1. Classical Or-Addition

13. Decoherence 2. Quantum Interference
. e ) . 3. Decoherence
 (lassical probabilities are based on classical (Boolean) logic. 4. Consistent Histories

e The probabilities defined by the Born Rule are based on
quantum (non-Boolean) logic.

e One consequence: QM probabilities do not satisfy the classical Or-Addition Rule.

1. Classical Probabilities and the Classical Or-Addition Rule

- () is a set of simple events (the sample space).

|

|

i - F is a set of compound events obtained by taking all combinations
. of simple events using set complement and union.
|
:
|
|

- Pr is a probability function that maps elements of F to [0, 1] and
satisfies the following axioms:

(Cl) PrC((D) = The Classical Or-
(C2) Pr.(—=A)=1-Pr.(4) Addition Rule
(C3) Pro(AUA") = Pry(A) + Pro(A") — Pro(An A"y 4—=




i - Then: The probability of getting either 1 or 3 on a single roll is given by: i
- Pre({13 U {3)) = Pre({1}) + Pre({3}) — Pre({1} N {3)) (C3) |
: =1/6+1/6—-0=1/3 :
i - And: The probability of getting either a value in the range {1, 2, 3} or a value in the :
i range {3, 4, 5} on a single roll is: E
. Pro({1,2,3}U{3,4,5}) :
| =Pre({1,2,3)) + Pre(3, 4, 5)) — Pre({1, 2, 3} N {3, 4, 5}) (€3) |
= [Pre({1}) + Pre(2)) + Pre(BD] + [Pre({3)) + Pre({4}) + Pre({5)] — Pre({3)) :
. =[1/6+1/6+1/6]+[1/6+1/6+1/6] —1/6 =5/6



2. Quantum Probabilities and Interference
e Replace the classical sample space () with a Hilbert space H.

————————————————————————————————————————————————————————————————

| A quantum probability theory is a triple (H, £, Pry):
' - H is a Hilbert space of states (simple events).

all combinations of simple events using orthocomplement and linear span.
- Pr is defined by Pry(|a), [)) = [(a|p)|?, forany |a), |¢) € H.

- L is the collection of subspaces of H (compound events) obtained by taking i

e Main Result: Quantum probabilities, so-defined, do not in general satisfy C3!

e They do satisfy the following (where V, W are subspaces of H and 0 is the
"zero" subspace):

(Q1) Pry(0) =0 X

(Q2) Pry(V) =1—Pry(V)
(Q3) Pry(V @ W) = Pry(V) + Proy(W), when V L W

e Recall: Linear span @ does not correspond to classical "or".



Example: 2-slit probabilities and interference

[P a(x)]?
B ][l B ]
[p(x)|?
A-distribution B-distribution
With Slit 4 open, With Slit B open,

Pro(eisatxinstate ,(x)) = |[Ps(x)|? Pro(eisat x in state Yp(x)) = [Pp(x)|



Example: 2-slit probabilities and interference

\/ \/\/\m,.

\
—

.mﬂl\/\/

[Wa(x) +p(x)| [Ya(x) 2+ [p(x)|?
Interference distribution (what happens) A or B distribution (what doesn't happen)

o With both slits open, the probability that e is located at x is | ,(x) + Y z(x)|>.

- The state corresponding to the prob distribution | 4(x) + Yp(x)|? is [P 4(x)) + |Yp(x)).

1
I
- This is in the subspace V. @ W which is the linear span of the subspace V containing the i

state Y ,(x) and the subspace W containing the state Y z(x). I

 This is not equal to | ,(x)|?+ |Wz(x)|? which, according to (C3), represents the
probability that the electron either went through slit A or slit B.



Let's see how this works using projection operators...

* Recall: The projection operator P, = |a;}{a;| corresponds to the 1-dim
subspace defined by |a;) (i.e., the ray in which |a;) is pointing).

