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1. Haecceitism ("hak-SEE-uh-tism")

e Every individual possesses a "primitive thisness" (haecceity) that
makes it unique.

- Self-identity formulation: Every individual is identical to itself.

2. Bundle View

e An individual = a bundle of properties.

- So: Properties individuate objects. No two individuals can have all the same
properties. {

"There is no such thing as a
pair of individuals that are
indiscernible from each other."

e Motivation:

Principle of the Identity of Indiscernibles

[f two objects are indiscernible, then they are identical.

- What about quantum objects? T —
- Can they be considered individuals? (1646-1716)



2. Fermions and Bosons

e Consider first: electrons.

i Electron properties: possible values: i
i - energy n=1,2,.. i
i - orbital angular momentum £=0,1,2,.(n—1) i
| - z-component of orbital angular momentum my,=—4..0,.., 7 :
i - spin m, = —Y, +4 i

e So: The state of an electron is characterized by four values (n, £, m,, m,).

Pauli Exclusion Principle (1925) R

No two electrons can be in the same state; i.e., no two
electrons can have all the same values of (n, £, m,, m,).

Wolfgang Pauli
(1900-1958)




n: 1 3 4 Energy shells

/Z Element £: 0 0 1 1 2 0123 Kshell (n=1)
1 H hydrogen 1 L shell (n = 2)
2 Hehelium 2 Mshell (n = 3)
3 Li lithium 2 1 ’e"t Z’he“ (n=4)
4 Be beryllium 2 2 '
5 B boron 2 21 Orbitals
6 C carbon 2 2 2 s orbital (£ = 0)

- p orbital (¥ =1)
7 N nitrogen 2 2 3 d orbital (¢ = 2)
8 0 oxygen 2 24 f orbital (£ = 3)
9 F fluorine 2 2 5 etc.
10 Ne neon 2 2 6
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. Ex: The 3 electrons in a lithium atom are characterized by:
i (1,0, 0, +%), (1, 0,0, =), (2, 0, 0, +1%).

e Recall: Electrons possess spin-Y2 properties (Hardness, Color, etc.).
- Each is defined with respect to a spatial axis.
- Each is two-valued, with values represented by m, = +%;, —15.

There are other more complex multi-valued spin properties.



Spin Properties

e Two basic types: "half-integer-spin” and "integer-spin".

Property | number of m, values mg values X
Spin-; two —L +2

Spin-2 four — =5 t5 t

Spin-2 six =5 =5+ +5 +2
Spin-0 one 0

Spin-1 three —-1,0,+1

Spin-2 five —-2,—-1,0,+1, +2

e Theoretically (Standard Model):

- Matter consists of spin-Y particles (leptons, quarks).

- Forces (EM, strong, weak) consist of spin-1 particles (y, g, W%, Z).

- Mass is mediated by a spin-0 particle (Higgs).

e Not as successful: Gravitational force is mediated by spin-2 particle (graviton).




Spin and Statistics

o Statistics: describes how a multi-particle system °
behaves under single-particle exchanges. e °

e Experimentally: . Q .

- A multi-particle system cannot be made up of both half-
integer-spin and integer-spin particles. *

- Half-integer-spin multi-particle states and integer-spin
multi-particle states are Permutation Invariant.

- Half-integer-spin multi-particle states obey the Exclusion
Principle, integer-spin multi-particle states do not.

Permutation Invariance: Exchanging single-particle
states in a multi-particle state results in a state that is
physically indistinguishable from the original state.

Exclusion Principle: Two or more identical single-particle
states cannot appear in the same multi-particle state.




Fermi-Dirac (FD) Statistics: Group Rules for Half-Integer-Spin Particles

e Multi-particle states are Permutation Invariant.

e Two or more particles with same (non-spatiotemporal) properties
cannot be in the same state. (Exclusion Principle)

4

Bose-Einstein (BE) Statistics: Group Rules for Integer-Spin Particles

e Multi-particle states are Permutation Invariant.

e Two or more particles with same (non-spatiotemporal) properties
can be in the same state. (No Exclusion Principle) 7

Def. A fermion is a particle that obeys FD Statistics.
A boson is a particle that obeys BE Statistics.

e So (Standard Model):
- Matter consists of spin-Y2 particles = fermions (leptons, quarks).
- Forces (EM, strong, weak) consist of spin-1 particles = bosons (y, g, W%, Z).
- Mass is mediated by a spin-0 particle = boson (Higgs).




How to encode Permutation Invariance

e Let |®) represent a multi-particle state.

e Let |®') be obtained from |®) by exchanging any two of its single-particle
substates.

|®) is permutation invariant just when (®|A| D) = (P'|A|D’)
for any operator A representing an observable quantity.

