

14. Quantum Particles: Identity and Individuality

1. Two Views on Individuals

1. Haecceitism ("hak-SEE-uh-tism")

- Every individual possesses a "primitive thisness" (haecceity) that makes it unique.
 - Self-identity formulation: *Every individual is identical to itself.*

2. Bundle View

- An individual = a bundle of properties.
 - So: Properties individuate objects. No two individuals can have all the same properties.
- Motivation:

"There is no such thing as a pair of individuals that are indiscernible from each other."

Principle of the Identity of Indiscernibles

If two objects are *indiscernible*, then they are identical.

- *What about quantum objects?*
- *Can they be considered individuals?*

Gottfried Wilhelm Leibniz
(1646-1716)

2. Fermions and Bosons

- Consider first: electrons.

Electron properties:

- energy
- orbital angular momentum
- z-component of orbital angular momentum
- spin

possible values:

- $n = 1, 2, \dots$
- $\ell = 0, 1, 2, \dots (n - 1)$
- $m_\ell = -\ell, \dots 0, \dots, \ell$
- $m_s = -\frac{1}{2}, +\frac{1}{2}$

- So: The state of an electron is characterized by four values (n, ℓ, m_ℓ, m_s).

Pauli Exclusion Principle (1925)

No two electrons can be in the same state; *i.e.*, no two electrons can have all the same values of (n, ℓ, m_ℓ, m_s).

Wolfgang Pauli
(1900-1958)

Z	Element	n:	1	2	3	4				
		ℓ :	0	0 1	0 1 2	0 1 2 3				
1	H hydrogen		1							
2	He helium			2						
3	Li lithium			2 1						
4	Be beryllium			2 2						
5	B boron			2 2 1						
6	C carbon			2 2 2						
7	N nitrogen			2 2 3						
8	O oxygen			2 2 4						
9	F fluorine			2 2 5						
10	Ne neon			2 2 6						

Energy shells

K shell ($n = 1$)

L shell ($n = 2$)

M shell ($n = 3$)

N shell ($n = 4$)

etc.

Orbitals

s orbital ($\ell = 0$)

p orbital ($\ell = 1$)

d orbital ($\ell = 2$)

f orbital ($\ell = 3$)

etc.

Ex: The 3 electrons in a lithium atom are characterized by:

$(1, 0, 0, +\frac{1}{2}), (1, 0, 0, -\frac{1}{2}), (2, 0, 0, +\frac{1}{2})$.

- Recall: Electrons possess spin- $\frac{1}{2}$ properties (*Hardness, Color, etc.*).
 - Each is defined with respect to a spatial axis.
 - Each is two-valued, with values represented by $m_s = +\frac{1}{2}, -\frac{1}{2}$.

There are other more complex multi-valued spin properties.

Spin Properties

- Two basic types: "half-integer-spin" and "integer-spin".

Property	number of m_s values	m_s values
Spin- $\frac{1}{2}$	two	$-\frac{1}{2}, +\frac{1}{2}$
Spin- $\frac{3}{2}$	four	$-\frac{3}{2}, -\frac{1}{2}, +\frac{1}{2}, +\frac{3}{2}$
Spin- $\frac{5}{2}$	six	$-\frac{5}{2}, -\frac{3}{2}, -\frac{1}{2}, +\frac{1}{2}, +\frac{3}{2}, +\frac{5}{2}$
:		
Spin-0	one	0
Spin-1	three	-1, 0, +1
Spin-2	five	-2, -1, 0, +1, +2
:		

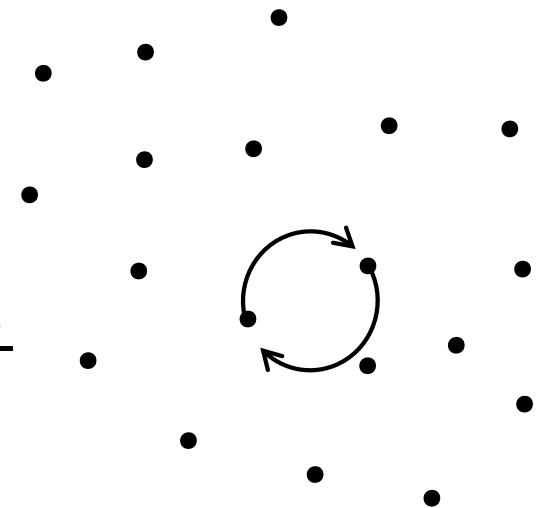
- Theoretically (Standard Model):
 - Matter consists of spin- $1/2$ particles (leptons, quarks).
 - Forces (EM, strong, weak) consist of spin-1 particles (γ, g, W^\pm, Z).
 - Mass is mediated by a spin-0 particle (Higgs).
- Not as successful: Gravitational force is mediated by spin-2 particle (graviton).

