Time Dilation as a Real Effect

Muon detection experiment

Muons are elementary particles with the following properties:
(1) Created in upper atmosphere at altitudes of about 9000 meters.
(2) Average life span is $2 \times 10^{-6} s=2 \mathrm{~ms}$ (note: $\mathrm{ms}=$ "millisecond")
(3) Typical speed is 0.998 c

So we would expect that they could only travel at most

$$
0.998 c \times\left(2 \times 10^{-6} s\right) \approx 600 \mathrm{~m}
$$

But they can be observed at ground level.
Why? In the rest frame of the Earth, the lifespan of a traveling muon experiences time dilation:

$$
\begin{array}{ll}
t=\gamma t^{\prime} & \begin{array}{l}
t=\text { lifespan of muon with respect to Earth } \\
t^{\prime}
\end{array}=\text { lifespan of traveling muon }
\end{array}
$$

where the dilation factor γ is given by

$$
\gamma=\frac{1}{\sqrt{1-(0.998 c)^{2} / c^{2}}} \approx 15
$$

So: In the Earth's reference frame, a typical muon lives on the average $(2 \times 15) \mathrm{ms}=30 \mathrm{~ms}$.
So: With respect to the Earth, a typical muon can travel $0.998 \mathrm{c} \times 30 \mathrm{~ms} \approx 9000 \mathrm{~m}$.
So: Special relativity predicts we should be able to observe muons at ground level, and we do.
Note: In the traveling muon's reference frame, it is at rest and the Earth is rushing up to meet it at $0.998 c$. The distance between it and the Earth thus is shorter than $9000 m$ by length contraction. With respect to the muon, this distance is $9000 \mathrm{~m} / 15=600 \mathrm{~m}$.

Earth frame

muon frame

Pragmatics of Space Travel

Let's investigate how time dilation effects space travel.
First, note that the time dilation formula is only for inertial reference frames:

$$
t=\gamma t^{\prime} \quad \begin{array}{ll}
t=\text { time of stationary } S \text {-clock } \\
t^{\prime}=\text { time of } S^{\prime} \text {-clock in constant, non-accelerating, motion with respect to } S .
\end{array}
$$

What about a rocket that accelerates away from the earth?

In general, any timelike worldline
(straight or curved) has a proper time associated with it; namely, the time as read by a clock moving along it.

Here we use τ instead of t^{\prime} just to indicate that the moving clock's worldline is curved. For such an accelerating clock, $t \neq \gamma \tau$.

BUT: We can look at very small (infinitesimal) t-intervals $d t$ and τ-intervals $d \tau$. If they are small enough, they will be effectively "straight" and so be related by

$$
d t=\gamma d \tau
$$

To relate the t-time between events A and P to the τ-time between them, we now sum all the infinitesimal pieces $d t$ that correspond to $d \tau$ pieces between A and P :

$$
\begin{aligned}
t & =d t_{1}+d t_{2}+\cdots+d t_{N} \longleftarrow \stackrel{\leftrightarrow}{ } \text { for } N \text { pieces } \\
& =\gamma_{1} d \tau_{1}+\gamma_{2} d \tau_{2}+\cdots+\gamma_{N} d \tau_{N} \\
& =\int_{A}^{P} \gamma(\tau) d \tau \longleftarrow \begin{array}{l}
\text { An integral is just a sum of infinitely } \\
\text { many infinitesimal pieces }
\end{array}
\end{aligned}
$$

where $\gamma(\tau)=\frac{1}{\sqrt{1-\frac{v(\tau)^{2}}{c^{2}}}}$ and $v(\tau)$ is $\frac{1}{\text { slope }}$ of the τ-clock's worldline at value τ.

