13. Decoherence

- Classical probabilities are based on classical (Boolean) logic.

1. Classical Or-Addition
2. Quantum Interference
3. Decoherence
4. Consistent Histories

- The probabilities defined by the Born Rule are based on quantum (non-Boolean) logic.
- One consequence: QM probabilities do not satisfy the classical Or-Addition Rule.

1. Classical Probabilities and the Classical Or-Addition Rule

A classical probability theory is a triple $\left(\Omega, \mathcal{F}, \operatorname{Pr}_{C}\right)$:

- Ω is a set of simple events (the sample space).
- \mathcal{F} is a set of compound events obtained by taking all combinations of simple events using complement and union.
- Pr_{C} is a probability function that maps elements of \mathcal{F} to $[0,1]$ and satisfies the following axioms:

$$
\begin{aligned}
& \text { (C1) } \operatorname{Pr}_{C}(\varnothing)=0 \\
& \text { (C2) } \operatorname{Pr}_{C}(\neg A)=1-\operatorname{Pr}_{C}(A) \\
& \text { (C3) } \operatorname{Pr}_{C}\left(A \cup A^{\prime}\right)=\operatorname{Pr}_{C}(A)+\operatorname{Pr}_{C}\left(A^{\prime}\right)-\operatorname{Pr}_{C}\left(A \cap A^{\prime}\right)
\end{aligned}
$$

The Classical OrAddition Rule

Example:

- Let $\Omega=\{1,2,3,4,5,6\}$ represent all possible results of a single roll of a die.
$-\mathcal{F}=\{\{1\},\{2\}, \ldots,\{1\} \cup\{2\},\{1\} \cup\{3\}, \ldots, \neg\{1\}, \neg\{2\}, \ldots\}$
- Let $\operatorname{Pr}_{C}(\{i\})=1 / 6$, for $i=1$...6. (Principle of Indifference)

Then: The probability of getting either 1 or 3 on a single roll is given by:

$$
\begin{align*}
\operatorname{Pr}_{C}(\{1\} \cup\{3\}) & =\operatorname{Pr}_{C}(\{1\})+\operatorname{Pr}_{C}(\{3\})-\operatorname{Pr}_{C}(\{1\} \cap\{3\}) \tag{C3}\\
& =1 / 6+1 / 6-0=1 / 3
\end{align*}
$$

And: The probability of getting either a value in the range $\{1,2,3\}$ or a value in the range $\{3,4,5\}$ on a single roll is:

$$
\begin{align*}
& \operatorname{Pr}_{C}(\{1,2,3\} \cup\{3,4,5\}) \\
&=\operatorname{Pr}_{C}(\{1,2,3\})+\operatorname{Pr}_{C}(\{3,4,5\})-\operatorname{Pr}_{C}(\{1,2,3\} \cap\{3,4,5\}) \tag{C3}\\
&=\left[\operatorname{Pr}_{C}(\{1\})+\operatorname{Pr}_{C}(\{2\})+\operatorname{Pr}_{C}(\{3\})\right]+\left[\operatorname{Pr}_{C}(\{3\})+\operatorname{Pr}_{C}(\{4\})+\operatorname{Pr}_{C}(\{5\})\right]-\operatorname{Pr}_{C}(\{3\}) \\
&=[1 / 6+1 / 6+1 / 6]+[1 / 6+1 / 6+1 / 6]-1 / 6=5 / 6
\end{align*}
$$

2. Quantum Probabilities and Interference

- Replace the classical sample space Ω with a Hilbert space \mathcal{H}.

A quantum probability theory is a triple $\left(\mathcal{H}, \mathcal{L}, \operatorname{Pr}_{Q}\right)$:
\mathcal{H} is a Hilbert space of states (simple events).
\mathcal{L} is the collection of subspaces of \mathcal{H} (compound events) obtained by taking all combinations of simple events using orthocomplement and linear span.

- Pr_{Q} is defined by $\operatorname{Pr}_{Q}(|a\rangle,|\psi\rangle)=|\langle a \mid \psi\rangle|^{2}$, for any $|a\rangle,|\psi\rangle \in \mathcal{H}$.
- Main Result: Quantum probabilities, so-defined, do not in general satisfy C3!
- They do satisfy the following (where V, W are subspaces of \mathcal{H} and 0 is the "zero" subspace):

$$
\begin{aligned}
& \text { (Q1) } \operatorname{Pr}_{Q}(\mathbf{0})=0 \\
& \text { (Q2) } \operatorname{Pr}_{Q}\left(V^{\perp}\right)=1-\operatorname{Pr}_{Q}(V) \\
& \text { (Q3) } \operatorname{Pr}_{Q}(V \oplus W)=\operatorname{Pr}_{Q}(V)+\operatorname{Pr}_{Q}(W) \text {, when } V \perp W
\end{aligned}
$$

- Recall: Linear span \oplus does not correspond to classical "or".

