1. The Covariant Derivative (the general derivative for a curved space).

(a) $d^{2} x^{\mu} / d t^{2}=d / d t\left(d x^{\mu} / d t\right)$ is the change of the tangent vector $d x^{\mu} / d t$, call it X^{μ}, to the path $x(t)$ at different values of t :

If we want to consider path A straight, then require no change in X^{μ} : only apparent because of curvature!

Correct for it:
$d / d t X^{\mu}+\Gamma=0$
For these particular correction factors, only some paths will be geodesics; others will not!

Now: What is the particular form of the correction Г?

First Note:

$$
\begin{aligned}
& d / d t X^{\mu}+\Gamma=\left(X^{\nu} d / d x^{\nu}\right) X^{\mu}+\Gamma \\
& \text { Change of } X^{\mu} \text { in its own direction; i.e., along the } \\
& \text { path } x(t) \text { it's tangent to. Or, the "directional } \\
& \text { derivative of } X^{\mu} \text { in the direction } X^{\mu} \text {. }
\end{aligned}
$$

$$
d / d \lambda X^{\mu}+\Gamma=\left(Y^{v} d / d y^{v}\right) X^{\mu}+\Gamma
$$

Change of X^{μ} in direction of $Y^{v}=d y^{v} / d \lambda$; i.e., along the path $y(\lambda)$. Or, the "directional derivative of X^{μ} in the direction Y^{v} ".
$d / d t=\left(d x^{v} / d t\right)\left(d / d x^{v}\right)$
$d / d \lambda=\left(d y^{v} / d \lambda\right)\left(d / d y^{\nu}\right)$

Moving X^{μ} in the direction Y^{μ} and measuring how it changes.

So: In a curved space, the directional derivative of a vector X^{μ} in the direction Y^{ν} must be "corrected".
Write it as:

$$
Y^{\nu} \nabla_{v} X^{\mu}=\left(Y^{v} \partial_{v}\right) X^{\mu}+\Gamma_{v \sigma}^{\mu} Y^{\nu} X^{\sigma} \quad \longleftarrow \text { Require the correction to depend on both } X^{\mu} \text { and } Y^{v} \text {. }
$$

For $Y^{v}=X^{v}$, and setting the directional derivative to zero, we get the geodesic equation!
This motivates the definition for the "covariant derivative" ∇_{v} (the general derivative for a curved space):

(b) For any curved space, there may be many ways to construct "correction factors" Γ (technically called "connection coefficients"). But if the space has a metric $g_{\mu \nu}$, there is one particular set of correction factors associated with $g_{\mu v}$ (the "metric compatible connection coefficients"). These are defined by the condition $\nabla_{\sigma} g_{\mu \nu}=0$. You can solve for the $\Gamma^{\prime} s$ in this equation explicitly in terms of the values of $g_{\mu v}$. (Intuitively, when the space has a metric, you can measure the length of paths; hence you can "minimize" path lengths to find paths that are the "shortest distance" between points, which you can then identify as geodesics.)
(c) If the correction factors $\Gamma=0$, then we have the flat space case. But even in flat spaces, there may be correction factors; and this may arise because of the use of kooky coordinates to label paths (e.g., spherical coordinates instead of Cartesian). So just because $\Gamma \neq 0$, doesn't necessarily mean our space is curved.

2. The Curvature Tensor

One can define a 4-indexed quantity, the curvature tensor $R_{\mu \nu \rho}^{\sigma}$ that acts on three vectors $X^{\nu}, Y^{\rho}, Z^{\mu}$ and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

$$
\begin{aligned}
& R_{\mu \nu \rho}^{\sigma} X^{\nu} Y^{\rho} Z^{\mu}=\delta Z^{\sigma} \\
& \delta Z^{\sigma}=Z^{\sigma}-Z^{\prime \sigma} \\
& \quad=\text { change in } Z^{\sigma} \text { upon parallel transport } \\
& \quad \text { around loop defined by } X^{v} \text { and } Y^{\rho} .
\end{aligned}
$$

(a) $R_{\mu \nu \rho}^{\sigma}=0$ if and only if the space is flat.
(b) $R_{\mu v \rho}^{\sigma}$ depends explicitly on the metric $g_{\mu v}$.

The curvature tensor is officially defined by:

For "metric-compatible connections", $R_{\mu \nu \rho}^{\sigma}$ depends explicitly on first derivatives of the metric. So, since the Minkowski metric is constant $(=\operatorname{diag}(-1,1,1,1))$, the curvature tensor for Minkowski spacetime is zero: Minkowski spacetime is flat!

