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(a) 𝑑2𝑥𝜇/𝑑𝑡2=	𝑑/𝑑𝑡(𝑑𝑥𝜇/𝑑𝑡) is	the	change	of	the	tangent	vector d𝑥𝜇/𝑑𝑡,	call	it	𝑋𝜇,	to	the	path	𝑥(𝑡) at	different	values	of	𝑡:

•

•

Flat	space

No	change:		
𝑑/𝑑𝑡𝑋𝜇 =	0

𝑋𝜇

𝑋𝜇

𝑥(𝑡)

straight	path

•

•

curved	path

Change	in	𝑋𝜇:		
𝑑/𝑑𝑡𝑋𝜇 ≠	0

𝑋𝜇

𝑋𝜇𝑥(𝑡)

Curved	space

•

•

𝑋𝜇

𝑋𝜇

If	we	want	to	consider	path	A	
straight,	then	require	no	
change	in	𝑋𝜇:	only	apparent	
because	of	curvature!

Correct	for	it:
𝑑/𝑑𝑡𝑋𝜇 +	Γ =	0

For	these particular	correction	
factors,	only	some	paths	will	be	
geodesics;	others	will	not!

• • 𝑋𝜇𝑋𝜇

For	the	correction	factors	Γ that	
make	path	A	straight	(geodesic),	
path	B	may	be	curved!

A

B

This	motivates	the	definition	for	the	
"covariant	derivative"	∇𝜈 (the	general	
derivative	for	a	curved	space):

Moving	𝑋𝜇 in	the	direction	Y μ and	
measuring	how	it	changes.

•
𝑋𝜇

𝑥(𝑡)

𝑦(𝜆)

•
𝑋𝜇

Yμ

𝑑/𝑑𝑡 =	(𝑑𝑥𝜈/𝑑𝑡)(𝑑/𝑑𝑥𝜈)𝑑/𝑑𝑡𝑋𝜇+	Γ =	(𝑋ν𝑑/𝑑𝑥𝜈)𝑋𝜇+	Γ
Change	of	𝑋𝜇 in	its	own	direction; i.e.,	along	the	
path	𝑥(𝑡)	it's	tangent	to.	Or,	the	"directional	
derivative of	𝑋𝜇 in	the	direction	𝑋𝜇".

𝑑/𝑑𝜆𝑋𝜇+	Γ =	(𝑌𝜈𝑑/𝑑𝑦𝜈)𝑋𝜇+	Γ
Change	of	𝑋𝜇 in	direction	of	𝑌𝜈=	𝑑𝑦𝜈/𝑑𝜆; i.e.,	
along	the	path	𝑦(𝜆).	Or,	the	"directional	
derivative of	𝑋𝜇 in	the	direction	𝑌𝜈".

𝑑/𝑑𝜆 =	(𝑑𝑦𝜈/𝑑𝜆)(𝑑/𝑑𝑦𝜈)

Now:	What	is	the	particular	form	of	the	correction	Γ?

∇𝜈𝑋𝜇=∂𝜈𝑋𝜇+Γ𝜇𝜈𝜎𝑋𝜎

The	derivative	of	𝑋𝜇
in	a	curved	space

The	derivative	of	
𝑋𝜇 in	flat	space

Correction	
factors= +

First	Note:

So: In	a	curved	space,	the	directional	derivative of	a	vector	𝑋𝜇 in	the	direction	𝑌𝜈must	be	"corrected".
Write	it	as:

𝑌𝜈∇𝜈𝑋𝜇=	(𝑌𝜈∂𝜈)𝑋𝜇+	Γ𝜇𝜈𝜎𝑌𝜈𝑋𝜎 Require the correction to depend on both 𝑋𝜇 and 𝑌𝜈.

For	𝑌𝜈=𝑋𝜈,	and	setting	the	directional	derivative	to	zero,	we	get	the	geodesic	equation!
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1.	The	Covariant	Derivative	(the	general	derivative	for	a	curved	space).