Example: 2-slit probabilities and interference

A-distribution

B-distribution

With Slit A open,
$\operatorname{Pr}_{Q}\left(e\right.$ is at x in state $\left.\psi_{A}(x)\right)=\left|\psi_{A}(x)\right|^{2}$

With Slit B open,
$\operatorname{Pr}_{Q}\left(e\right.$ is at x in state $\left.\psi_{B}(x)\right)=\left|\psi_{B}(x)\right|^{2}$

Example: 2-slit probabilities and interference

$$
\left|\psi_{A}(x)+\psi_{B}(x)\right|^{2}
$$

Interference distribution (what happens)

A or B distribution (what doesn't happen)

- With both slits open, the probability that e is located at x is $\left|\psi_{A}(x)+\psi_{B}(x)\right|^{2}$.
- The state corresponding to the prob distribution $\left|\psi_{A}(x)+\psi_{B}(x)\right|^{2}$ is $\left|\psi_{A}(x)\right\rangle+\left|\psi_{B}(x)\right\rangle$.
- This is in the subspace $V \oplus W$ which is the linear span of the subspace V containing the
state $\psi_{A}(x)$ and the subspace W containing the state $\psi_{B}(x)$.
- This is not equal to $\left|\psi_{A}(x)\right|^{2}+\left|\psi_{B}(x)\right|^{2}$, which, according to (C3), represents the probability that the electron either went through slit A or slit B.

Let's see how this works using projection operators...

- Recall: The projection operator $P_{\left|a_{i}\right\rangle}=\left|a_{i}\right\rangle\left\langle a_{i}\right|$ corresponds to the 1-dim subspace defined by $\left|a_{i}\right\rangle$ (i.e., the ray in which $\left|a_{i}\right\rangle$ is pointing).
- And: $\sum_{i} P_{\left|a_{i}\right\rangle}=1$

Def. Suppose Q is a linear operator on an N - dim vector space \mathcal{H} with orthonormal basis $\left|b_{1}\right\rangle, \ldots\left|b_{N}\right\rangle$. Then the trace $\operatorname{Tr}(Q)$ of Q is given by:

$$
\operatorname{Tr}(Q) \equiv \sum_{i=1}^{N}\left\langle b_{i}\right| Q\left|b_{i}\right\rangle=\left\langle b_{1}\right| Q\left|b_{1}\right\rangle+\left\langle b_{2}\right| Q\left|b_{2}\right\rangle+\cdots+\left\langle b_{N}\right| Q\left|b_{N}\right\rangle
$$

- $\operatorname{Tr}(Q)=$ the sum of the diagonal elements of any matrix representation of Q.
- Fact: All such representations have this sum in common: The trace is independent of the basis it's calculated in.
- Properties of the trace:

$$
\begin{aligned}
& \operatorname{Tr}(\lambda A)=\lambda \operatorname{Tr}(A), \text { where } \lambda \text { is any number } \\
& \operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B) \\
& \operatorname{Tr}(A B)=\operatorname{Tr}(B A)
\end{aligned}
$$

The Born Rule in terms of projection operators:
$\operatorname{Pr}_{Q}\left(\right.$ value of A is a_{i} in state $\left.|\psi\rangle\right)=\left|\left\langle a_{i} \mid \psi\right\rangle\right|^{2}$

$$
\begin{aligned}
& =\left\langle\psi \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle \\
& =\sum_{j}\langle\psi| P_{\left|a_{j}\right\rangle}\left|a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle \quad \text { where } \sum_{j} P_{\left|a_{j}\right\rangle}=1 \\
& =\sum_{j}\left\langle\psi \mid a_{j}\right\rangle\left\langle a_{j} \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle \\
& =\sum_{j}\left\langle a_{j} \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle\left\langle\psi \mid a_{j}\right\rangle \\
& =\operatorname{Tr}\left(\left|a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle\langle\psi|\right) \\
& =\operatorname{Tr}\left(P_{\left|a_{i}\right\rangle} P_{|\psi\rangle}\right)
\end{aligned}
$$

$-P_{\left|a_{i}\right\rangle}$ is the projection operator corresponding to the state $\left|a_{i}\right\rangle$ (more precisely, the 1-dim subspace defined by $\left|a_{i}\right\rangle$).

