
14.	Quantum	Particles:	Identity	and	Individuality
1.	Two	Views	on	Individuals

2.	Bundle	View
•	 An	individual	=	a	bundle	of	properties.
-	So:	Properties	individuate	objects.	No	two	individuals	can	have	all	the	same	
properties.

1.	Haecceitism			("hak-SEE-uh-tism")
•	 Every	individual	possesses	a	"primitive	thisness"	(haecceity)	that	
makes	it	unique.
-	 Self-identity	formulation:	Every	individual	is	identical	to	itself.

- What about quantum objects?
- Can they be considered individuals?
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1.	 Two	Views	on	Individuals
2.	 Fermions	and	Bosons
3.	 Classical	vs.	Quantum	
Statistics

4.	 Quantum	Individuals

Principle	of	the	Identity	of	Indiscernibles
If	two	objects	are	indiscernible,	then	they	are	identical.

•	 Motivation:

Gottfried	Wilhelm	Leibniz
(1646-1716)

"There is no such thing as a 
pair of individuals that are 
indiscernible from each other."



2.	Fermions	and	Bosons

•	 So:	The	state	of	an	electron	is	characterized	by	four	values	(𝑛,	ℓ,	𝑚ℓ,	𝑚𝑠).
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Pauli	Exclusion	Principle	(1925)
No	two	electrons	can	be	in	the	same	state;	i.e.,	no	two	
electrons	can	have	all	the	same	values	of	(𝑛,	ℓ,	𝑚ℓ,	𝑚𝑠).

Wolfgang	Pauli
(1900-1958)

Electron		properties:	 possible	values:
-	 energy	 𝑛	=	1,	2,	...
-	 orbital	angular	momentum	 ℓ	=	0,	1,	2,	...	(𝑛	−	1)
-	𝑧-component	of	orbital	angular	momentum	 𝑚ℓ	=	−ℓ,	...	0,	...,	ℓ
-	 spin	 𝑚𝑠	=	−½,	+½

•	 Consider	first:	electrons.



Energy	shells
K	shell	(𝑛	=	1)
L	shell	(𝑛	=	2)
M	shell	(𝑛	=	3)
N	shell	(𝑛	=	4)
etc.

Orbitals
𝑠	orbital	(ℓ	=	0)
𝑝	orbital	(ℓ	=	1)
𝑑	orbital	(ℓ	=	2)
𝑓	orbital	(ℓ	=	3)
etc.

Ex:	 The	3	electrons	in	a	lithium	atom	are	characterized	by:
	 (1,	0,	0,	+½),	(1,	0,	0,	−½),	(2,	0,	0,	+½).

	 𝑛:	 1	 		2	 	 	 3	 	 	 		4
Z	 Element	 ℓ:	 0	 0	 1	 0	 1	 2	 0	 1	2	 3
1	 𝐻		hydrogen	 	 1
2	 𝐻𝑒	helium	 	 2
3	 𝐿𝑖		lithium	 	 2	 1
4	 𝐵𝑒	beryllium	 	 2	 2
5	 𝐵		boron	 	 2	 2	 1
6	 C		carbon	 	 2	 2	 2
7	 N		nitrogen	 	 2	 2	 3
8	 O		oxygen	 	 2	 2	 4
9	 F		fluorine	 	 2	 2	 5
10	 N𝑒		neon	 	 2	 2	 6

•	 Recall:	Electrons	possess	spin-½	properties	(Hardness,	Color,	etc.).
-	 Each	is	defined	with	respect	to	a	spatial	axis.	
-	 Each	is	two-valued,	with	values	represented	by	𝑚𝑠	=	+½,	−½.
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There are other more complex multi-valued spin properties.



Property	 number	of	𝑚𝑠	values	 𝑚𝑠	values
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Spin-0	 one	 0
Spin-1	 three	 −1,	0,	+1
Spin-2	 five	 −2,	−1,	0,	+1,	+2
						⋮

•	 Two	basic	types:	"half-integer-spin"	and	"integer-spin".

