STS-UY.3284 Relativity and Spacetime

1. The Covariant Derivative (the general derivative for a curved space).

(a) d2x#/dt? =d/dt(dx*/dt) is the change of the tangent vector dx*/dt, call it X*, to the path x(t) at different values of t:

x(t)
x(t) Xt Chanae in Xb:
s ange in X*:
No change: d/deXt#0
d/dtX* =0
X+ X
straight path Flat space curved path

If we want to consider path A
straight, then require no

change in X*: only apparent
because of curvature! For the correction factors T that
make path A straight (geodesic),
Correct for it:

d/dtX*+T =0

path B may be curved!

For these particular correction

factors, only some paths will be

geodesics; others will not! Curved space

Now: What is the particular form of the correction I'?

First Note:

d/dtXr +T = (Xvd/dx) X+ + T d/dt = (dx”/dt)(d/dx")
Change of X* in its own direction; i.e., along the

path x(t) it's tangent to. Or, the "directional
derivative of X* in the direction X*".

d/dAXr +T = (Yvd/dy") X+ + T d/dA = (dy’/dA)(d/dy")
Change of X* in direction of Y = dyv/dJ; i.e,,

along the path y(A). Or, the "directional

derivative of X* in the direction Y"".

Moving X" in the direction Y" and
measuring how it changes.

So: Ina curved space, the directional derivative of a vector X# in the direction Y¥ must be "corrected".
Write it as:

vav XH = (yvav) Xt + FﬁgY" Xo <« Require the correction to depend on both X* and Y".

For YV = X", and setting the directional derivative to zero, we get the geodesic equation!

This motivates the definition for the VXK = 3,Xi 4 [ Xo

"covariant derivative" V, (the general _

derivative f d . The derivative of X* — The derivative of + Correction
erivative for a curved space): in a curved space Xt in flat space factors
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(b) For any curved space, there may be many ways to construct "correction factors" I' (technically called "connection
coefficients"). But if the space has a metric g,,, there is one particular set of correction factors associated with g,,,
(the "metric compatible connection coefficients"). These are defined by the condition V,g,, = 0. You can solve for
the I''s in this equation explicitly in terms of the values of g,,,. (Intuitively, when the space has a metric, you can
measure the length of paths; hence you can "minimize" path lengths to find paths that are the "shortest distance”

between points, which you can then identify as geodesics.)

(c) Ifthe correction factors I' = 0, then we have the flat space case. But even in flat spaces, there may be correction
factors; and this may arise because of the use of kooky coordinates to label paths (e.g., spherical coordinates instead
of Cartesian). So just because I" # 0, doesn't necessarily mean our space is curved.

2. The Curvature Tensor

One can define a 4-indexed quantity, the curvature tensor R/, that acts on three vectors Xv, Y, Z# and outputs the

amount of change experienced by Z* upon parallel-transport around an infinitesimal curve defined by X and Y»:

e N A
R7, XVYPZH = 52 !
8§70 =70—7"

= change in Z° upon parallel transport

around loop defined by X and Y.
- J

(@) R}, =0ifand only if the space s flat.
(b) R, depends explicitly on the metric g,,.

The curvature tensor is officially defined by:

RS, XVYPZr = X'V,(YPV,ZK) — Y'V,(XPV,ZK) For "metric-compatible connections’, RS, depends
—— —— explicitly on first derivatives of the metric. So, since the
change in 2 change in 2" Minkowski metric is constant (= diag(—1, 1, 1, 1)), the
along Y? along XV i ) ) ]
— —— curvature tensor for Minkowski spacetime is zero:
then change in the  then change in the Minkowski spacetime is flat!
result along X" result along Y?

For convenience sake, write X'V, as Vy (the deriviative in the X direction). Then the above becomes:

R(X, Y, Z) = VvaZ - VyVXZ
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3. Motivating the Einstein Equations.
First, compare:

(@) The relative acceleration between 2 massive objects, according to Newtonian gravity.
(b) The rate at which parallel geodesics deviate in a curved space.

€)) (b)
L, ox - dxH
b= — S . . _r
3t 7l = separation distance 3t s
> N}l —
n= 6_x on
on
x(t,n) X(t,n + An) X(t,n) X(t,n + An)
rate of change in 7t _ (17 . i) (1_} . i)ﬁ _ 9%n [i.‘ate oflchan‘ge in NH] = Uy (TN)
in B-direction 0x ox ot? in V#* direction

Require:
(1) VyN =VyV (the "angle" between V, N remains constant).
(2) VW =0 (ie,the paths are geodesics).

Then:

0?1 929X 9 9% 0 ( 0(1))

_2 = —2—= __2 = - -y
at dt4dn On ot an ax Then:
afa(‘”’) Vo(VyN) = Vy(VaV
_%ﬁ _ﬁ V(V)_V(N)
o = Vn(VyV) —R(N,V,V)
=—(7-9)0d
“ =—-R(V,N,V)
compare! %

Suggests:
RZVpVHVV o VP‘V# ® = 47‘[GTWV‘“VV where V“V#CD =4TGp <« = Poisson's field equation for Newtonian

gravity, p = mass density

and T, ViV =p

To cancel the VI’V terms on both sides, and to get a uv-indexed object on the left, take the partial trace of R,

uvp
Define the "Ricci tensor” R, = RS, , = R%,,o + R1,1 + R2,, + R3,5.

Then we have: R, =4nGT,, (*) <—S" proposed by Einstein in 1915

But! It's a mathematical property of R}, that,

_1 =
Vo(Riy = Y2R9,,) =0 <—2_ | ore the "Ricci scalar' R = Trace(Ruw) = Roo + R11 + Raz2 + R33

So: Since V, T,, = 0, equation (*) then entails V,R =V, T = 0, where T = Trace(T,,);
and this means mass-density is constant, which is unphysical!

Solution: Instead of equation (*), write

R,, — ¥Ry, = 87GT,,

or Take trace of both sides to get R = —8nGT

R, =8nG(T,, — YT g,)

For very slow speeds (Newtonian limit), T, and T = p, hence we get back Poisson's equation!



