1. Classical Or-Addition

13- DeCOherence 2. Quantum Interference
. Yoy ] ) 3. Decoherence
e (Classical probabilities are based on classical (Boolean) logic. 4. Consistent Histories

e The probabilities defined by the Born Rule are based on
quantum (non-Boolean) logic.

e One consequence: QM probabilities do not satisfy the classical Or-Addition Rule.

1. Classical Probabilities and the Classical Or-Addition Rule

] ' A classical probability theory is a triple (Q, F, Pr):
I - () is a set of simple events (the sample space).

- F is a set of compound events obtained by taking all combinations

- Prcis a probability function that maps elements of F to [0, 1] and

|
|
|
|
|
. of simple events using complement and union.
|
1
1 . c 5 .
+  satisfies the following axioms:

Bl () = The Classical Or-
(C2) Pro(—A) =1 — Pre(A) Addition Rule
(C3) Pro(AU A") = Pre(A) + Pre(A') — Pre(An Ay 4=




i - Then: The probability of getting either 1 or 3 on a single roll is given by:

- Pre({1} U {3)) = Pre({1}) + Pre({3}) — Prc({1} N {3}) (C3)

: =1/6+1/6 —0=1/3

\ - And: The probability of getting either a value in the range {1, 2, 3} or a value in the
i range {3, 4, 5} on a single roll is:

 Pre({1,2,3}U(3,4,5})

i =Pr-({1, 2, 3}) + Pr({3, 4,5}) — Prc({1, 2,3} N {3, 4, 5}) (C3)
= [Prc({1}) + Prc({2}) + Prc({31)] + [Prc({3}) + Pre(14}) + Pre({5})] — Pre({3})
i =[1/6+1/6+1/6]+[1/6+1/6+1/6]—1/6=5/6



2. Quantum Probabilities and Interference
e Replace the classical sample space  with a Hilbert space H.

. H is a Hilbert space of states (simple events).

e Main Result: Quantum probabilities, so-defined, do not in general satisfy C3!

e They do satisfy the following (where V, W are subspaces of H and 0 is the

- L is the collection of subspaces of H (compound events) obtained by taking
all combinations of simple events using orthocomplement and linear span.

- Pry is defined by Pry(|a), |¢)) = [(a|p)|% for any |a), |) € H.

A quantum probability theory is a triple (¥, £, Prj):

————————————————————————————————————————————————————————————————

"zero" subspace):

(Q1) Pry(0) =0
(Q2) Pry(VY) =1 —Pry(V)

(Q3) Pry(V e W) =Pry(V) + Pro(W), whenV L W

\N

e Recall: Linear span € does not correspond to classical "or".



Example: 2-slit probabilities and interference

[Wa(x)|?

A] <

A-distribution

With Slit A open,

Pro(e is at x in state Y (x)) = |P,(x)|?

<

[Wp(0)|?

B-distribution

With Slit B open,
Pro(eis at x in state Yp(x)) = |Pp(x)|?



Example: 2-slit probabilities and interference

AL < A
—
| = ]
B _ S B
<%
[Wa(x) +1p(x)|? [Wa()|*+ [Yp(x)|?
Interference distribution (what happens) A or B distribution (what doesn't happen)

o With both slits open, the probability that e is located at x is | ,(x) + z(x)]|>.

|
|
- This is in the subspace V @ W which is the linear span of the subspace V containing the ,

state Y ,(x) and the subspace W containing the state Y z(x). :

e This is not equal to | ,(x)|?+ [Yz(x)|? which, according to (C3), represents the
probability that the electron either went through slit A or slit B.



Let's see how this works using projection operators...

e Recall: The projection operator P,y = |a;){a;| corresponds to the 1-dim
subspace defined by |a;) (i.e., the ray in which |a;) is pointing).