•	 Theoretically	(Standard	Model):
-	 Matter	consists	of	spin-½	particles	(leptons,	quarks).
-	 Forces	(EM, strong,weak)	consist	of	spin-1	particles	(𝛾,	𝑔,	𝑊±,	𝑍).
-	 Mass	is	mediated	by	a	spin-0	particle	(Higgs).

•	 Not	as	successful:	Gravitational	force	is	mediated	by	spin-2	particle	(graviton).

Spin	Properties
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Spin	and	Statistics
•	 Statistics:	describes	how	a	multi-particle	system	
behaves	under	single-particle	exchanges.
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•	 Experimentally:
-	A	multi-particle	system	cannot	be	made	up	of	both	half-
integer-spin	and	integer-spin	particles.

-	Half-integer-spin	multi-particle	states	and	integer-spin	
multi-particle	states	are	Permutation	Invariant.

-	Half-integer-spin	multi-particle	states	obey	the	Exclusion	
Principle,	integer-spin	multi-particle	states	do	not.

Permutation	Invariance:	Exchanging	single-particle	
states	in	a	multi-particle	state	results	in	a	state	that	is	
physically	indistinguishable	from	the	original	state.

Exclusion	Principle:	Two	or	more	identical	single-particle	
states	cannot	appear	in	the	same	multi-particle	state.
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Fermi-Dirac	(FD)	Statistics:	Group	Rules	for	Half-Integer-Spin	Particles
•	Multi-particle	states	are	Permutation	Invariant.
•	Two	or	more	particles	with	same	(non-spatiotemporal)	properties	
cannot	be	in	the	same	state.	(Exclusion	Principle)

Bose-Einstein	(BE)	Statistics:	Group	Rules	for	Integer-Spin	Particles
•	Multi-particle	states	are	Permutation	Invariant.
•	Two	or	more	particles	with	same	(non-spatiotemporal)	properties	
can	be	in	the	same	state.	(No	Exclusion	Principle)

Def.	A	fermion	is	a	particle	that	obeys	FD	Statistics.
	 A	boson	is	a	particle	that	obeys	BE	Statistics.
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•	 So	(Standard	Model):
-	 Matter	consists	of	spin-½	particles	=	fermions	(leptons,	quarks).
-	 Forces	(EM, strong,weak)	consist	of	spin-1	particles	=	bosons	(𝛾,	𝑔,	𝑊±,	𝑍).
-	 Mass	is	mediated	by	a	spin-0	particle	=	boson	(Higgs).
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How	to	encode	Permutation	Invariance
•	Let	| ⟩Φ 	represent	a	multi-particle	state.
•	Let	| ⟩Φ′ 	be	obtained	from	| ⟩Φ 	by	exchanging	any	two	of	its	single-particle	
substates.

| ⟩Φ 	is	permutation	invariant	just	when	 |⟨Φ 𝐴| ⟩Φ = |⟨Φ′ 𝐴| ⟩Φ′ 	
for	any	operator	𝐴	representing	an	observable	quantity.

Two	ways	to	guarantee	this:
| ⟩Φ′ = | ⟩Φ 	 (symmetric	under	permutations)
| ⟩Φ′ = −| ⟩Φ 	 (anti-symmetric	under	permutations)

Examples:

(a)	 | ⟩Φ! = ½ | ⟩𝜙 "| ⟩𝜓 # + | ⟩𝜓 "| ⟩𝜙 # 	 symmetric

(b)	 | ⟩Φ$! = ½ | ⟩𝜙 "| ⟩𝜓 # − | ⟩𝜓 "| ⟩𝜙 # 	 anti-symmetric

(c)	 | ⟩Φ%! = ½ | ⟩𝜙 "| ⟩𝜙 # + ¼ | ⟩𝜙 "| ⟩𝜓 # − | ⟩𝜓 "| ⟩𝜙 # 	 non-symmetric

(a) and (b) are permutation invariant
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How	to	encode	the	Exclusion	Principle

(a)	 | ⟩Φ! = ½ | ⟩𝜙 "| ⟩𝜓 # + | ⟩𝜓 "| ⟩𝜙 # 	 symmetric

(b)	 | ⟩Φ$! = ½ | ⟩𝜙 "| ⟩𝜓 # − | ⟩𝜓 "| ⟩𝜙 # 	 anti-symmetric

(c)	 | ⟩Φ%! = ½ | ⟩𝜙 "| ⟩𝜙 # + ¼ | ⟩𝜙 "| ⟩𝜓 # − | ⟩𝜓 "| ⟩𝜙 # 	 non-symmetric

•	 Suppose	we	allow	particles	1	and	2	to	be	in	identical	states.
-	 Let	𝜓	=	𝜙	in	(a)-(c).