And: i Pjqy =1

Def. Suppose Q is a linear operator on an N-dim vector space H with
orthonormal basis |b,), ... |by). Then the trace Tr(Q) of Q is given by:

Tr(Q) = z<bi|Q|bi> = (b11Q1b1) + (b2|Q|bz) + -+ + (by|Q|by)

4

Tr(Q) = the sum of the diagonal elements of any matrix representation of Q.

Fact: All such representations have this sum in common: The trace is
independent of the basis it's calculated in.

Properties of the trace:

Tr(1A) = ATr(A), where A is any number
Tr(A+ B) =Tr(A) + Tr(B)
Tr(AB) = Tr(BA)




The Born Rule in terms of projection operators:

Pry(value of Ais a; in state [1))) = [(a;|})) |2
= (Yla)Xa;|P)
= SPIP, ladalp)  whereXP, =1
= XA ¥la)(a;|la)a;|P)
= Yajla)a;P)(la))
= Tr(la){a;|Y)])
= Tr(PyayPyy))

- P\, is the projection operator corresponding to the state |a;)
(more precisely, the 1-dim subspace defined by |a;)).

- P, is the projection operator corresponding to the state [y)
V)
(more precisely, the 1-dim subspace defined by |y)).

- The projection operator corresponding to a state is called the
statistical operator (or density matrix) for the state.
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Consider composite state of Hardness measuring device and black electron:
) =V {I'R) R +1's)Is)}
e Its statistical operator P, = [{)(Y] is given by:
Py =Y2{I'h)|h) + |'s)sYHCR' (AL + ('s"I(s]}
= V2A'KMMCRAL + 'YK S (s] + RS (| + I'sMs) R (AL
=Y%{'W)(N'| @[h)h] + ['s)('s'| @ Is)s]
+ "W (s @ [h)(s| + |'s)W'h'| @Is)hl}

= Yo{Ppy ® Pppy + Py @ Pigy + 'R )(s'| @ |)(s| + |'s)('h'| ®|s)(h|}
—— — ~ _/
stat operator for |'h')|h) stat operator for |'s")|s) interference terms!

o So: Pry(value of A is a; in state |p)) = Tr(P ,,Py))
= Tr(1/2P|al.)P|'h') 03¢ P|h)) + Tr(l/zplai)PI'S') ® Pls))
+ Tr(%P )"K' )('s’| @ |h)(s]) + Tr(%P,,,|'s )('h'| @[s)(h])

= Pry(value of A is a; in state |'h')|h)) + Pry(value of A is a; in state |'s")|s))

+ interference terms



3. Decoherence zenh(1970)

e Claim: When an observer ends up in an entangled state with a
measuring device, environmental interactions destroy interference

effects and decohere the entangled state into one associated with a (193290169

definite measurement outcome.

e Let |hard), |soft); be states of the environment E in which it's correlated with
a hard electron and a soft electron, respectively.

e Then: It is experimentally impossible to distinguish between:

(1) The state V% { |'hard’), |hard) |hard); + |'soft’), |soft).|soft)z}
(2) Either of the states: |'hard'), |hard),|hard); or |'soft’), |soft),|soft).

- Recall: To distinguish between (1) and (2), we would need a very complex multi-
particle property that (1) possesses and that neither state in (2) possesses.

|
|
|
|
|
|
! - Given that F realistically has a huge number of degrees of freedom, it is experi-
! mentally impossible to measure such a property.

|

|

|

- So (1) and (2) are indistinguishable for all practical purposes!



3. Decoherence zenh(1970)

e Claim: When an observer ends up in an entangled state with a
measuring device, environmental interactions destroy interference

effects and decohere the entangled state into one associated with a (193290169

definite measurement outcome.

e Let |hard), |soft); be states of the environment E in which it's correlated with
a hard electron and a soft electron, respectively.

e Then: It is experimentally impossible to distinguish between:

(1) The state V% { |'hard’), |hard) |hard); + |'soft’), |soft).|soft)z}
(2) Either of the states: |'hard'), |hard),|hard); or |'soft’), |soft),|soft).