And: Zip|ai) =1

Def. Suppose Q is a linear operator on an N-dim vector space H with
orthonormal basis |b,), ... |by). Then the trace Tr(Q) of Q is given by:

N
Te(Q) = ) (bilQIby) = (by1QIby) + (by1Qlby) + -+ + (by|Qlby)
i=1 4

Tr(Q) = the sum of the diagonal elements of any matrix representation of Q.

Fact: All such representations have this sum in common: The trace is
independent of the basis it's calculated in.

Properties of the trace:

Tr(AA) = ATr(A), where A is any number
Tr(A+ B) =Tr(A) + Tr(B)
Tr(AB) = Tr(BA)




The Born Rule in terms of projection operators:

Pro(value of A is a; in state ) = |[(a;|)|?
= (Yla){a;|})
= Zj(lp|P|aj>|ai><ai|¢) where ijlaj) =1
= Zj(lp|aj><aj|ai)(ai|1/)>
= Zj(aj|ai)(ai|1/)><¢|aj)
= Tr(la;}{a;[ Y}
= Tr(P\ayPy»)

- P4, 1s the projection operator corresponding to the state |a;)
(more precisely, the 1-dim subspace defined by |a;)).

(more precisely, the 1-dim subspace defined by |)).

- The projection operator corresponding to a state is called the

|
1
1
|
|
|
E - P, is the projection operator corresponding to the state )
|
|
|
|
| statistical operator (or density matrix) for the state.



Consider composite state of Hardness measuring device and black electron:
) =V {I'R)|R) + |'s")Is))
e Its statistical operator Py = |y)(¢| is given by:
Py = %{'h)h) + I's)sYHCR'ICR] + ('s"[(s]}
= Y{I'K )RR KL + 1'sHSHCS'[(s] 4+ AR I(s| + |'s")s)R'ICRI
= Y{I'K)H'| @ |h)(h| + |'s')('s'| ® |s){s]
+['RO(s'| @ [h)(s| + |'sH'h'| @ [s)(h}

= Y2{Pypy ® Pipy + Ppgy ® Pigy + |'R')('s"| & [A)(s| + |'s)('h'| ® |s)(h[}
\ ) — _J
Y _ Y
stat operator for|'h')|h) stat operator for |'s')|s) interference terms!

o So: Pry(value of A i a in state [)) = Tr(P}qyP )
= Tr(Y2P4yP iy @ Pipy) + Tr(%2P|qP sy @ Pg))
+ Tr(%P oyl 'W')('s'| @ |h)(s]) + Tr(¥2P,|'s W'h'| @ |s)(h|)

= Pry(value of A is a; in state |'h")|h)) + Pry(value of A is a; in state |'s")|s))

+ interference terms



3. Decoherence zeh (1970

e Claim: When an observer ends up in an entangled state with a
measuring device, environmental interactions destroy interference _
effects and decohere the entangled state into one associated with a (ios22018)
definite measurement outcome.

e Let |hard), |soft); be states of the environment E in which it's correlated with
a hard electron and a soft electron, respectively.

e Then: Itis experimentally impossible to distinguish between:

(1) The state v¥% {|'hard’),,|hard) |hard)g + |'soft'),,|soft).|soft)}
(2) Either of the states: |'hard’),,|hard),|hard); or |'soft’),,|soft).|soft)g.

- Recall: To distinguish between (1) and (2), we would need a very complex multi-
particle property that (1) possesses and that neither state in (2) possesses.

mentally impossible to measure such a property.

|
1
1
1
! - Given that E realistically has a huge number of degrees of freedom, it is experi-

- So (1) and (2) are indistinguishable for all practical purposes!



3.

Claim: When an observer ends up in an entangled state with a

Decoherence zeh (1970)

measuring device, environmental interactions destroy interference

effects and decohere the entangled state into one associated with a (ios22018)

definite measurement outcome.

Let |hard)g, |soft)r be states of the environment E in which it's correlated with
a hard electron and a soft electron, respectively.