•	 Then:	The	anti-symmetric	multi-particle	vector	vanishes!	The	others	don't.

•	 Suggests:	Use	anti-symmetric	vectors	to	represent	the	states	of	a	multi-particle	
system	that	is	both	Permutation	Invariant	and	obeys	the	Exclusion	Principle.

Bosonic	2-particle	states:

Fermionic	2-particle	state:

½ ⟩𝜙 ⟩𝜓 + ⟩𝜓 ⟩𝜙 ,			 ⟩𝜙 ⟩𝜙 ,			 ⟩𝜓 ⟩𝜓

½ ⟩𝜙 ⟩𝜓 − ⟩𝜓 ⟩𝜙

Symmetric under permutations

Anti-symmetric under permutations



3.	Classical	vs.	Quantum	Statistics

Maxwell-Boltzman	(MB)	Statistics:	Group	Rule	for	Classical	Particles
-	Multi-particle	states	are	not	Permutation	Invariant.
-	 Two	or	more	particles	with	same	(non-spatiotemporal)	properties	
can	be	in	the	same	state.	(No	Exclusion	Principle.)

Fermi-Dirac	(FD)	Statistics:	Group	Rules	for	Half-Integer-Spin	Particles
-	Multi-particle	states	are	Permutation	Invariant.
-	 Two	or	more	particles	with	same	(non-spatiotemporal)	properties	
cannot	be	in	the	same	state.	(Generalized	Exclusion	Principle).

Bose-Einstein	(BE)	Statistics:	Group	Rules	for	Integer-Spin	Particles
-	Multi-particle	states	are	Permutation	Invariant.
-	 Two	or	more	particles	with	same	(non-spatiotemporal)	properties	
can	be	in	the	same	state.	(No	Exclusion	Principle.)
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Suppose:	We	have	two	particles	in	a	2-particle	state	composed	of	two	single-
particle	states	𝐴,	B.	How	can	we	calculate	the	probability	that	one	of	the	
particles	is	in	state	𝐴	and	the	other	is	in	𝐵?
Case	1.	Classical	particles

-	Use	MB	statistics:	There	are	4	possible	2-particle	
states.	(4	possible	ways	to	distribute	two	classical	
particles	over	two	states.)

(4)

(1)

(2)

(3)

𝐴 𝐵

un

un

u n

n u

-	Assign	each	of	these	possible	2-particle	states	equal	
probability	of	1/4	(Principle	of	Indifference).

Pr(one	particle	in	𝐴	and	one	particle	in	𝐵)
	 =	Pr(state	3)	+	Pr(state	4)	=	1/4	+	1/4	=	1/2
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-	Assign	each	of	these	possible	2-particle	states	equal	
probability	of	1/3	(Principle	of	Indifference).

(2)

(3)

(1)

𝐴 B

uu

uu

u u

Case	2.	Bosons

-	Use	BE	statistics:	There	are	3	possible	2-particle	
states.		(3	possible	ways	to	distribute	two	bosons	
over	two	states.)

Suppose:	We	have	two	particles	in	a	2-particle	state	composed	of	two	single-
particle	states	𝐴,	B.	How	can	we	calculate	the	probability	that	one	of	the	
particles	is	in	state	𝐴	and	the	other	is	in	𝐵?

Pr(one	particle	in	𝐴	and	one	particle	in	𝐵)
	 =	Pr(state	3)	=	1/3
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Case	3.	Fermions

(1)

𝐴 𝐵

u u
-	Use	FD	statistics:	There	is	only	one	possible	2-particle	
states	(due	to	the	Exclusion	Principle).