—————————————————————————————————————————————————————————————————

What this is supposed to mean:

| 1
| |
' . Whenever the post-measurement state of a composite system is of the form of (1),

|
\ it does, for all practical purposes, describe a situation in which a definite :
i measurement outcome occurred. ;
: |
| 1

- The environment, for all practical purposes, collapses the entangled superposition.



3. Decoherence zenh(1970)

e Claim: When an observer ends up in an entangled state with a
measuring device, environmental interactions destroy interference

effects and decohere the entangled state into one associated with a (193290169

definite measurement outcome.

e Let |hard), |soft); be states of the environment E in which it's correlated with
a hard electron and a soft electron, respectively.

e Then: It is experimentally impossible to distinguish between:

(1) The state V% { |'hard’), |hard) |hard); + |'soft’), |soft).|soft)z}
(2) Either of the states: |'hard'), |hard),|hard); or |'soft’), |soft),|soft).

"During decoherence, entanglement does not really disappear, but
goes further and further into the environment; in practice, it becomes
rapidly completely impossible to detect." (Laloe 2012, pg. 136.)
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Let's see how this is supposed to work using statistical operators...

e The statistical operator Py, = |Y)(| for the state in (1) is:
Pryy = 2{'"R) R ER) + I'sHUSNEDHCRICRIKER] + ('s"I(s[(E|}
= V| W) W) EYC R [(RI(EL] + Y2|'s')|S)EN's'|(S|(E]|
+ V2 KM M) ER (S (SIKE| + Y2 sYSHE N R [(RICE
= 1" }'h'| @ |h)(h| Q|ENE,| + ¥|'s')'s'| @ |s){s| ®|ENE ]
+ V2'h)(s'| @ [h)(s| ® [ERNE| + 2|'s )| @ |s)(h| @ENE]
= Y2Py@Q@P )y QP g,y + V2P oy QP QP i, + (interference terms)

e Now: Take the "partial trace” of P, with respect to the Environment basis:

Trg(Py)) = (Ep|PuyylER) + (Eg|Pyy|Es)
= VoPwyQPpwy + 2Py QP

"Tracing over the environment” kills the interference terms!

12



- - - X
Wire IO_QL’
l |
A | 4 L : |
L7 HT‘. |
L :
B B
! g i i
Barrier Screen Barrier Screen
(@) (5)

FiG. 8.1 How environmental correlations destroy simple interference effects.
(a) The interference distribution. () With a wire loop at A.

1 "...just as the environmentally correlated superposition in the second :

|
. experiment [b] is empirically indistinguishable from a state where the !
i electron passes through either one slit or the other, an environmentally |
' correlated superposition of different measurement records is empirically :
. . . . = n !
! indistinguishable from a particular record.” (Barrett, pg.223.) -



Does decoherence solve the measurement problem?

* No/

 When we "trace over the environment”, we're left with the statistical operator
1/2P|’hard’)®P|hard) + 1/2P|’soft’)®P|soft)

- This is the statistical operator for a "mixed state": This is
how the state of a system is represented when its exact form

is known only to lie within a set of possible states.

- In this case, the state of the system is either of the pair
{I'hard'),|hard),, |'soft’)n|soft).}

each with equal weight 4.

- But: The result of a measurement (as given by the Projection
Postulate and by our experience) is a definite outcome.
- In this case, the result is either |'hard'),,|hard), or |'soft'),,|soft)..

- It's definitely one of these two alternatives.

- It's not a weighted sum of them both!

14



4. Consistent Histories criffiths (1984)

e Recall: A state of a system is a description of the system in terms of
the values its properties take at an instant of time.

Robert Griffiths
» A history of a system is a description of the system in terms of the

values its properties take over an interval of time.