Then: It is experimentally impossible to distinguish between:

(1) The state v¥% {|'hard’),,|hard) |hard)g + |'soft'),,|soft).|soft)}
(2) Either of the states: |'hard’),,|hard),|hard); or |'soft’),,|soft).|soft)g.

What this is supposed to mean:

- Whenever the post-measurement state of a composite system is of the form of (1),
it does, for all practical purposes, describe a situation in which a definite
measurement outcome occurred.

- The environment, for all practical purposes, collapses the entangled superposition.



3. Decoherence zeh (1970

e Claim: When an observer ends up in an entangled state with a
measuring device, environmental interactions destroy interference

effects and decohere the entangled state into one associated with a (ios22018)

definite measurement outcome.

e Let |hard), |soft); be states of the environment E in which it's correlated with
a hard electron and a soft electron, respectively.

e Then: Itis experimentally impossible to distinguish between:

(1) The state v¥% {|'hard’),,|hard) |hard)g + |'soft'),,|soft).|soft)}
(2) Either of the states: |'hard’),,|hard),|hard); or |'soft’),,|soft).|soft)g.

. "During decoherence, entanglement does not really disappear, but
i goes further and further into the environment; in practice, it becomes
' rapidly completely impossible to detect.” (Laloe 2012, pg. 136.)
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Let's see how this is supposed to work using statistical operators...

e The statistical operator P, = |Y)(| for the state in (1) is:
Py = %{'K) M) Ep) + I'sHHSHED{C R [KRICER] + ('s"I(SI(Es[}
= Y|'R) [ Ep){'R'|[CRICER] + %2|'s) S EN('s" (s KE]
+ V2" W) R ER's [(SIKEs| + Y2l'sHSMEN R [(hICES]
= 1|"R' YR | @ |hAWh| @ |ENE,| + ¥|'s)'s'| @ |s)(s| ® |ENE,]|
+ ') ('s'| @ |h)(s| ® |Ep)(Es| + Y2l's ) ('h'| @ [s)(h| @ |EsKEn
= YP iy @ Py ® Pig,y + YoP gy ® Py ® Py + (interference terms)

e Now: Take the "partial trace” of P, with respect to the Environment basis:

Tre(Pryy) = (En|PuylEn) + (Es|Piyy|Es)
— 1/2P|’h’) ® P|h) + 1/2P|’S’) ® P|S>

"Tracing over the environment" Kills the interference terms!

12
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FiG. 8.1 How environmental correlations destroy simple interference effects.
(a) The interference distribution. () With a wire loop at A.

 "..just as the environmentally correlated superposition in the second ;
i experiment [b] is empirically indistinguishable from a state where the !
| electron passes through either one slit or the other, an environmentally i
. correlated superposition of different measurement records is empirically !
| indistinguishable from a particular record.” (Barrett, pg. 223.) :
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Does decoherence solve the measurement problem?

e No!

e When we "trace over the environment", we're left with the statistical operator
V2P haray @ Plnaray + 72P'sofry @ Psopty

- This is the statistical operator for a "mixed state": This is
how the state of a system is represented when its exact form
is known only to lie within a set of possible states.

- In this case, the state of the system is either of the pair

{I'hard'),,|hard),, |'soft')|soft).}

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

' each with equal weight %5.
|

i - But: The result of a measurement (as given by the Projection
. Postulate and by our experience) is a definite outcome.

|

' - In this case, the result is either |'hard'),,|hard), or |'soft’),,|soft)..
i - It's definitely one of these two alternatives.

|
|

- It's not a weighted sum of them both!
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4. Consistent Histories ariffiths (1984)

e Recall: A state of a system is a description of the system in terms of
the values its properties take at an instant of time.

Robert Griffiths
e A history of a system is a description of the system in terms of the

values its properties take over an interval of time.