(b) For	any	curved	space,	there	may	be	many	ways	to	construct	"correction	factors"	Γ (technically	called	"connection	
coefficients").	But	if	the	space	has	a	metric	𝑔𝜇𝜈,	there	is	one	particular	set	of	correction	factors	associated	with	𝑔𝜇𝜈
(the	"metric	compatible	connection	coefficients").	These	are	defined	by	the	condition	∇𝜎𝑔𝜇𝜈=	0.	You	can	solve	for	
the	Γ's	in	this	equation	explicitly	in	terms	of	the	values	of	𝑔𝜇𝜈.	(Intuitively,	when	the	space	has	a	metric,	you	can	
measure	the	length	of	paths;	hence	you	can	"minimize"	path	lengths	to	find	paths	that	are	the	"shortest	distance"	
between	points,	which	you	can	then	identify	as	geodesics.)

(c) If	the	correction	factors	Γ=	0,	then	we	have	the	flat	space	case.	But	even	in	flat	spaces,	there	may	be	correction	
factors;	and	this	may	arise	because	of	the	use	of	kooky	coordinates	to	label	paths	(e.g.,	spherical	coordinates	instead	
of	Cartesian).	So	just	because	Γ≠	0,	doesn't	necessarily	mean	our	space	is	curved.

The	curvature	tensor	is	officially	defined	by:

change	in	𝑍𝜇
along	𝑌𝜌

then	change	in	the	
result	along	𝑋𝜈

change	in	𝑍𝜇
along	𝑋𝜈

then	change	in	the	
result	along	𝑌𝜌

𝑅𝜎𝜇𝜈𝜌𝑋𝜈𝑌𝜌𝑍𝜇=	𝑋𝜈∇𝜈(𝑌𝜌∇𝜌𝑍𝜇)	− 𝑌𝜈∇𝜈(𝑋𝜌∇𝜌𝑍𝜇) For	"metric-compatible	connections",	𝑅𝜎𝜇𝜈𝜌 depends	
explicitly	on	first	derivatives	of	the	metric.	So,	since	the	
Minkowski	metric	is	constant	(= diag(−1,	1,	1,	1)),	the	
curvature	tensor	for	Minkowski	spacetime	is	zero:	
Minkowski	spacetime	is	flat!

For	convenience	sake,	write	𝑋𝜈∇𝜈 as	∇𝑋 (the	deriviative	in	the	𝑋𝜇 direction).	Then	the	above	becomes:

𝑅(𝑋,	𝑌,	𝑍)	=	∇𝑋∇𝑌𝑍−∇𝑌∇𝑋𝑍
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2.		The	Curvature	Tensor
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One	can	define	a	4-indexed	quantity,	the	curvature	tensor 𝑅𝜎𝜇𝜈𝜌 that	acts	on	three	vectors𝑋𝜈,	𝑌𝜌,	𝑍𝜇 and	outputs	the	
amount	of	change	experienced	by	𝑍𝜇 upon	parallel-transport	around	an	infinitesimal	curve	defined	by	𝑋𝜈 and	𝑌𝜌:

(a) 𝑅𝜎𝜇𝜈𝜌= 0	if	and	only	if the	space	is	flat.
(b) 𝑅𝜎𝜇𝜈𝜌 depends	explicitly	on	the	metric	𝑔𝜇𝜈.

𝑍𝜎

𝑋𝜈

𝑌𝜌

𝑍′𝜎
𝑅𝜎𝜇𝜈𝜌𝑋𝜈𝑌𝜌𝑍𝜇=	𝛿𝑍𝜎

𝛿𝑍𝜎=	𝑍𝜎−𝑍′𝜎

= change	in	𝑍𝜎 upon	parallel	transport	
around	loop	defined	by	𝑋𝜈 and	Yρ .
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First,	compare:
(a) The	relative	acceleration	between	2	massive	objects,	according	to	Newtonian	gravity.
(b) The	rate	at	which	parallel	geodesics	deviate	in	a	curved	space.

(a)

••

(b)

• •

rate	of	change	in	𝑁𝜇

in	𝑉𝜇 direction =		∇𝑉(∇𝑉𝑁)

Require:
(1) ∇𝑉𝑁 =	∇𝑁𝑉 (the	"angle"	between	𝑉,	𝑁 remains	constant).
(2) ∇𝑉𝑉 =	0	 (i.e.,	the	paths	are	geodesics).