Spin and Statistics

- *Statistics*: describes how a multi-particle system behaves under single-particle exchanges.
- Experimentally:
 - A multi-particle system cannot be made up of both half-integer-spin and integer-spin particles.
 - Half-integer-spin multi-particle states and integer-spin multi-particle states are *Permutation Invariant*.
 - Half-integer-spin multi-particle states obey the *Exclusion Principle*, integer-spin multi-particle states do not.

Permutation Invariance: Exchanging single-particle states in a multi-particle state results in a state that is physically indistinguishable from the original state.

Exclusion Principle: Two or more identical single-particle states cannot appear in the same multi-particle state.



Fermi-Dirac (FD) Statistics: Group Rules for Half-Integer-Spin Particles

- Multi-particle states are *Permutation Invariant*.
- Two or more particles with same (non-spatiotemporal) properties *cannot* be in the same state. (*Exclusion Principle*)

Bose-Einstein (BE) Statistics: Group Rules for Integer-Spin Particles

- Multi-particle states are *Permutation Invariant*.
- Two or more particles with same (non-spatiotemporal) properties *can* be in the same state. (*No Exclusion Principle*)

Def. A *fermion* is a particle that obeys FD Statistics.

A *boson* is a particle that obeys BE Statistics.

- So (Standard Model):

- Matter consists of spin- $\frac{1}{2}$ particles = fermions (leptons, quarks).
- Forces (EM, strong, weak) consist of spin-1 particles = bosons (γ , g , W^\pm , Z).
- Mass is mediated by a spin-0 particle = boson (Higgs).

How to encode Permutation Invariance

- Let $|\Phi\rangle$ represent a multi-particle state.
- Let $|\Phi'\rangle$ be obtained from $|\Phi\rangle$ by exchanging any two of its single-particle substates.

$|\Phi\rangle$ is *permutation invariant* just when $\langle\Phi|A|\Phi\rangle = \langle\Phi'|A|\Phi'\rangle$ for any operator A representing an observable quantity.

Two ways to guarantee this:

$$|\Phi'\rangle = |\Phi\rangle \quad (\text{symmetric under permutations})$$

$$|\Phi'\rangle = -|\Phi\rangle \quad (\text{anti-symmetric under permutations})$$

Examples:

(a) $|\Phi_s\rangle = \sqrt{1/2}\{|\phi\rangle_1|\psi\rangle_2 + |\psi\rangle_1|\phi\rangle_2\}$ *symmetric*

(b) $|\Phi_{as}\rangle = \sqrt{1/2}\{|\phi\rangle_1|\psi\rangle_2 - |\psi\rangle_1|\phi\rangle_2\}$ *anti-symmetric*

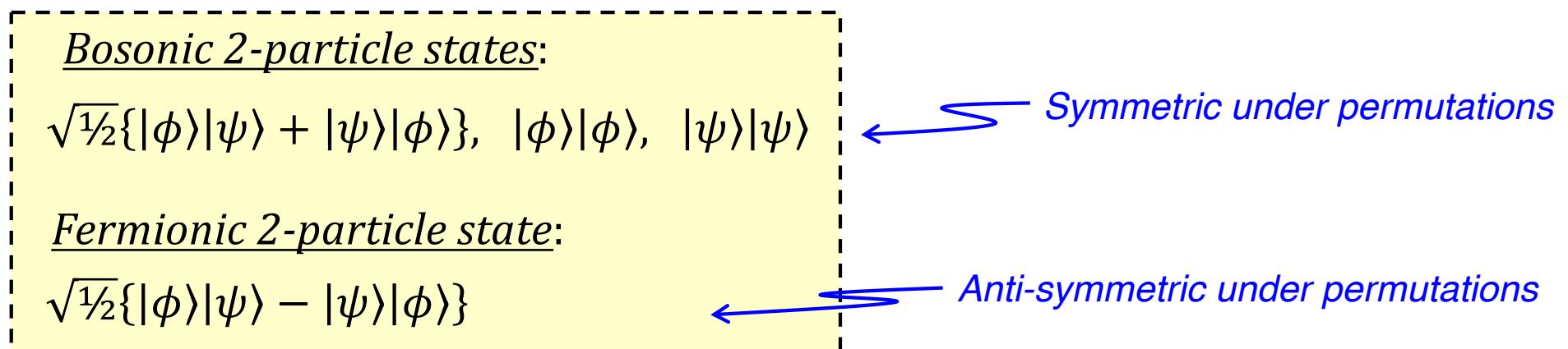
(c) $|\Phi_{ns}\rangle = \sqrt{1/2}|\phi\rangle_1|\phi\rangle_2 + \sqrt{1/4}\{|\phi\rangle_1|\psi\rangle_2 - |\psi\rangle_1|\phi\rangle_2\}$ *non-symmetric*