Def. 1. A history h is a time-indexed sequence of facts, represented by
time-indexed projection operators:

h = (P1(ty), Po(t), - Pu(ty)). 7

e Py(t;) might be P .4 (t1) which represents the property, at time t;,
"The value of Hardness is hard".

e Or: It might be P\, (t;) which represents the property, at time ¢, "The
value of the property Ais a".

e Projection operators evolve via the Schrodinger dynamics:
P(t) = eiHt/p(0)e~iHt/h

15



Def. 2. The probability associated with a history h is given by:
Pro(h) = Tr(P,(t,)-P2(t2) P1(t1) Py P1(t1) Po(t2)..Py(tn))

where P, is the statistical operator associated with an initial state [).

e All the terms inside a trace commute with each other, so:
Pro(h) = Tr(Pu(t) Pa(tn)P2(t2) Po(t) P1(t)P1(t1)Pyyy)

e Since projection operators are idempotent, this is equal to:
Pro(h) = Tr(Pn(tn)---Pz(tz)Pl(t1)P|¢>)

e And: This can be thought of as the trace version of the Born Rule for the
probability that the system in the state |y), has the "historical property”
represented by the operator P,(t,)...P2(t)P1(t1).

16
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Def. 3. A family of histories is a time-indexed sequence of sets of
"exhaustive" facts:

({P1 ()} {PF(t2)}, oo (P (t0)})

where each index a; = 1, ..., N and {P,%(t,)} = {P;!(¢t;), P/*(t)), ..., PN (t)},
such that Pil(ti) + Piz(ti) = 980 5 Pl‘N(ti) = IN'

e The projection operators in any set {P,%(t;)} represent all the possible values
of the property associated with P;(t;).

17



Histories can be embedded in families of histories:

t=t, P,\(t)) P2(t,) . . PN(E)
NN
\ \
t =1t Pjl(t;) P ZZ(tZ)/P;ZN(tz)
t=t, Pl(t) Pt .. . Plt)
N
h
t=0 Py

e h= (PI¢>' Pll(t1)r P#(t2), -y Prt(tn))
e h' = (P|¢>» P12(t1)» PzN(tz)r "o Pnz(tn))

e hand h' are two histories within the family ({P,,}, {P{*(t1)}, ...

{Pn(tn)}

?
{P#2(t;)}
T

{P(t1)}
T

{Pp}

{Pp(tn)}).

18



Histories can be embedded in families of histories:

t=t, P,\(t)) P2(t,) . . PN(E)
NN
\ \
t =1t Pjl(t;) P Zz(tZ)/P;ZN(tz)
t=t, Pl(t) Pt .. . Plt)
W
h
t=0 Py

{Pn(tn)}

?
{P#2(t;)}
T

{P(t1)}
T

{Pp}

e We can assign probabilities to histories within a family by means of Def. 2.

e These are quantum probabilities that exhibit interference effects.

Are there histories within a given family that can be assigned classical probabilties?

19



Are there histories within a given family that do not interfere with each other?

e These would be histories h, h' whose probabilities obey the classical
Or-Addition Rule:

Pro(hor h") = Pry(h) + Pry(h’)
e First: Need an expression for the disjunction, h or h’, of two histories h, h'.

1 Simple case: Suppose h, and hg are histories that differ only
in the property att = t;:

i = (Po(E), s PACED, o Palt))
Ry = (P1(t2), s PEED, o Pult)

- Now let the history, h or hg, be given by:

hyor hg = (P1(ty), .. PA(t) + PE(t), ... Pa(ty))

20



+ Simple case, continued:
o hyorhg=(P(t1), .. PAt) + PE(L), .., Pu(ty))

e So: For an initial state |Y):

Pro(hy or hp)
= Tr(P,(t,)--[PA(t) + PE()]-.P1(t)PyyP1(t)-.[PAt) + PE(t)].-Pa(ty)) i
= Tr(Po(t) P APy (E1) Py P (61) - PA(E) P (£))

+ Tr(Po(tn) P E(t).P1(t1) Py P1(t1) P (t)Pr(ty)) i
+ {Tr(Po(t)-PA(t)-P1(t)PyyP1(t1)-.PE(t)-Pr(ty)) E

+ Tr(Po(t,)--PE(t)..P1(t) Py P1(t1)..PA(t)Pr(t)) }
= Pry(h,) + Pry(hg) + {interference terms}

e Which means: The probabilities assigned to h, and hg by Def. 2 will be
classical (i.e., will obey the classical Or-Addition Rule) just when the
interference terms vanish.