- $P_{|\psi\rangle}$ is the projection operator corresponding to the state $|\psi\rangle$ (more precisely, the 1-dim subspace defined by $|\psi\rangle$).
- The projection operator corresponding to a state is called the statistical operator (or density matrix) for the state.

Consider composite state of Hardness measuring device and black electron:

$$
\left.\left.|\psi\rangle=\sqrt{1 / 2}\left\{\left.\right|^{\prime} h^{\prime}\right\rangle|h\rangle+\left.\right|^{\prime} s^{\prime}\right\rangle|s\rangle\right\}
$$

- Its statistical operator $P_{|\psi\rangle}=|\psi\rangle\langle\psi|$ is given by:

$$
\begin{aligned}
& \left.\left.P_{|\psi\rangle}=1 / 2\left\{\left.\right|^{\prime} h^{\prime}\right\rangle|h\rangle+\left.\right|^{\prime} s^{\prime}\right\rangle|s\rangle\right\}\left\{\left\langle^{\prime} h^{\prime}\right|\langle h|+\left\langle^{\prime} s^{\prime}\right|\langle s|\right\} \\
& \left.\left.\left.\left.=1 / 2\left\{\left.\right|^{\prime} h^{\prime}\right\rangle|h\rangle\left\langle{ }^{\prime} h^{\prime}\right|\langle h|+\left.\right|^{\prime} s^{\prime}\right\rangle|s\rangle\left\langle{ }^{\prime} s^{\prime}\right|\langle s|+\left.\right|^{\prime} h^{\prime}\right\rangle|h\rangle\left\langle{ }^{\prime} s^{\prime}\right|\langle s|+\left.\right|^{\prime} s^{\prime}\right\rangle|s\rangle\left\langle^{\prime} h^{\prime}\right|\langle h|\right\} \\
& \left.=1 / 2\left\{\left.\right|^{\prime} h^{\prime}\right\rangle\left\langle^{\prime} h^{\prime}\right| \otimes|h\rangle\langle h|+\left.\right|^{\prime} s^{\prime}\right\rangle\left\langle^{\prime} s^{\prime}\right| \otimes|s\rangle\langle s| \\
& \left.+\left|h^{\prime}\right\rangle\left\langle{ }^{\prime} s^{\prime}\right| \otimes|h\rangle\langle s|+\left|' s^{\prime}\right\rangle\left\langle{ }^{\prime} h^{\prime}\right| \otimes|s\rangle\langle h|\right\} \\
& \left.\left.=1 / 2\left\{P_{\left.\left.\right|^{\prime} h^{\prime}\right\rangle} \otimes P_{|h\rangle}+P_{\left.| |^{\prime} s^{\prime}\right\rangle} \otimes P_{|s\rangle}+\left.\right|^{\prime} h^{\prime}\right\rangle\left\langle^{\prime} s^{\prime}\right| \otimes|h\rangle\langle s|+\left.\right|^{\prime} s^{\prime}\right\rangle\left\langle{ }^{\prime} h^{\prime}\right| \otimes|s\rangle\langle h|\right\} \\
& \text { stat operator for }\left|h^{\prime} h^{\prime}\right\rangle|h\rangle \quad \underbrace{\text { interference terms! }}_{\text {stat operator for } \mid \text { 's' }\rangle|s\rangle}
\end{aligned}
$$

- So: $\operatorname{Pr}_{Q}\left(\right.$ value of A is a_{i} in state $\left.|\psi\rangle\right)=\operatorname{Tr}\left(P_{\mid a_{i}} P_{|\psi\rangle}\right)$

$$
\begin{aligned}
& =\operatorname{Tr}\left(1 / 2 P_{\left|a_{i}\right\rangle} P_{\left.\left.\right|^{\prime} h^{\prime}\right\rangle} \otimes P_{|h\rangle}\right)+\operatorname{Tr}\left(1 / 2 P_{\left|a_{i}\right\rangle} P_{\left|s^{\prime}\right\rangle} \otimes P_{|s\rangle}\right) \\
& \left.\left.\quad+\operatorname{Tr}\left(1 /\left.2 P_{\left|a_{i}\right\rangle}\right|^{\prime} h^{\prime}\right\rangle\left\langle^{\prime} s^{\prime}\right| \otimes|h\rangle\langle s|\right)+\operatorname{Tr}\left(1 /\left.2 P_{\left|a_{i}\right\rangle}\right|^{\prime} s^{\prime}\right\rangle\left\langle{ }^{\prime} h^{\prime}\right| \otimes|s\rangle\langle h|\right) \\
& \left.\left.=\operatorname{Pr}_{Q}\left(\text { value of } A \text { is } a_{i} \text { in state }\left.\right|^{\prime} h^{\prime}\right\rangle|h\rangle\right)+\operatorname{Pr}_{Q}\left(\text { value of } A \text { is } a_{i} \text { in state }\left.\right|^{\prime} s^{\prime}\right\rangle|s\rangle\right) \\
& \quad \quad+\text { interference terms }
\end{aligned}
$$

