔𝜏/𝑐).	In	other	words,	as	we	increase	𝜏,	𝑒𝑔𝜏/𝑐 gets	larger	and	larger,	while	e−gτ/c

gets	correspondingly	smaller	and	smaller.	So	let's	restrict	ourselves	to	large	values	of	𝜏 (i.e.,	very	long	
rocket	trips),	thereby	letting	us	drop	the	second	exponential.	Let's	also	use	units	in	which	time	is	
measured	in	years,	and	distance	in	light-years	(so	c= 1,	and,	if	you	work	it	out,	g= 1.03c/𝑦𝑟).		Our	
formula	for	t is	now:

Earth	time	𝑡 versus	rocket	time	𝜏,	for	
large	values	of	𝜏 and	g= 1.03c/𝑦𝑟

The	formula	for	the	𝑥-coordinate	of	the	Earth	is	the	same	(see	technical	derivation	on	next	page	for	
details).	The	𝑥-coordinate	gives	the	distance	traveled	by	the	rocket	with	respect	to	the	Earth.	Here	are	
some	sample	values:

Rocket	time	𝜏 Earth	time	𝑡 Distance	𝑥 of	rocket	from	Earth

1	𝑦𝑟

5	𝑦𝑟

10	𝑦𝑟

25	𝑦𝑟

1.18	𝑦𝑟

83.7	𝑦𝑟

14,	433	𝑦𝑟

7.4	× 1010 𝑦𝑟

0.56	𝑙𝑖𝑔ℎ𝑡-𝑦𝑟

82.7	𝑙𝑖𝑔ℎ𝑡-𝑦𝑟

14,	432	𝑙𝑖𝑔ℎ𝑡-𝑦𝑟

7.4	× 1010 𝑙𝑖𝑔ℎ𝑡-𝑦𝑟
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Technical	derivation	of	formula	for	Earth	time	t
The	rocket's	speed	𝑣(𝜏) is	being	constantly	"boosted"	by	a	fixed	amount	g.	This	boosting	is	not	simply	a	
matter	of	adding	amounts	onto	𝑣(𝜏) in	a	linear	manner,	so	we	shouldn't	just	set	𝑣(𝜏)	=	𝑔𝜏.	Recall	that	
velocities	cannot	be	simply	added	together.	What	can	be	added	together	is	a	quantity	called	the	
rapidity 𝑟 that	is	related	to	the	velocity	𝑣 by:

The	hyperbolic	tangent	function	tanh(𝑥) ranges	from	−1 to	+1.	The	formula	thus	guarantees	that	the	
velocity	𝑣 can	only	vary	from	−𝑐 (when	𝑟 =	−𝑐)	to	+𝑐 (when	𝑟 =	𝑐).	While	velocities	cannot	be	simply	
added	together,	rapidities	can.	If	𝑟′ is	the	rapidity	associated	with	the	velocity	𝑣′,	then	the	combined	
rapidity	𝑟″ is	the	sum	𝑟″	=	𝑟 +	𝑟′,	which	follows	from	the	identity

The	upshot	of	this	is	that	the	rapidity	𝑟 of	the	rocket	is	linearly	increasing	by	the	formula	𝑟 =	𝑔𝜏.	Now	
note	that,	from	the	definition	of	𝑟 above,	it	follows	that

(You	can	get	this	from	the	identities	tanh(𝑥)	=	sinh(𝑥)/cosh(𝑥)	and	cosh2(𝑥)	−	sinh2(𝑥)	=	1.)	So	our	
integral	for	t becomes

And	the	solution	to	this	integral	is

Note:	The	formula	for	the	𝑥-coordinate	of	the	Earth	can	be	obtained	in	a	similar	manner.	(This	gives	the	
distance	of	the	trip	with	respect	to	the	Earth.)		We	know	that	𝑥 =	𝑣𝑡 =	∫𝑣𝛾𝑑𝜏.	From	the	definition	of	the	
rapidity	above,	it	can	also	be	shown	that	𝛾 =	(𝑐/𝑣)sinh(𝑟/𝑐). So:

For	large	values	of	𝜏,	and	in	units	in	which	𝑐 =	1,	the	formulas	for	𝑡 and	𝑥 are	the	same	(we	can	
disregard	the	second	exponential).	When	𝜏 is	small,	𝑡 and	𝑥will	differ.
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𝑣 = 𝑐 tanh
𝑟
𝑐

tanh 𝑥 + 𝑦 =
tanh 𝑥 + tanh(𝑦)
1 + tanh 𝑥 tanh(𝑦)

𝛾 = cosh
𝑟
𝑐

𝑡 = >cosh
𝑔𝜏
𝑐 𝑑𝜏

𝑡 =
𝑐
𝑔 sinh

𝑔𝜏
𝑐 =

𝑐
2𝑔 𝑒.//1 − 𝑒$.//1

𝑥 = 𝑐>sinh
𝑔𝜏
𝑐 𝑑𝜏 =

𝑐"

𝑔 cosh
𝑔𝜏
𝑐 =

𝑐"

2𝑔 𝑒.//1 + 𝑒$.//1