Now: Consider the general case of h, h' differing on all properties:

h = (Pl(tl)r ) Pn(tn))
h, — (Pll(tl); vy Pn’(tn))
horh' = ([P1(ty) + Py (t)], « [Pi(t) + P/ ()], [Pn(tn) + Py (t)])

e The probabilities assigned to h and h' by Def. 2 will be classical just when the
general interference term vanishes:

Tr(Pn(tn)--P1(t))PyyP1 (¢1)--Pr'(8,)) = 0

Def. 4. Two histories h = (P1(t1), «, Pn(tn)), h' = (P1'(t1), .., P,/ (t,)) are
consistent just when Tr(P,,(t,))...P1(t1))PyyP1 (t1)...Py' (t,)) = 0.

such that any two histories embeddable in it are consistent.

Def. 5. A consistent family of histories is a family of histories J

e A consistent family of histories is a collection of histories that defines a classical

sample space! You can assign classical probabilities to its members.
22



Def. 6. \N

(1) his a fine-grained history just when all projection
operators in h are 1-dim.

(2) h'is a coarse-graining of h just when some projection
operators in h' are sums of projection operators in h.

Fine-grained histories cannot in general be assigned classical probabilities.

Course-grained histories can be assigned approximate classical probabilities,
and these get more classical as Tr(P,(t,)...P1(t1)) Py, P1 (£1)-.P, ' (£,)) = 0.

As Tr(P,(t,)...P1(t1))PyyP1'(t1)..P,/ (t,)) = 0, such course-grained histories
"decohere".

Coarse-graining a family of histories corresponds to tracing out the
environment.

The environment interacts with the coarse-grained histories to damp out
the interference effects, rendering the family approximately consistent.

23



Def. 7. Two histories h = (P1(t1), ..., Pn(ty)), k' = (P{'(t1), ., P4/ (t,)) are
decoherent just when Tr(P,(t,,)..P1(t1)) PP (t1)...P, (t,)) — O.

Def. 8. A decoherent family of histories is a family of histories
such that any two histories embeddable in it are decoherent.

Characteristics of the Consistent/Decoherent Histories (CH) Approach

- Replaces states of a physical system with histories a physical system.

- The properties (projection operators) that make up a history evolve only
via the Schrodinger dynamics (no Projection Postulate).

- Identifies a way to associate a probability with a history (Def. 2).

- Identifies a condition that picks out those families of histories that are

classical (or approximately classical) (Defs. 4, 5). 7
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Problems

1. How are alternative histories within a decoherent family to be interpreted?

e [s one history actual and the others just possible?

e Or do all histories within a decoherent family occur? If so, then how are
probabilities explained?
- This is the Problem of Probabilities that Many Worlds faces.

2. How are alternative decoherent families to be interpreted?

e Any history h can be embedded in many different mutually incompatible
decoherent families (any one of which defines an approximately classical
probability space).

e Which do we choose in order to calculate the probability of h?

- This is the Preferred Basis Problem that Many Worlds faces.

Problems 1 & 2 Combined:
e Seem to indicate that CH isn't fundamentally different from Many Worlds.

- All CH does is replace world-talk with history-talk, and adds a criterion for identifying
histories that behave "classically”.
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3. General Problem with the Notion of Decoherence

e "Tracing over the environment” (or "coarse-graining" histories) does not pick
out a unique measurement/interaction outcome.

e [t does not effect a "collapse” of superposed states (or "interfering" histories).

e So it cannot be appealed to in order to reconcile superpositions (or "interfering”
histories) with our experience of unique outcomes.
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