3. Decoherence zeh (1970)

- Claim: When an observer ends up in an entangled state with a measuring device, environmental interactions destroy interference effects and decohere the entangled state into one associated with a definite measurement outcome.
- Let \mid hard $\rangle_{E},|s o f t\rangle_{E}$ be states of the environment E in which it's correlated with a hard electron and a soft electron, respectively.
- Then: It is experimentally impossible to distinguish between:
(1) The state $\sqrt{1 / 2}\left\{\left.\right|^{\prime} \text { hard }^{\prime}\right\rangle_{m} \mid$ hard $\rangle_{e} \mid$ hard $\rangle_{E}+\left|' s o f t '^{\prime}\right\rangle_{m} \mid$ soft $\rangle_{e} \mid$ soft $\left.\rangle_{E}\right\}$
(2) Either of the states: $\left|' h a r d^{\prime}\right\rangle_{m}|h a r d\rangle_{e}|h a r d\rangle_{E}$ or $\left|' s o f t^{\prime}\right\rangle_{m}|s o f t\rangle_{e}|s o f t\rangle_{E}$.
- Recall: To distinguish between (1) and (2), we would need a very complex multiparticle property that (1) possesses and that neither state in (2) possesses.
- Given that E realistically has a huge number of degrees of freedom, it is experimentally impossible to measure such a property.
- So (1) and (2) are indistinguishable for all practical purposes!

3. Decoherence zeh (1970)

- Claim: When an observer ends up in an entangled state with a measuring device, environmental interactions destroy interference effects and decohere the entangled state into one associated with a definite measurement outcome.
- Let \mid hard $\rangle_{E},|s o f t\rangle_{E}$ be states of the environment E in which it's correlated with a hard electron and a soft electron, respectively.
- Then: It is experimentally impossible to distinguish between:
(1) The state $\sqrt{1 / 2}\left\{\left.\right|^{\prime} \text { hard }^{\prime}\right\rangle_{m} \mid$ hard $\rangle_{e} \mid$ hard $\rangle_{E}+\left.\right|^{\prime}$ 'soft $\left.\rangle_{m}|s o f t\rangle_{e}|s o f t\rangle_{E}\right\}$
(2) Either of the states: $\left|' h a r d^{\prime}\right\rangle_{m}|h a r d\rangle_{e}|h a r d\rangle_{E}$ or $\left|' s o f t^{\prime}\right\rangle_{m}|s o f t\rangle_{e}|s o f t\rangle_{E}$.

What this is supposed to mean:

- Whenever the post-measurement state of a composite system is of the form of (1), it does, for all practical purposes, describe a situation in which a definite measurement outcome occurred.
- The environment, for all practical purposes, collapses the entangled superposition.

3. Decoherence zeh (1970)

- Claim: When an observer ends up in an entangled state with a measuring device, environmental interactions destroy interference effects and decohere the entangled state into one associated with a definite measurement outcome.
- Let \mid hard $\rangle_{E},|s o f t\rangle_{E}$ be states of the environment E in which it's correlated with a hard electron and a soft electron, respectively.
- Then: It is experimentally impossible to distinguish between:
(1) The state $\sqrt{1 / 2}\{\mid ' \text { hard }\rangle_{m} \mid$ hard $\rangle_{e} \mid$ hard $\rangle_{E}+\mid '$ 'soft' $\left.\rangle_{m}|s o f t\rangle_{e}|s o f t\rangle_{E}\right\}$
(2) Either of the states: $\left|' h a r d^{\prime}\right\rangle_{m}|h a r d\rangle_{e}|h a r d\rangle_{E}$ or $\left|' s o f t^{\prime}\right\rangle_{m}|s o f t\rangle_{e}|s o f t\rangle_{E}$.
"During decoherence, entanglement does not really disappear, but goes further and further into the environment; in practice, it becomes rapidly completely impossible to detect." (Laloe 2012, pg. 136.)

Let's see how this is supposed to work using statistical operators...