Two ways to guarantee this:

|D'Y = | D) (symmetric under permutations)
|D'Y = —| D) (anti-symmetric under permutations)
Examples:
@) |Ps) =% {1$), V), + 1), 19),} symmetric
(b) |Dgs) = V% {IP),1¥), — 1), |¢).} anti-symmetric
(© | Pps) =V% 19),19), + VA{Io), 1¥), — [¥), 1)} non-symmetric

(a) and (b) are permutation invariant



How to encode the Exclusion Principle

@) |@s) = V% {lo), 1), + V), |9).} symmetric
(b) [@gs) = V% {l9) [¥), — W), |9, } anti-symmetric
(© |Dps) = V% ), 1d), + VA{IP), W), — 1), |¢).} non-symmetric

e Suppose we allow particles 1 and 2 to be in identical states.
- Lety = ¢ in (a)-(c).

e Then: The anti-symmetric multi-particle vector vanishes! The others don't.

e Suggests: Use anti-symmetric vectors to represent the states of a multi-particle
system that is both Permutation Invariant and obeys the Exclusion Principle.

Bosonic 2-particle states:

VIR{O)Y) + ) o)}, |d)p), [))

Fermionic 2-particle state:

\/%{kb)h/)) — Y)Y p)} PR — Anti-symmetric under permutations




. Classical vs. Quantum Statistics

Fermi-Dirac (FD) Statistics: Group Rules for Half-Integer-Spin Particles

- Multi-particle states are Permutation Invariant.

- Two or more particles with same (non-spatiotemporal) properties
cannot be in the same state. (Generalized Exclusion Principle). 7

Bose-Einstein (BE) Statistics: Group Rules for Integer-Spin Particles

- Multi-particle states are Permutation Invariant.

- Two or more particles with same (non-spatiotemporal) properties
can be in the same state. (No Exclusion Principle.) >

Maxwell-Boltzman (MB) Statistics: Group Rule for Classical Particles

- Multi-particle states are not Permutation Invariant.

- Two or more particles with same (non-spatiotemporal) properties
can be in the same state. (No Exclusion Principle.)
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Suppose: We have two particles in a 2-particle state composed of two single-
particle states A, B. How can we calculate the probability that one of the
particles is in state A and the other is in B?

Case 1. Classical particles

A B
on - Use MB statistics: There are 4 possible 2-particle
(1) states. (4 possible ways to distribute two classical
particles over two states.)
(2) ¢ n - Assign each of these possible 2-particle states equal
probability of 1/4 (Principle of Indifference).
. . Pr(one particle in A and one particle in B)
3
(3) = Pr(state 3) + Pr(state4) =1/4+1/4=1/2
(4) u 4
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Suppose: We have two particles in a 2-particle state composed of two single-
particle states A, B. How can we calculate the probability that one of the
particles is in state A and the other is in B?

Case 2. Bosons

A B

- Use BE statistics: There are 3 possible 2-particle

states. (3 possible ways to distribute two bosons
over two states.)

1) |& &

(2) L R 2 - Assign each of these possible 2-particle states equal
probability of 1/3 (Principle of Indifference).

Pr(one particle in A and one particle in B)

(3) ¢ ¢ = Pr(state 3) =1/3
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Suppose: We have two particles in a 2-particle state composed of two single-
particle states A, B. How can we calculate the probability that one of the
particles is in state A and the other is in B?

Case 3. Fermions

A B

- Use FD statistics: There is only one possible 2-particle
states (due to the Exclusion Principle).

(D) L 4 \ 4

Pr(one particle in A and one particle in B)
= Pr(state 1) =1
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4. Quantum Individuals

Question: What does Permutation Invariance of quantum states say about the
status of quantum particles as individuals?

Initial Response

e (Classical particles are individuals: switching two of them makes a difference.

e Quantum particles are not individuals: switching two of them does not make a
difference.

But: Permutation Invariance applies to states.
- It is a constraint on the possible states that a given multi-particle system can be in.

- The individuality of an object need not depend on constraints placed on the possible
states it can be in.

Let's consider two approaches to viewing quantum particles as individuals...
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1. Haecceitism

Claim: Classical and quantum particles possess "primitive thisness" (haecceity).

The Main Difference:

e (Classical haecceities are physically distinguishable: you can tell them
apart based on the states they occupy.

 Quantum haecceities are physically indistinguishable: no experiment can
distinguish between two quantum haecceities.

So: Quantum particles might be considered individuals...
...but at the cost of accepting the strange metaphysical notion of haecceity.

Does the bundle view offer a better option?
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2. Bundle View

Claim: Classical and quantum particles consist of bundles of properties.