Pr(one	particle	in	A	and	one	particle	in	B)
	 =	Pr(state	1)	=	1

Suppose:	We	have	two	particles	in	a	2-particle	state	composed	of	two	single-
particle	states	𝐴,	B.	How	can	we	calculate	the	probability	that	one	of	the	
particles	is	in	state	𝐴	and	the	other	is	in	𝐵?
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4.	Quantum	Individuals

Question:	What	does	Permutation	Invariance	of	quantum	states	say	about	the	
status	of	quantum	particles	as	individuals?

Initial	Response
•	 Classical	particles	are	individuals:	switching	two	of	them	makes	a	difference.
•	 Quantum	particles	are	not	individuals:	switching	two	of	them	does	not	make	a	
difference.

But:	Permutation	Invariance	applies	to	states.
-	 It	is	a	constraint	on	the	possible	states	that	a	given	multi-particle	system	can	be	in.
-	 The	individuality	of	an	object	need	not	depend	on	constraints	placed	on	the	possible	
states	it	can	be	in.

Let's consider two approaches to viewing quantum particles as individuals...
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1.	Haecceitism
Claim:	Classical	and	quantum	particles	possess	"primitive	thisness"	(haecceity).

The	Main	Difference:
•	 Classical	haecceities	are	physically	distinguishable:	you	can	tell	them	
apart	based	on	the	states	they	occupy.

•	 Quantum	haecceities	are	physically	indistinguishable:	no	experiment	can	
distinguish	between	two	quantum	haecceities.

So: Quantum particles might be considered individuals...
 ...but at the cost of accepting the strange metaphysical notion of haecceity.

Does the bundle view offer a better option?
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2.	Bundle	View
Claim:	Classical	and	quantum	particles	consist	of	bundles	of	properties.

Question:	Under	the	Bundle	View,	are	classical	and	quantum	particles	individuals?
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PII:	If	two	objects	are	indiscernible,	then	they	are	identical.

Do they satisfy the Principle of the Identity of Indiscernibles?

•	 Bundle	view	says:	Two	objects	are	indiscernible	when	they	have	all	
the	same	properties.

Two	types	of	properties
1.	 A	monadic	property	=	a	"single-place"	property	that	an	object	can	

possess	without	reference	to	other	objects.	(Ex.	mass.)
2.	 A	relational	property	=	a	"multi-place"	property	that	an	object	can	only	

possess	with	respect	to	one	or	more	other	obejcts.	(Ex.	Being	taller	than.)

This suggests that there are (at least) three versions of the PII...



PII.v1:	If	two	objects	agree	on	all	
monadic	and	relational	properties,	
then	they	are	identical.

PII.v2:	If	two	objects	agree	on	all	
monadic	and	relational	properties,	
excluding	spatiotemporal	properties,	
then	they	are	identical.

PII.v3:	If	two	objects	agree	on	all	
monadic	properties,	then	they	are	
identical.

Three	versions	of	PII

So: Either quantum particles are not individuals, or they must possess haecceities.  

Claims:
(a)	 Classical	particles	can	

violate	PII.v2	and	PII.v3,	but	
must	satisfy	PII.v1.

They can always be discerned by 
their positions in space (and time).

(b)	 Quantum	particles	can	violate	
PII.v2,	PII.v3,	and	PII.v1.

Claim: Two bosons/fermions in a 
symmetric/anti-symmetric state possess all 
the same monadic and relational properties.
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But:	Do	these	versions	of	the	PII	exhaust	all	the	possible	ways	two	objects	can	be	
discerned	from	each	other?

Potential	counterexample:
2	identical	iron	spheres	one	mile	apart	in	an	otherwise	empty	universe.

1	mile
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What about spatiotemporal ones?
Spheres agree on all monadic and relational properties!

Relationalism:	Spatiotemporal	
properties	are	relations	between	
an	object	and	other	objects.

Spheres agree on these: They 
both stand in the spatial relation 
of being 1 mile from the other.

Substantivalism:	Spatiotemporal	
properties	are	relations	between	
an	object	and	absolute	spacetime.

Whether or not spheres are 
identical depends on global 
topology of spacetime!