- The statistical operator $P_{|\psi\rangle}=|\psi\rangle\langle\psi|$ for the state in (1) is:

$$
\begin{aligned}
P_{|\psi\rangle}= & \left.\left.1 / 2\left\{\left.\right|^{\prime} h^{\prime}\right\rangle|h\rangle\left|E_{h}\right\rangle+\left.\right|^{\prime} s^{\prime}\right\rangle|s\rangle\left|E_{s}\right\rangle\right\}\left\{\left\langle^{\prime} h^{\prime}\right|\langle h|\left\langle E_{h}\right|+\left\langle^{\prime} s^{\prime}\right|\langle s|\left\langle E_{s}\right|\right\} \\
= & \left.1 /\left.2\right|^{\prime} h^{\prime}\right\rangle|h\rangle\left|E_{h}\right\rangle\left\langle\left\langle^{\prime} h^{\prime}\right|\langle h|\left\langle E_{h}\right|+1 /\left.2\right|^{\prime} s^{\prime}\right\rangle|s\rangle\left|E_{s}\right\rangle\left\langle^{\prime} s^{\prime}\right|\langle s|\left\langle E_{s}\right| \\
& \left.\left.+1 /\left.2\right|^{\prime} h^{\prime}\right\rangle|h\rangle\left|E_{h}\right\rangle\left\langle{ }^{\prime} s^{\prime}\right|\langle s|\left\langle E_{s}\right|+1 /\left.2\right|^{\prime} s^{\prime}\right\rangle|s\rangle\left|E_{s}\right\rangle\left\langle^{\prime} h^{\prime}\right|\langle h|\left\langle E_{h}\right| \\
= & \left.\left.1 /\left.2\right|^{\prime} h^{\prime}\right\rangle\left\langle^{\prime} h^{\prime}\right| \otimes|h\rangle\langle h| \otimes\left|E_{h}\right\rangle\left\langle E_{h}\right|+1 /\left.2\right|^{\prime} s^{\prime}\right\rangle\left\langle^{\prime} s^{\prime}\right| \otimes|s\rangle\langle s| \otimes\left|E_{s}\right\rangle\left\langle E_{s}\right| \\
& \left.\left.+1 /\left.2\right|^{\prime} h^{\prime}\right\rangle\left\langle^{\prime} s^{\prime}\right| \otimes|h\rangle\langle s| \otimes\left|E_{h}\right\rangle\left\langle E_{s}\right|+1 /\left.2\right|^{\prime} s^{\prime}\right\rangle\left\langle^{\prime} h^{\prime}\right| \otimes|s\rangle\langle h| \otimes\left|E_{s}\right\rangle\left\langle E_{h}\right| \\
= & 1 / 2 P_{\left.| |^{\prime} h^{\prime}\right\rangle} \otimes P_{|h\rangle} \otimes P_{\left|E_{h}\right\rangle}+1 / 2 P_{\left|'^{\prime} s^{\prime}\right\rangle} \otimes P_{|s\rangle} \otimes P_{\left|E_{s}\right\rangle}+\text { (interference terms) }
\end{aligned}
$$

- Now: Take the "partial trace" of $P_{|\psi\rangle}$ with respect to the Environment basis:

$$
\begin{aligned}
\operatorname{Tr}_{E}\left(P_{|\psi\rangle}\right) & =\left\langle E_{h}\right| P_{|\psi\rangle}\left|E_{h}\right\rangle+\left\langle E_{s}\right| P_{|\psi\rangle}\left|E_{s}\right\rangle \\
& =1 / 2 P_{\left.\left.\right|^{\prime} h^{\prime}\right\rangle} \otimes P_{|h\rangle}+1 / 2 P_{\left.\left.\right|^{\prime} s^{\prime}\right\rangle} \otimes P_{|s\rangle}
\end{aligned}
$$

"Tracing over the environment" kills the interference terms!

Fig. 8.1 How environmental correlations destroy simple interference effects.
(a) The interference distribution. (b) With a wire loop at A.

[^0]Does decoherence solve the measurement problem?

- No!
- When we "trace over the environment", we're left with the statistical operator

$$
1 / 2 P_{\left.\left.\right|^{\prime} \text { hard }{ }^{\prime}\right\rangle} \otimes P_{|h a r d\rangle}+1 / 2 P_{\left.\mid \text {'soft } t^{\prime}\right\rangle} \otimes P_{\mid \text {soft }\rangle}
$$

- This is the statistical operator for a "mixed state": This is how the state of a system is represented when its exact form is known only to lie within a set of possible states.
- In this case, the state of the system is either of the pair

$$
\left.\left.\left.\left\{\left.\right|^{\prime} h a r d^{\prime}\right\rangle_{m} \mid \text { hard }\right\rangle_{e},\left|' s o f t^{\prime}\right\rangle_{m} \mid \text { soft }\right\rangle_{e}\right\}
$$

each with equal weight $1 / 2$.
But: The result of a measurement (as given by the Projection Postulate and by our experience) is a definite outcome.