(a) and (b) are permutation invariant

How to encode the Exclusion Principle

(a) $ \Phi_s\rangle = \sqrt{\frac{1}{2}}\{ \phi\rangle_1 \psi\rangle_2 + \psi\rangle_1 \phi\rangle_2\}$	<i>symmetric</i>
(b) $ \Phi_{as}\rangle = \sqrt{\frac{1}{2}}\{ \phi\rangle_1 \psi\rangle_2 - \psi\rangle_1 \phi\rangle_2\}$	<i>anti-symmetric</i>
(c) $ \Phi_{ns}\rangle = \sqrt{\frac{1}{2}} \phi\rangle_1 \phi\rangle_2 + \sqrt{\frac{1}{4}}\{ \phi\rangle_1 \psi\rangle_2 - \psi\rangle_1 \phi\rangle_2\}$	<i>non-symmetric</i>

- Suppose we allow particles 1 and 2 to be in identical states.
 - *Let $\psi = \phi$ in (a)-(c).*
- Then: The anti-symmetric multi-particle vector vanishes! The others don't.
- Suggests: Use anti-symmetric vectors to represent the states of a multi-particle system that is both Permutation Invariant and obeys the Exclusion Principle.



3. Classical vs. Quantum Statistics

Fermi-Dirac (FD) Statistics: Group Rules for Half-Integer-Spin Particles

- Multi-particle states are *Permutation Invariant*.
- Two or more particles with same (non-spatiotemporal) properties *cannot* be in the same state. (*Generalized Exclusion Principle*).

Bose-Einstein (BE) Statistics: Group Rules for Integer-Spin Particles

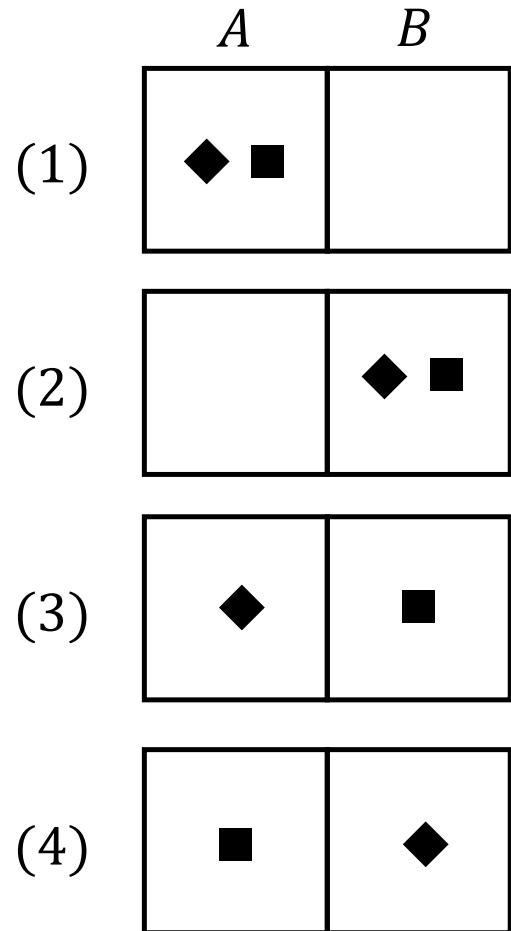
- Multi-particle states are *Permutation Invariant*.
- Two or more particles with same (non-spatiotemporal) properties *can* be in the same state. (*No Exclusion Principle*.)

Maxwell-Boltzman (MB) Statistics: Group Rule for Classical Particles

- Multi-particle states are not *Permutation Invariant*.
- Two or more particles with same (non-spatiotemporal) properties *can* be in the same state. (*No Exclusion Principle*.)