∇𝑉(∇𝑉𝑁) =	∇𝑉(∇𝑁𝑉)

=	∇𝑁(∇𝑉𝑉)	− 𝑅(𝑁,	𝑉,	𝑉)

=	−𝑅(𝑉,	𝑁,	𝑉)

Then:

𝑛 = separation	distance

rate	of	change	in	𝑛
in	𝑣-direction

Then:

Suggests:

𝑅𝜎𝜇𝜈𝜌𝑉𝜇𝑉𝜈 ↔ 𝑉𝜇∇𝜇Φ=	4𝜋𝐺𝑇𝜇𝜈𝑉𝜇𝑉𝜈 where 𝑉𝜇∇𝜇Φ=	4𝜋𝐺𝜌
and 𝑇𝜇𝜈𝑉𝜇𝑉𝜈=𝜌

To	cancel	the	𝑉𝜇𝑉𝜈 terms	on	both	sides,	and	to	get	a	𝜇𝜈-indexed	object	on	the	left,	take	the	partial	trace	of	𝑅𝜎𝜇𝜈𝜌.	
Define	the	"Ricci	tensor"	𝑅𝜇𝜈≡𝑅𝜎𝜇𝜈𝜌=	𝑅0𝜇𝜈0+	𝑅1𝜇𝜈1+	𝑅2𝜇𝜈2+	𝑅3𝜇𝜈3.

Then	we	have:			𝑅𝜇𝜈=	4𝜋𝐺𝑇𝜇𝜈 (∗)

But! It's	a	mathematical	property	of	Rσμνρ that,

∇𝜎(𝑅𝜇𝜈−½𝑅𝑔𝜇𝜈)	=	0

So:	Since	∇𝜎𝑇𝜇𝜈=0,	equation	(∗) then	entails	∇𝜎𝑅=∇𝜎𝑇= 0,	where	𝑇=	Trace(𝑇𝜇𝜈);	
and	this	means	mass-density	is	constant,	which	is	unphysical!

Poisson's field equation for Newtonian 
gravity, 𝜌 = mass density

Solution:		Instead	of	equation	(∗),	write

Take trace of both sides to get 𝑅 = −8𝜋𝐺𝑇

where the "Ricci scalar" 𝑅 ≡ Trace(𝑅𝜇𝜈) = 𝑅00 + 𝑅11 + 𝑅22 + 𝑅33

For	very	slow	speeds	(Newtonian	limit),	𝑇𝜇𝜈 and	𝑇 ≈ 𝜌,	hence	we	get	back	Poisson's	equation!

proposed by Einstein in 1915

𝑅𝜇𝜈−½𝑅𝑔𝜇𝜈=	8𝜋𝐺𝑇𝜇𝜈

𝑅𝜇𝜈=	8𝜋𝐺(𝑇𝜇𝜈−½𝑇𝑔𝜇𝜈)

or

compare!
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3.	Motivating	the	Einstein	Equations.

𝑣 =
𝜕𝑥
𝜕𝑡

𝑛 =
𝜕𝑥
𝜕𝑛

𝑥(𝑡, 𝑛) 𝑥(𝑡, 𝑛 + ∆𝑛) 𝑥(𝑡, 𝑛) 𝑥(𝑡, 𝑛 + ∆𝑛)

𝑉, =
𝜕𝑥,

𝜕𝑡
𝑁, =

𝜕𝑥,

𝜕𝑛

= 𝑣 E
𝜕
𝜕𝑥

𝑣 E
𝜕
𝜕𝑥

𝑛 =
𝜕-𝑛
𝜕𝑡-

𝜕-𝑛
𝜕𝑡-

=
𝜕-

𝜕𝑡-
𝜕𝑥
𝜕𝑛

=
𝜕
𝜕𝑛

𝜕-𝑥
𝜕𝑡-

=
𝜕
𝜕𝑛

−
𝜕Φ
𝜕𝑥

=
𝜕𝑥
𝜕𝑛

E
𝜕
𝜕𝑥

−
𝜕Φ
𝜕𝑥

= − 𝑛 E 𝜕 𝜕Φ