Def. 1. A history h is a time-indexed sequence of facts, represented by
time-indexed projection operators:

h = (Pl(tl)r Py(t3)) v Pn(tn))' 74

e P,(t,) mightbe P, (t;) which represents the property, at time ¢,
"The value of Hardness is hard".

e Or: Itmight be P, (t;) which represents the property, at time t;, "The
value of the property Ais a".

e Projection operators evolve via the Schrodinger dynamics:
P(t) = eiHt/hp(Q)eiHt/h

15



Def. 2. The probability associated with a history h is given by:
Pry(h) = Tr(Ppn(tn)--Pa(62)P1(t1)PyyP1 (£) Po(E5)-Py(ty))

where P, is the statistical operator associated with an initial state [i).

e All the terms inside a trace commute with each other; so:
Pro(h) = Tr(Pn(tn)Pn(tn)---Pz(tz)Pz(tz)P1(t1)P1(t1)P|¢>)

e Since projection operators are idempotent, this is equal to:
Pro(h) = Tr(Pn(tn)---Pz(tz)P1(t1)P|¢))

e And: This can be thought of as the trace version of the Born Rule for the
probability that the system in the state |1), has the "historical property"
represented by the operator P, (t,)...P,(t,)P1(ty).

16



Def. 3. A family of histories is a time-indexed sequence of sets of
"exhaustive" facts:

(P, (tD} {PF(t2)}, - (Pr™(t)})

\N

where each index a; = 1, ..., N and {P,%(t))} = {P,!(t)), P,*(t)), .., PN (t)},

e The projection operators in any set {P%(t;)} represent all the possible values

of the property associated with P;(t)).

17



Histories can be embedded in families of histories:

t=t, P, l(t,) P,At,) .. . PN(t)
NN
\ SS
t=t, P)l(t,) Py (tz)/gz (t2)
t=t, Pl(t) PL(t) .. PN
“
h
t=0 Piy)

¢ b= Py PL(ED, PR, - PA(ED)
o h'= (P Py (), PN(ty), . PL2(ED)

P (tn)}

{P72(t,)}

{P(t))}

Py}

 hand h’are two histories within the family ({P,;,}, {P{(t1)}, ... {P,*(t)}).

18



Histories can be embedded in families of histories:

t=t, P.l(t)  Pri(ty) - e PV (L) {Pr(t)}
NN | !
\\ \\ T

t=t, Pi(t,) PA(L) .. Pz (t2) {P72(t,)}
/ / T

t=t, P(t) PL(ty) .. . Pt {P(ty)}
“ 0

t=0 " Py Py}

e We can assign probabilities to histories within a family by means of Def. 2.
e These are quantum probabilities that exhibit interference effects.

Are there histories within a given family that can be assigned classical probabilties?

19



Are there histories within a given family that do not interfere with each other?

e These would be histories h, h’ whose probabilities obey the classical
Or-Addition Rule:

Pro(hor h') = Pry(h) + Pry(h")

o First: Need an expression for the disjunction, h or h’, of two histories h, h'.

i hA = (Pl(tl)' ) PiA(ti)' ) Pn(tn))
: hg = (P1(t1), s PE(D, o Pr(t))
i - Now let the history, h, or hg, be given by:

hyor hgy = (Py(ty), .. PA(t) + PE(L), ... Po(L,))

20



o hyorhy=(Pi(t), ., PAt) + PE(t), .., Py(ty))
e So: For an initial state |y):

Pr(hy or hp)

= Tr(P)[PA) + PEE)]Py(E)PyP1E)[PAE) + PEE)]Po(t)
= Tr(P,(t,)--PA(t)wP1(t)PyyP1(t1)..P A(t)-Pp(t,))

i + Tr(Po(t,)..PP(t)..Py(t)PyyyP1(t1)..PE(t)..P,(t,)
+ {Tr(P,(t)..PA)..P1(t)PyyyP1(t1)..PE(t)..Py(t,)

+ Tr(P,(t)-PE(t) P () PiyyP1(t1)..P A1) Pr(t,)) }
= Pry(hy) + Pry(hp) + {interference terms}

e Which means: The probabilities assigned to h, and hy by Def. 2 will be
classical (i.e., will obey the classical Or-Addition Rule) just when the
interference terms vanish.