- In this case, the result is either |'hard' $\rangle_{m} \mid$ hard \rangle_{e} or $\left.\right|^{\prime}$ soft' $\rangle_{m} \mid$ soft \rangle_{e}.
- It's definitely one of these two alternatives.
- It's not a weighted sum of them both!

4. Consistent Histories Griffiths (1984)

- Recall: A state of a system is a description of the system in terms of the values its properties take at an instant of time.
- A history of a system is a description of the system in terms of the values its properties take over an interval of time.

Def. 1. A history h is a time-indexed sequence of facts, represented by time-indexed projection operators:

$$
h=\left(P_{1}\left(t_{1}\right), P_{2}\left(t_{2}\right), \ldots, P_{n}\left(t_{n}\right)\right) .
$$

- $P_{1}\left(t_{1}\right)$ might be $P_{|h a r d\rangle}\left(t_{1}\right)$ which represents the property, at time t_{1}, "The value of Hardness is hard".
- $\underline{O r}$: It might be $P_{|a\rangle}\left(t_{1}\right)$ which represents the property, at time t_{1}, "The value of the property A is a ".
- Projection operators evolve via the Schrödinger dynamics:

$$
P(t)=e^{i H t / \hbar} P(0) e^{-i H t / \hbar}
$$

Def. 2. The probability associated with a history h is given by:

$$
\operatorname{Pr}_{Q}(h)=\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{2}\left(t_{2}\right) P_{1}\left(t_{1}\right) P_{|\psi\rangle} P_{1}\left(t_{1}\right) P_{2}\left(t_{2}\right) \ldots P_{n}\left(t_{n}\right)\right)
$$

where $P_{|\psi\rangle}$ is the statistical operator associated with an initial state $|\psi\rangle$.

- All the terms inside a trace commute with each other, so:

$$
\operatorname{Pr}_{Q}(h)=\operatorname{Tr}\left(P_{n}\left(t_{n}\right) P_{n}\left(t_{n}\right) \ldots P_{2}\left(t_{2}\right) P_{2}\left(t_{2}\right) P_{1}\left(t_{1}\right) P_{1}\left(t_{1}\right) P_{|\psi\rangle}\right)
$$

- Since projection operators are idempotent, this is equal to:

$$
\operatorname{Pr}_{Q}(h)=\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{2}\left(t_{2}\right) P_{1}\left(t_{1}\right) P_{|\psi\rangle}\right)
$$

- And: This can be thought of as the trace version of the Born Rule for the probability that the system in the state $|\psi\rangle$, has the "historical property" represented by the operator $P_{n}\left(t_{n}\right) \ldots P_{2}\left(t_{2}\right) P_{1}\left(t_{1}\right)$.

Def. 3. A family of histories is a time-indexed sequence of sets of "exhaustive" facts:

$$
\left(\left\{P_{1}^{\alpha_{1}}\left(t_{1}\right)\right\},\left\{P_{2}^{\alpha_{2}}\left(t_{2}\right)\right\}, \ldots,\left\{P_{n}^{\alpha_{n}}\left(t_{n}\right)\right\}\right)
$$

where each index $\alpha_{i}=1, \ldots, N$ and $\left\{P_{i}^{\alpha_{i}}\left(t_{i}\right)\right\}=\left\{P_{i}^{1}\left(t_{i}\right), P_{i}^{2}\left(t_{i}\right), \ldots, P_{i}^{N}\left(t_{i}\right)\right\}$, such that $P_{i}{ }^{1}\left(t_{i}\right)+P_{i}{ }^{2}\left(t_{i}\right)+\cdots+P_{i}^{N}\left(t_{i}\right)=I_{N}$.

- The projection operators in any set $\left\{P_{i}{ }_{i}\left(t_{i}\right)\right\}$ represent all the possible values of the property associated with $P_{i}\left(t_{i}\right)$.

Histories can be embedded in families of histories:

- $h=\left(P_{|\psi\rangle}, P_{1}^{1}\left(t_{1}\right), P_{2}^{2}\left(t_{2}\right), \ldots, P_{n}^{1}\left(t_{n}\right)\right)$
- $h^{\prime}=\left(P_{|\psi\rangle}, P_{1}^{2}\left(t_{1}\right), P_{2}^{N}\left(t_{2}\right), \ldots, P_{n}^{2}\left(t_{n}\right)\right)$
- h and h^{\prime} are two histories within the family $\left(\left\{P_{|\psi\rangle}\right\},\left\{P_{1}^{\alpha_{1}}\left(t_{1}\right)\right\}, \ldots,\left\{P_{n}{ }^{\alpha_{n}}\left(t_{n}\right)\right\}\right)$.