For convenience sake, write $X^{\nu} \nabla_{v}$ as ∇_{X} (the deriviative in the X^{μ} direction). Then the above becomes:

$$
R(X, Y, Z)=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z
$$

3. Motivating the Einstein Equations.

First, compare:
(a) The relative acceleration between 2 massive objects, according to Newtonian gravity.
(b) The rate at which parallel geodesics deviate in a curved space.
(a)

$\binom{$ rate of change in $\vec{n}}{$ in \vec{v}-direction }$=\left(\vec{v} \cdot \frac{\partial}{\partial \vec{x}}\right)\left(\vec{v} \cdot \frac{\partial}{\partial \vec{x}}\right) \vec{n}=\frac{\partial^{2} \vec{n}}{\partial t^{2}}$

Then:

$$
\begin{aligned}
\frac{\partial^{2} \vec{n}}{\partial t^{2}}=\frac{\partial^{2}}{\partial t^{2}} \frac{\partial \vec{x}}{\partial n}=\frac{\partial}{\partial n} \frac{\partial^{2} \vec{x}}{\partial t^{2}} & =\frac{\partial}{\partial n}\left(-\frac{\partial \Phi}{\partial \vec{x}}\right) \\
& =\left(\frac{\partial \vec{x}}{\partial n} \cdot \frac{\partial}{\partial \vec{x}}\right)\left(-\frac{\partial \Phi}{\partial \vec{x}}\right) \\
& =-(\vec{n} \cdot \vec{\partial}) \vec{\partial} \Phi
\end{aligned}
$$

(b)

$$
\binom{\text { rate of change in } N^{\mu}}{\text { in } V^{\mu} \text { direction }}=\nabla_{V}\left(\nabla_{V} N\right)
$$

Require:

(1) $\nabla_{V} N=\nabla_{N} V$ (the "angle" between V, N remains constant).
(2) $\nabla_{V} V=0 \quad$ (i.e., the paths are geodesics).

Then:

$$
\begin{aligned}
\nabla_{V}\left(\nabla_{V} N\right) & =\nabla_{V}\left(\nabla_{N} V\right) \\
& =\nabla_{N}\left(\nabla_{V} V\right)-R(N, V, V) \\
& =-R(V, N, V)
\end{aligned}
$$

Suggests:

$$
R_{\mu \nu \rho}^{\sigma} V^{\mu} V^{v} \leftrightarrow V^{\mu} \nabla_{\mu} \Phi=4 \pi G T_{\mu \nu} V^{\mu} V^{v} \quad \text { where } \quad V^{\mu} \nabla_{\mu} \Phi=4 \pi G \rho \longleftarrow \rightleftarrows_{\text {Poisson's field equation for Newtonian }}^{\text {gravity, } \rho=\text { mass density }} \text {. }
$$

$$
\text { and } \quad T_{\mu \nu} V^{\mu} V^{\nu}=\rho
$$

To cancel the $V^{\mu} V^{\nu}$ terms on both sides, and to get a $\mu \nu$-indexed object on the left, take the partial trace of $R_{\mu \nu \rho}^{\sigma}$. Define the "Ricci tensor" $R_{\mu \nu} \equiv R_{\mu \nu \rho}^{\sigma}=R_{\mu v 0}^{0}+R_{\mu \nu 1}^{1}+R_{\mu v 2}^{2}+R_{\mu \nu 3}^{3}$.

Then we have: $R_{\mu v}=4 \pi G T_{\mu \nu}$
\longleftarrow proposed by Einstein in 1915
But! It's a mathematical property of $R_{\mu \nu \rho}^{\sigma}$ that,

$$
\nabla_{\sigma}\left(R_{\mu \nu}-1 / 2 R g_{\mu \nu}\right)=0 \longleftarrow<\text { where the "Ricci scalar" } R \equiv \operatorname{Trace}\left(R_{\mu \nu}\right)=R_{00}+R_{11}+R_{22}+R_{33}
$$

So: Since $\nabla_{\sigma} T_{\mu \nu}=0$, equation (*) then entails $\nabla_{\sigma} R=\nabla_{\sigma} T=0$, where $T=\operatorname{Trace}\left(T_{\mu \nu}\right)$; and this means mass-density is constant, which is unphysical!

Solution: Instead of equation (*), write

