1. The Covariant Derivative (the general derivative for a curved space).

(a) $d^2x^{\mu}/dt^2 = d/dt(dx^{\mu}/dt)$ is the change of the **tangent vector** dx^{μ}/dt , call it X^{μ} , to the path x(t) at different values of t:

<u>*Now*</u>: What is the particular form of the correction Γ ?

<u>First Note</u>:

<u>So</u>: In a curved space, the *directional derivative* of a vector X^{μ} in the direction Y^{ν} must be "corrected". Write it as:

 \leftarrow Require the correction to depend on both X^{μ} and Y^{ν} .

For $Y^{\nu} = X^{\nu}$, and setting the directional derivative to zero, we get the geodesic equation!

This motivates the definition for the "covariant derivative" ∇_{ν} (the general derivative for a curved space):

derivative of X^{μ} in the direction Y^{ν} ".

 $\nabla_{\nu} X^{\mu} = \partial_{\nu} X^{\mu} + \Gamma^{\mu}_{\nu\sigma} X^{\sigma}$ The derivative of X^{μ} = The derivative of + Correction factors

- (b) For any curved space, there may be many ways to construct "correction factors" Γ (technically called "connection coefficients"). But if the space has a metric $g_{\mu\nu}$, there is one particular set of correction factors associated with $g_{\mu\nu}$ (the "metric compatible connection coefficients"). These are defined by the condition $\nabla_{\sigma}g_{\mu\nu} = 0$. You can solve for the Γ 's in this equation explicitly in terms of the values of $g_{\mu\nu}$. (Intuitively, when the space has a metric, you can measure the length of paths; hence you can "minimize" path lengths to find paths that are the "shortest distance" between points, which you can then identify as geodesics.)
- (c) If the correction factors $\Gamma = 0$, then we have the flat space case. But even in flat spaces, there may be correction factors; and this may arise because of the use of kooky coordinates to label paths (*e.g.*, spherical coordinates instead of Cartesian). So just because $\Gamma \neq 0$, doesn't necessarily mean our space is curved.

2. The Curvature Tensor

One can define a 4-indexed quantity, the **curvature tensor** $R^{\sigma}_{\mu\nu\rho}$ that acts on three vectors X^{ν} , Y^{ρ} , Z^{μ} and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

$$\begin{split} R^{\sigma}_{\mu\nu\rho} X^{\nu} Y^{\rho} Z^{\mu} &= \delta Z^{\sigma} \\ \delta Z^{\sigma} &= Z^{\sigma} - Z'^{\sigma} \\ &= change \ in \ Z^{\sigma} \ upon \ parallel \ transport \\ around \ loop \ defined \ by \ X^{\nu} \ and \ Y^{\rho}. \end{split}$$

- (a) $R^{\sigma}_{\mu\nu\rho} = 0$ *if and only if* the space is flat.
- (b) $R^{\sigma}_{\mu\nu\rho}$ depends explicitly on the metric $g_{\mu\nu}$.

The curvature tensor is officially defined by:

For "metric-compatible connections", $R^{\sigma}_{\mu\nu\rho}$ depends explicitly on first derivatives of the metric. So, since the Minkowski metric is constant (= diag(-1, 1, 1, 1)), the curvature tensor for Minkowski spacetime is zero: Minkowski spacetime is flat!

For convenience sake, write $X^{\nu}\nabla_{\nu}$ as ∇_{X} (the derivitive in the X^{μ} direction). Then the above becomes:

 $R(X, Y, Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z$

3. Motivating the Einstein Equations.

First, compare:

- (a) The relative acceleration between 2 massive objects, according to Newtonian gravity.
- (b) The rate at which parallel geodesics deviate in a curved space.

To cancel the $V^{\mu}V^{\nu}$ terms on both sides, and to get a $\mu\nu$ -indexed object on the left, take the partial trace of $R^{\sigma}_{\mu\nu\rho}$. Define the "Ricci tensor" $R_{\mu\nu} \equiv R^{\sigma}_{\mu\nu\rho} = R^{0}_{\mu\nu0} + R^{1}_{\mu\nu1} + R^{2}_{\mu\nu2} + R^{3}_{\mu\nu3}$.

<u>Then we have</u>: $R_{\mu\nu} = 4\pi GT_{\mu\nu}$ (*) \swarrow proposed by Einstein in 1915

<u>But!</u> It's a mathematical property of $R^{\sigma}_{\mu\nu\rho}$ that,

$$\nabla_{\sigma}(R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}) = 0 \qquad \longleftarrow \qquad \text{where the "Ricci scalar" } R \equiv \operatorname{Trace}(R_{\mu\nu}) = R_{00} + R_{11} + R_{22} + R_{33}$$

<u>So</u>: Since $\nabla_{\sigma} T_{\mu\nu} = 0$, equation (*) then entails $\nabla_{\sigma} R = \nabla_{\sigma} T = 0$, where $T = \text{Trace}(T_{\mu\nu})$; and this means mass-density is constant, which is unphysical!

Solution: Instead of equation (*), write

For very slow speeds (Newtonian limit), $T_{\mu\nu}$ and $T \approx \rho$, hence we get back Poisson's equation!