Histories can be embedded in families of histories:

- We can assign probabilities to histories within a family by means of Def. 2.
- These are quantum probabilities that exhibit interference effects.

Are there histories within a given family that can be assigned classical probabilties?

Are there histories within a given family that do not interfere with each other?

- These would be histories h, h^{\prime} whose probabilities obey the classical Or-Addition Rule:

$$
\operatorname{Pr}_{Q}\left(\text { h or } h^{\prime}\right)=\operatorname{Pr}_{Q}(h)+\operatorname{Pr}_{Q}\left(h^{\prime}\right)
$$

- First: Need an expression for the disjunction, h or h^{\prime}, of two histories h, h^{\prime}.

$$
\begin{aligned}
& \text { Simple case: Suppose } h_{A} \text { and } h_{B} \text { are histor } \\
& \text { in the property at } t=t_{i} \text { : } \\
& \quad h_{A}=\left(P_{1}\left(t_{1}\right), \ldots, P_{i}^{A}\left(t_{i}\right), \ldots, P_{n}\left(t_{n}\right)\right) \\
& h_{B}=\left(P_{1}\left(t_{1}\right), \ldots, P_{i}^{B}\left(t_{i}\right), \ldots, P_{n}\left(t_{n}\right)\right)
\end{aligned}
$$

Now let the history, h_{A} or h_{B}, be given by:

$$
h_{A} \text { or } h_{B}=\left(P_{1}\left(t_{1}\right), \ldots, P_{i}^{A}\left(t_{i}\right)+P_{i}^{B}\left(t_{i}\right), \ldots, P_{n}\left(t_{n}\right)\right)
$$

Simple case, continued:

- h_{A} or $h_{B}=\left(P_{1}\left(t_{1}\right), \ldots, P_{i}^{A}\left(t_{i}\right)+P_{i}^{B}\left(t_{i}\right), \ldots, P_{n}\left(t_{n}\right)\right)$
- $\underline{\text { So }}$: For an initial state $|\psi\rangle$:

$$
\begin{aligned}
& \operatorname{Pr}_{Q}\left(h_{A} \text { or } h_{B}\right) \\
& \left.\begin{array}{rl}
= & \operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots\left[P_{i}^{A}\left(t_{i}\right)+P_{i}^{B}\left(t_{i}\right)\right] \ldots P_{1}\left(t_{1}\right) P_{|\psi\rangle} P_{1}\left(t_{1}\right) \ldots\left[P_{i}^{A}\left(t_{i}\right)+P_{i}^{B}\left(t_{i}\right)\right] \ldots P_{n}\left(t_{n}\right)\right) \\
=\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots\right. & \left.P_{i}^{A}\left(t_{i}\right) \ldots P_{1}\left(t_{1}\right) P_{|\psi\rangle} P_{1}\left(t_{1}\right) \ldots P_{i}^{A}\left(t_{i}\right) \ldots P_{n}\left(t_{n}\right)\right) \\
& \quad+\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{i}^{B}\left(t_{i}\right) \ldots P_{1}\left(t_{1}\right) P_{|\psi\rangle} P_{1}\left(t_{1}\right) \ldots P_{i}^{B}\left(t_{i}\right) \ldots P_{n}\left(t_{n}\right)\right) \\
& +\left\{\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{i}^{A}\left(t_{i}\right) \ldots P_{1}\left(t_{1}\right) P_{|\psi\rangle} P_{1}\left(t_{1}\right) \ldots P_{i}^{B}\left(t_{i}\right) \ldots P_{n}\left(t_{n}\right)\right)\right. \\
\quad & \left.\quad \operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{i}^{B}\left(t_{i}\right) \ldots P_{1}\left(t_{1}\right) P_{|\psi\rangle} P_{1}\left(t_{1}\right) \ldots P_{i}^{A}\left(t_{i}\right) \ldots P_{n}\left(t_{n}\right)\right)\right\} \\
& \operatorname{Pr}_{Q}\left(h_{A}\right)
\end{array}\right) \operatorname{Pr}_{Q}\left(h_{B}\right)+\{\text { interference terms }\}
\end{aligned}
$$

- Which means: The probabilities assigned to h_{A} and h_{B} by Def. 2 will be classical (i.e., will obey the classical Or-Addition Rule) just when the interference terms vanish.