Question: Under the Bundle View, are classical and quantum particles individuals?

Do they satisfy the Principle of the Identity of Indiscernibles?

PII: If two objects are indiscernible, then they are identical. j

e Bundle view says: Two objects are indiscernible when they have all
the same properties.

Two types of properties ™

1. A monadic property = a "single-place” property that an object can
possess without reference to other objects. (Ex. mass.)

2. Arelational property = a "multi-place” property that an object can only
possess with respect to one or more other obejcts. (Ex. Being taller than.)

This suggests that there are (at least) three versions of the PII...
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Three versions of Pl

PILv1: If two objects agree on all PILv2: If two objects agree on all

monadic and relational properties, monadic and relational properties,

then they are identical. excluding spatiotemporal properties,
then they are identical.

PIL.v3: If two objects agree on all
monadic properties, then they are

identical.
Claims:
(a) Classical particles can They can always be discerned by
violate PII.v2 and PII.v3, but their positions in space (and time).
must satisfy PILv1.

Claim: Two bosons/fermions in a
symmetric/anti-symmetric state possess all
the same monadic and relational properties.

(b) Quantum particles can violate
PIl.v2, PIl.v3, and PIl.v1.

So: Either quantum particles are not individuals, or they must possess haecceities.
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But: Do these versions of the PII exhaust all the possible ways two objects can be
discerned from each other?

Potential counterexample:
2 identical iron spheres one mile apart in an otherwise empty universe.

O T O

Spheres agree on all monadic and relational properties!

What about spatiotemporal ones?

|
' Relationalism: Spatiotemporal |
|
| properties are relations between ! —
|
' an object and other objects. |

Spheres agree on these: They
both stand in the spatial relation
of being 1 mile from the other.

'Substantlvallsm Spatiotemporal

|
' Whether or not spheres are
|

' properties are relations between | —
|
|

identical depends on global

. an object and absolute spacetime. topology of spacetime!

- o o o O S S S M S M M B M B e B e M e e e e e w)
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Qi —Q
X y

Closed global topology: spheres agree Open global topology: spheres
on spatial location (so PII entails disagree on spatial locations (so PII
there's really just one of them). entails there really are two of them).

Suppose we are relationalists with respect to spacetime
Then the spheres violate PIl.v1, PIl.v2, and PII.v3.

But: They are distinct: there are two of them.

The spheres are individuated "solo numero” (by number alone)

18



How to individuate objects solo numero

See if there is an appropriate irreflexive 2-place relational property...

An irreflexive 2-place relational property = a 2-place relationk
that relates one object with the other, but does not relate either
of the objects with itself. (Ex: "Being 1 mile apart from.")

Three types of discernibility

(a) Absolute discernibility: Differing by a monadic property.
(b) Relative discernibility: Differing by a relational property.

(c) Weak discernibility: Differing by an irreflexive relational property.

L

Potential examples of weakly discernible objects
- The two iron spheres.
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Claim 1: Fermions are weakly discernible.ﬁ

Two spin-Y fermions with the same properties can be in the spin "singlet" state:

|P~) = \/%{”)1“)2 — 11123

In |®~), there is an irreflexive relation that holds between them:
"Having opposite direction of spin to"

Thus: The fermions are weakly discernible; so they satisfy the PII.

So: Under the Bundle View, fermions can be considered individuals.

Claim 2: Bosons can be in states in which they are not discernible, even Weaklyﬁ

Ex: |¢)1|¢),, where both bosons have all the same properties.

So: Bosons do not satisfy the PII.

Thus: Under the Bundle View, bosons cannot be considered individuals.
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Problems:

1. There are spin-Y2 fermion states in which the

fermions are not discernible, even weakly. Anti-symmetric (fermionic)
; state in which subsystems are
correlated.
- So: No irreflexive relation.

Ex: The Bell state |¥~) = V%{|M1|1)2 — [1)1]4)2}

2. There are bipartite boson states in which the

bosons are weakly discernible. _ _ _
Symmetric (bosonic) state in

which subsystems are anti-

Ex: The Bell state |®*) = M{”)ﬂl)z + 1112 correlated.

- So: Characterized by
irreflexive relation "having
opposite direction of spin to".

e Potential response to #1:

- For a composite 2-particle spin-12 system, the composite spin properties
are represented by the total spin operator S? = (§;+S,)-(S;+S,) and the
total spin-along-the-z-axis operator 5, =S5, +35,.

- The only anti-symmetric eigenvector of S? and S, is |®~), and not |¥ 7).

- So: There is only one 2-particle spin-% fermion (anti-symmetric) state
with definite values of spin, and it is one in which the fermions are weakly
discernible (anti-correlated).
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