Suppose: We have two particles in a 2-particle state composed of two single-particle states A, B . How can we calculate the probability that one of the particles is in state A and the other is in B ?

Case 1. Classical particles

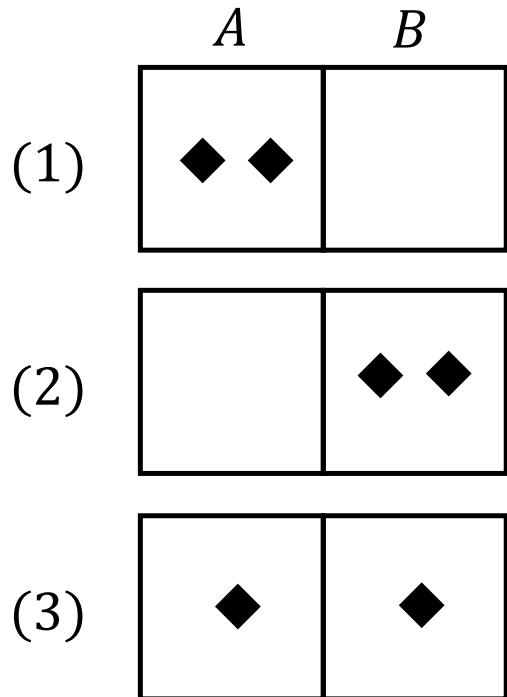


- Use MB statistics: There are 4 possible 2-particle states. (4 possible ways to distribute two classical particles over two states.)
- Assign each of these possible 2-particle states equal probability of $1/4$ (Principle of Indifference).

$$\begin{aligned}\Pr(\text{one particle in } A \text{ and one particle in } B) \\ = \Pr(\text{state 3}) + \Pr(\text{state 4}) = 1/4 + 1/4 = 1/2\end{aligned}$$

Suppose: We have two particles in a 2-particle state composed of two single-particle states A, B . How can we calculate the probability that one of the particles is in state A and the other is in B ?

Case 2. Bosons

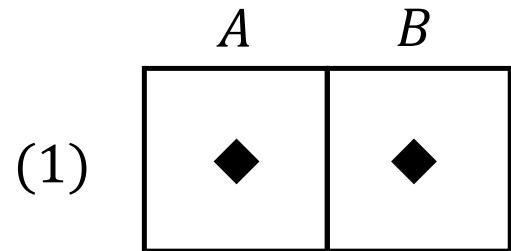


- Use BE statistics: There are 3 possible 2-particle states. (3 possible ways to distribute two bosons over two states.)
- Assign each of these possible 2-particle states equal probability of $1/3$ (Principle of Indifference).

$$\begin{aligned}\text{Pr}(\text{one particle in } A \text{ and one particle in } B) \\ = \text{Pr}(\text{state 3}) = 1/3\end{aligned}$$

Suppose: We have two particles in a 2-particle state composed of two single-particle states A, B . How can we calculate the probability that one of the particles is in state A and the other is in B ?

Case 3. Fermions



- Use FD statistics: There is only one possible 2-particle states (due to the Exclusion Principle).

$$\begin{aligned} & \Pr(\text{one particle in } A \text{ and one particle in } B) \\ &= \Pr(\text{state 1}) = 1 \end{aligned}$$

4. Quantum Individuals

Question: What does Permutation Invariance of quantum states say about the status of quantum particles as individuals?

Initial Response

- Classical particles are individuals: switching two of them makes a difference.
- Quantum particles are not individuals: switching two of them does not make a difference.

But: Permutation Invariance applies to states.

- *It is a constraint on the possible states that a given multi-particle system can be in.*
- *The individuality of an object need not depend on constraints placed on the possible states it can be in.*

Let's consider two approaches to viewing quantum particles as individuals...

1. Haecceitism

Claim: Classical and quantum particles possess "primitive thisness" (haecceity).

The Main Difference:

- Classical haecceities are physically distinguishable: you can tell them apart based on the states they occupy.
- Quantum haecceities are physically indistinguishable: no experiment can distinguish between two quantum haecceities.

So: Quantum particles might be considered individuals...

...but at the cost of accepting the strange metaphysical notion of haecceity.

Does the bundle view offer a better option?

2. Bundle View

Claim: Classical and quantum particles consist of bundles of properties.

Question: Under the Bundle View, are classical and quantum particles individuals?

Do they satisfy the Principle of the Identity of Indiscernibles?