•	 Suppose	we	are	relationalists	with	respect	to	spacetime
	 Then	the	spheres	violate	PII.v1,	PII.v2,	and	PII.v3.
•	 But:	They	are	distinct:	there	are	two	of	them.
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The spheres are individuated "solo numero" (by number alone)

1	mile

Open	global	topology:	spheres	
disagree	on	spatial	locations	(so	PII	
entails	there	really	are	two	of	them).

1	mile

Closed	global	topology:	spheres	agree	
on	spatial	location	(so	PII	entails	
there's	really	just	one	of	them).

𝑥
𝑦𝑥



Three	types	of	discernibility
(a)	 Absolute	discernibility:	Differing	by	a	monadic	property.
(b)	 Relative	discernibility:	Differing	by	a	relational	property.
(c)	 Weak	discernibility:	Differing	by	an	irreflexive	relational	property.

Potential	examples	of	weakly	discernible	objects
-	 The	two	iron	spheres.
-	 The	points	in	a	Euclidean	space.
-	 Right	and	left	hands	in	an	empty	universe.
-	 Two	anti-correlated	fermions!
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How	to	individuate	objects	solo	numero
See	if	there	is	an	appropriate	irreflexive	2-place	relational	property...

An	irreflexive	2-place	relational	property	=	a	2-place	relation	
that	relates	one	object	with	the	other,	but	does	not	relate	either	
of	the	objects	with	itself.	(Ex:	"Being	1	mile	apart	from.")



Claim	1:	Fermions	are	weakly	discernible.

•	 Thus:	The	fermions	are	weakly	discernible;	so	they	satisfy	the	PII.

So: Under the Bundle View, fermions can be considered individuals.
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•	 In	|Φ−⟩,	there	is	an	irreflexive	relation	that	holds	between	them:
	 	 "Having	opposite	direction	of	spin	to"

•	 Two	spin-½	fermions	with	the	same	properties	can	be	in	the	spin	"singlet"	state:

	 	 |Φ−⟩ = ½{| ⟩↑ "| ⟩↓ # − | ⟩↓ "| ⟩↑ #}

•	 Ex:	| ⟩𝜙 "| ⟩𝜙 #,	where	both	bosons	have	all	the	same	properties.
•	 So:	Bosons	do	not	satisfy	the	PII.

Claim	2:	Bosons	can	be	in	states	in	which	they	are	not	discernible,	even	weakly.

Thus: Under the Bundle View, bosons cannot be considered individuals.
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Problems:

•	 Potential	response	to	#1:
-	For	a	composite	2-particle	spin-½	system,	the	composite	spin	properties	
are	represented	by	the	total	spin	operator	𝑆2	=	(S1+S2)⋅(S1+S2)	and	the	
total	spin-along-the-𝑧-axis	operator	𝑆𝑧	=	𝑆𝑧1+𝑆𝑧2.

-	 The	only	anti-symmetric	eigenvector	of	𝑆2	and	𝑆𝑧		is	|Φ−⟩,	and	not	|Ψ−⟩.
-	 So:	There	is	only	one	2-particle	spin-½	fermion	(anti-symmetric)	state	
with	definite	values	of	spin,	and	it	is	one	in	which	the	fermions	are	weakly	
discernible	(anti-correlated).

1.	 There	are	spin-½	fermion	states	in	which	the	
fermions	are	not	discernible,	even	weakly.

	 Ex:	The	Bell	state	|Ψ−⟩	= ½{| ⟩↑ "| ⟩↑ # − | ⟩↓ "| ⟩↓ #}

Anti-symmetric (fermionic) 
state in which subsystems are 
correlated.
- So: No irreflexive relation.

2.	 There	are	bipartite	boson	states	in	which	the	
bosons	are	weakly	discernible.

	 Ex:	The	Bell	state	|Φ+⟩	=	 ½{| ⟩↑ "| ⟩↓ # + | ⟩↓ "| ⟩↑ #}
Symmetric (bosonic) state in 
which subsystems are anti-
correlated.
- So: Characterized by 

irreflexive relation "having 
opposite direction of spin to".