We can now decide on the "shape" of the rocket's trajectory; i.e., how much acceleration we want to give it. Let's accelerate it at constant acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. This is the acceleration due to gravity on the Earth (so the astronaut will feel comfortable). So the velocity $v(\tau)$ of the rocket is changing at a constant rate. Note that, from the Earth's perspective, we can't simply add on the changes to $v(\tau)$--we have to be careful about velocity composition. Given this care (see technical derivation on next page), the solution to the integral for t is:

$$
t=\frac{c}{2 g}\left(e^{g \tau / c}-e^{-g \tau / c}\right)
$$

We can now use this formula to relate Earth time t to rocket time τ. To do this, we will make a simplifying approximation. First note that for large τ, the first exponential $e^{g \tau / c}$ dominates the second $e^{-g \tau / c}$ (which is just $1 / e^{g \tau / c}$). In other words, as we increase $\tau, e^{g \tau / c}$ gets larger and larger, while $e^{-g \tau / c}$ gets correspondingly smaller and smaller. So let's restrict ourselves to large values of τ (i.e., very long rocket trips), thereby letting us drop the second exponential. Let's also use units in which time is measured in years, and distance in light-years (so $c=1$, and, if you work it out, $g=1.03 c / y r$). Our formula for t is now:

$$
t \approx \frac{e^{g \tau}}{2 g} \quad \begin{aligned}
& \text { Earth time } t \text { versus rocket time } \tau, \text { for } \\
& \text { large values of } \tau \text { and } g=1.03 c / y r
\end{aligned}
$$

The formula for the x-coordinate of the Earth is the same (see technical derivation on next page for details). The x-coordinate gives the distance traveled by the rocket with respect to the Earth. Here are some sample values:

Rocket time τ	Earth time t	Distance x of rocket from Earth
1 yr	1.18 yr	0.56 light-yr
$5 y r$	83.7 yr	82.7 light-yr
10 yr	14, 433 yr	14, 432 light-yr
25 yr	$7.4 \times 10^{10} y r$	7.4×10^{10} light-yr

Technical derivation of formula for Earth time t

The rocket's speed $v(\tau)$ is being constantly "boosted" by a fixed amount g. This boosting is not simply a matter of adding amounts onto $v(\tau)$ in a linear manner, so we shouldn't just set $v(\tau)=g \tau$. Recall that velocities cannot be simply added together. What can be added together is a quantity called the rapidity r that is related to the velocity v by:

$$
v=c \tanh \binom{r}{c}
$$

The hyperbolic tangent function $\tanh (x)$ ranges from -1 to +1 . The formula thus guarantees that the velocity v can only vary from $-c$ (when $r=-c$) to $+c$ (when $r=c$). While velocities cannot be simply added together, rapidities can. If r^{\prime} is the rapidity associated with the velocity v^{\prime}, then the combined rapidity $r^{\prime \prime}$ is the sum $r^{\prime \prime}=r+r^{\prime}$, which follows from the identity

$$
\tanh (x+y)=\frac{\tanh (x)+\tanh (y)}{1+\tanh (x) \tanh (y)}
$$

The upshot of this is that the rapidity r of the rocket is linearly increasing by the formula $r=g \tau$. Now note that, from the definition of r above, it follows that

$$
\gamma=\cosh \left(\frac{r}{c}\right)
$$

(You can get this from the identities $\tanh (x)=\sinh (x) / \cosh (x)$ and $\cosh ^{2}(x)-\sinh ^{2}(x)=1$.) So our integral for t becomes

$$
t=\int \cosh \left(\frac{g \tau}{c}\right) d \tau
$$

And the solution to this integral is

$$
t=\frac{c}{g} \sinh \left(\frac{g \tau}{c}\right)=\frac{c}{2 g}\left(e^{g \tau / c}-e^{-g \tau / c}\right)
$$

Note: The formula for the x-coordinate of the Earth can be obtained in a similar manner. (This gives the distance of the trip with respect to the Earth.) We know that $x=v t=\int v \gamma d \tau$. From the definition of the rapidity above, it can also be shown that $\gamma=(c / v) \sinh (r / c)$. So:

$$
x=c \int \sinh \left(\frac{g \tau}{c}\right) d \tau=\frac{c^{2}}{g} \cosh \left(\frac{g \tau}{c}\right)=\frac{c^{2}}{2 g}\left(e^{g \tau / c}+e^{-g \tau / c}\right)
$$

For large values of τ, and in units in which $c=1$, the formulas for t and x are the same (we can disregard the second exponential). When τ is small, t and x will differ.