PII: If two objects are *indiscernible*, then they are identical.

- Bundle view says: Two objects are *indiscernible* when they have all the same properties.

Two types of properties

1. A **monadic property** = a "single-place" property that an object can possess without reference to other objects. (Ex. mass.)
2. A **relational property** = a "multi-place" property that an object can only possess with respect to one or more other objects. (Ex. Being taller than.)

This suggests that there are (at least) three versions of the PII...

Three versions of PII

PII.v1: If two objects agree on *all* monadic and relational properties, then they are identical.

PII.v3: If two objects agree on all monadic properties, then they are identical.

PII.v2: If two objects agree on all monadic and relational properties, *excluding spatiotemporal properties*, then they are identical.

Claims:

(a) Classical particles can violate *PII.v2* and *PII.v3*, but must satisfy *PII.v1*.

← *They can always be discerned by their positions in space (and time).*

(b) Quantum particles can violate *PII.v2*, *PII.v3*, and *PII.v1*.

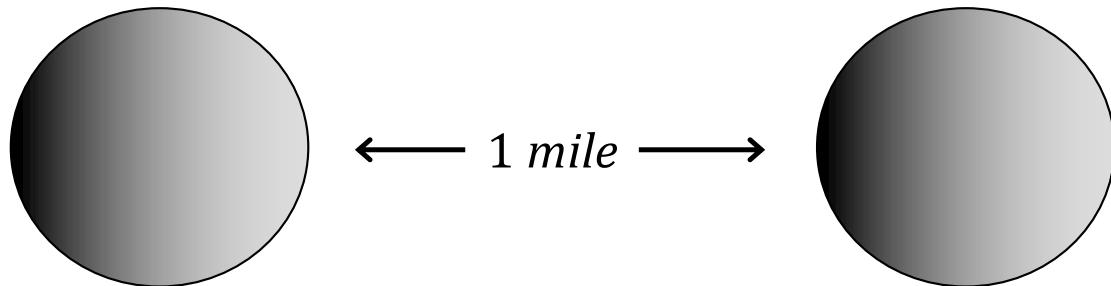
← *Claim: Two bosons/fermions in a symmetric/anti-symmetric state possess all the same monadic and relational properties.*

So: Either quantum particles are not individuals, or they must possess haecceities.

But: Do these versions of the *PII* exhaust all the possible ways two objects can be discerned from each other?

Potential counterexample:

2 identical iron spheres one mile apart in an otherwise empty universe.



Spheres agree on all monadic and relational properties!

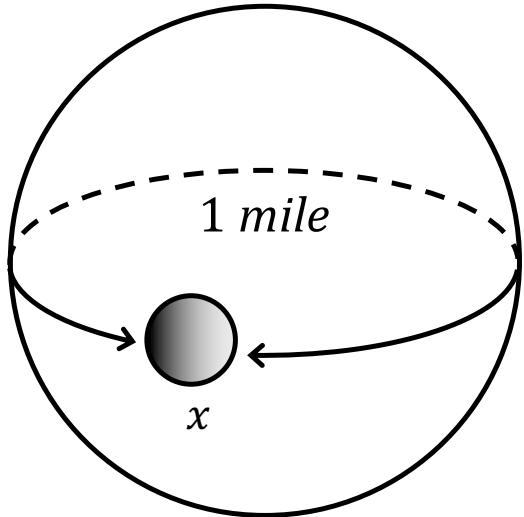
What about spatiotemporal ones?

Relationalism: Spatiotemporal properties are relations between an object and other objects.

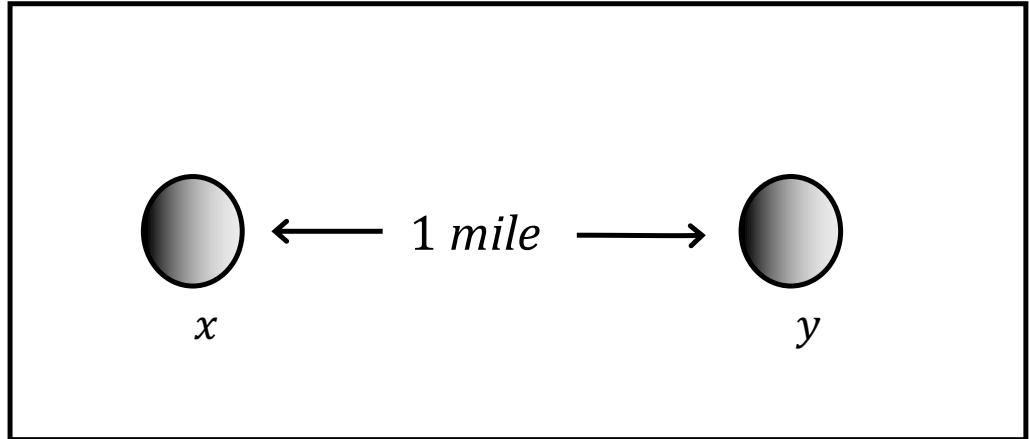
← *Spheres agree on these: They both stand in the spatial relation of being 1 mile from the other.*