Now: Consider the general case of h, h’ differing on all properties:

h = (P1(t1)f =y Pn(tn))
h’ — (Pll(tl); Ly Pn’(tn))
horh' = ([P,(t)) + Py'(t)], o [Pi(t) + P/ (D], - [Pu(ty) + Py (t)])

e The probabilities assigned to h and h’ by Def. 2 will be classical just when the
general interference term vanishes:

Tr(P,(t,)..P1(t))P P, (t)..P, ' (t,)) =0

Def. 4. Two histories h = (P,(t,), .., P,(t,)), k' = (P (t)), .., P,/ (t,)) are
consistent just when Tr(P,(t,)..P1(t,)) PP (t))..P, (t,)) = 0.

Def. 5. A consistent family of histories is a family of histories
such that any two histories embeddable in it are consistent.

e A consistent family of histories is a collection of histories that defines a classical

sample space! You can assign classical probabilities to its members.
22



Def. 6. \N

(1) his afine-grained history just when all projection
operators in h are 1-dim.

(2) h'is acoarse-graining of h just when some projection
operators in h’ are sums of projection operators in h.

Fine-grained histories cannot in general be assigned classical probabilities.

Course-grained histories can be assigned approximate classical probabilities,
and these get more classical as Tr(P,(t,)..P,(t,)) PP (t1)..P, (t,)) = 0.

As Tr(P,(t,)..P1(t1)) PP, (t1)..P, (t,)) = 0, such course-grained histories
"decohere”.

Coarse-graining a family of histories corresponds to tracing out the
environment.

The environment interacts with the coarse-grained histories to damp out
the interference effects, rendering the family approximately consistent.

23



Def. 7. Two histories h = (P,(ty), .., P,(t,)), k' = (P, (t)), .., P,/ (t,)) arj

decoherent just when Tr(P,(t,)...P1(t,)) PP (t1)..P, ' (t,)) = 0.

Def. 8. A decoherent family of histories is a family of histories
such that any two histories embeddable in it are decoherent.

Characteristics of the Consistent/Decoherent Histories (CH) Approach

- Replaces states of a physical system with histories a physical system.

- The properties (projection operators) that make up a history evolve only

via the Schrodinger dynamics (no Projection Postulate).
- Identifies a way to associate a probability with a history (Def. 2).

- Identifies a condition that picks out those families of histories that are
classical (or approximately classical) (Defs. 4, 5).

4
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Problems

1. How are alternative histories within a decoherent family to be interpreted?

e [sone history actual and the others just possible?

e Ordo all histories within a decoherent family occur? If so, then how are
probabilities explained?
- This is the Problem of Probabilities that Many Worlds faces.

2. How are alternative decoherent families to be interpreted?

e Any history h can be embedded in many different mutually incompatible
decoherent families (any one of which defines an approximately classical
probability space).

e Which do we choose in order to calculate the probability of h?

- This is the Preferred Basis Problem that Many Worlds faces.

Problems 1 & 2 Combined:
e Seem to indicate that CH isn't fundamentally different from Many Worlds.

- All CH does is replace world-talk with history-talk, and adds a criterion for identifying
histories that behave "classically”.
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3. General Problem with the Notion of Decoherence

e "Tracing over the environment" (or "coarse-graining" histories) does not pick
out a unique measurement/interaction outcome.

e [t does not effect a "collapse” of superposed states (or "interfering" histories).

e Soitcannot be appealed to in order to reconcile superpositions (or "interfering"
histories) with our experience of unique outcomes.
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