Substantivalism: Spatiotemporal properties are relations between an object and absolute spacetime.

← *Whether or not spheres are identical depends on global topology of spacetime!*



Closed global topology: spheres agree on spatial location (so PII entails there's really just one of them).



Open global topology: spheres disagree on spatial locations (so PII entails there really are two of them).

- Suppose we are relationalists with respect to spacetime
Then the spheres violate PII.v1, PII.v2, and PII.v3.
- But: They are distinct: there are *two* of them.

The spheres are individuated "solo numero" (by number alone)

How to individuate objects solo numero

See if there is an appropriate irreflexive 2-place relational property...

An **irreflexive 2-place relational property** = a 2-place relation that relates one object with the other, but does not relate either of the objects with itself. (*Ex*: "Being 1 mile apart from.")

Three types of discernibility

- (a) *Absolute discernibility*: Differing by a monadic property.
- (b) *Relative discernibility*: Differing by a relational property.
- (c) *Weak discernibility*: Differing by an irreflexive relational property.

Potential examples of weakly discernible objects

- The two iron spheres.
- The points in a Euclidean space.
- Right and left hands in an empty universe.
- Two anti-correlated fermions!

Claim 1: Fermions are weakly discernible.

- Two spin-1/2 fermions with the same properties can be in the spin "singlet" state:
$$|\Phi^-\rangle = \sqrt{1/2}\{|\uparrow\rangle_1|\downarrow\rangle_2 - |\downarrow\rangle_1|\uparrow\rangle_2\}$$
- In $|\Phi^-\rangle$, there is an irreflexive relation that holds between them:
"Having opposite direction of spin to"
- Thus: The fermions are weakly discernible; so they satisfy the PII.

So: *Under the Bundle View, fermions can be considered individuals.*

Claim 2: Bosons can be in states in which they are not discernible, even weakly.

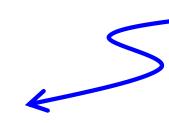
- Ex: $|\phi\rangle_1|\phi\rangle_2$, where both bosons have all the same properties.
- So: Bosons do *not* satisfy the PII.

Thus: *Under the Bundle View, bosons cannot be considered individuals.*

Problems:

1. There are spin- $\frac{1}{2}$ fermion states in which the fermions are not discernible, even weakly.

Ex: The Bell state $|\Psi^-\rangle = \sqrt{\frac{1}{2}}\{|\uparrow\rangle_1|\uparrow\rangle_2 - |\downarrow\rangle_1|\downarrow\rangle_2\}$


Anti-symmetric (fermionic) state in which subsystems are correlated.
- So: No irreflexive relation.

2. There are bipartite boson states in which the bosons are weakly discernible.

Ex: The Bell state $|\Phi^+\rangle = \sqrt{\frac{1}{2}}\{|\uparrow\rangle_1|\downarrow\rangle_2 + |\downarrow\rangle_1|\uparrow\rangle_2\}$

Symmetric (bosonic) state in which subsystems are anti-correlated.
- So: Characterized by irreflexive relation "having opposite direction of spin to".

- Potential response to #1:

- For a composite 2-particle spin- $\frac{1}{2}$ system, the composite spin properties are represented by the total spin operator $S^2 = (\mathbf{S}_1 + \mathbf{S}_2) \cdot (\mathbf{S}_1 + \mathbf{S}_2)$ and the total spin-along-the-z-axis operator $S_z = S_{z_1} + S_{z_2}$.
- The *only* anti-symmetric eigenvector of S^2 and S_z is $|\Phi^-\rangle$, and not $|\Psi^-\rangle$.
- So: There is only one 2-particle spin- $\frac{1}{2}$ fermion (anti-symmetric) state with definite values of spin, and it is one in which the fermions are weakly discernible (anti-correlated).