Now: Consider the general case of h, h^{\prime} differing on all properties:

$$
\begin{aligned}
& h=\left(P_{1}\left(t_{1}\right), \ldots, P_{n}\left(t_{n}\right)\right) \\
& h^{\prime}=\left(P_{1}^{\prime}\left(t_{1}\right), \ldots, P_{n}^{\prime}\left(t_{n}\right)\right) \\
& \text { hor } h^{\prime}=\left(\left[P_{1}\left(t_{1}\right)+P_{1}^{\prime}\left(t_{1}\right)\right], \ldots,\left[P_{i}\left(t_{i}\right)+P_{i}^{\prime}\left(t_{i}\right)\right], \ldots,\left[P_{n}\left(t_{n}\right)+P_{n}^{\prime}\left(t_{n}\right)\right]\right)
\end{aligned}
$$

- The probabilities assigned to h and h^{\prime} by Def. 2 will be classical just when the general interference term vanishes:

$$
\left.\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{1}\left(t_{1}\right)\right) P_{|\psi\rangle} P_{1}{ }^{\prime}\left(t_{1}\right) \ldots P_{n}^{\prime}\left(t_{n}\right)\right)=0
$$

Def. 4. Two histories $h=\left(P_{1}\left(t_{1}\right), \ldots, P_{n}\left(t_{n}\right)\right), h^{\prime}=\left(P_{1}{ }^{\prime}\left(t_{1}\right), \ldots, P_{n}{ }^{\prime}\left(t_{n}\right)\right)$ are consistent just when $\left.\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{1}\left(t_{1}\right)\right) P_{|\psi\rangle} P_{1}^{\prime}\left(t_{1}\right) \ldots P_{n}^{\prime}\left(t_{n}\right)\right)=0$.

Def. 5. A consistent family of histories is a family of histories such that any two histories embeddable in it are consistent.

- A consistent family of histories is a collection of histories that defines a classical sample space! You can assign classical probabilities to its members.

Def. 6.
(1) h is a fine-grained history just when all projection operators in h are 1-dim.
(2) h^{\prime} is a coarse-graining of h just when some projection operators in h^{\prime} are sums of projection operators in h.

- Fine-grained histories cannot in general be assigned classical probabilities.
- Course-grained histories can be assigned approximate classical probabilities, and these get more classical as $\left.\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{1}\left(t_{1}\right)\right) P_{|\psi\rangle} P_{1}{ }^{\prime}\left(t_{1}\right) \ldots P_{n}{ }^{\prime}\left(t_{n}\right)\right) \rightarrow 0$.
- As $\left.\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{1}\left(t_{1}\right)\right) P_{|\psi\rangle} P_{1}{ }^{\prime}\left(t_{1}\right) \ldots P_{n}{ }^{\prime}\left(t_{n}\right)\right) \rightarrow 0$, such course-grained histories "decohere".
- Coarse-graining a family of histories corresponds to tracing out the environment.
- The environment interacts with the coarse-grained histories to damp out the interference effects, rendering the family approximately consistent.

Def. 7. Two histories $h=\left(P_{1}\left(t_{1}\right), \ldots, P_{n}\left(t_{n}\right)\right), h^{\prime}=\left(P_{1}{ }^{\prime}\left(t_{1}\right), \ldots, P_{n}{ }^{\prime}\left(t_{n}\right)\right)$ are decoherent just when $\left.\operatorname{Tr}\left(P_{n}\left(t_{n}\right) \ldots P_{1}\left(t_{1}\right)\right) P_{|\psi\rangle} P_{1}{ }^{\prime}\left(t_{1}\right) \ldots P_{n}{ }^{\prime}\left(t_{n}\right)\right) \rightarrow 0$.

Def. 8. A decoherent family of histories is a family of histories such that any two histories embeddable in it are decoherent.

Characteristics of the Consistent/Decoherent Histories (CH) Approach

- Replaces states of a physical system with histories a physical system.
- The properties (projection operators) that make up a history evolve only via the Schrödinger dynamics (no Projection Postulate).
- Identifies a way to associate a probability with a history (Def. 2).
- Identifies a condition that picks out those families of histories that are classical (or approximately classical) (Defs. 4, 5).

Problems

1. How are alternative histories within a decoherent family to be interpreted?

- Is one history actual and the others just possible?
- Or do all histories within a decoherent family occur? If so, then how are probabilities explained?
- This is the Problem of Probabilities that Many Worlds faces.

2. How are alternative decoherent families to be interpreted?

- Any history h can be embedded in many different mutually incompatible decoherent families (any one of which defines an approximately classical probability space).
- Which do we choose in order to calculate the probability of h ?
- This is the Preferred Basis Problem that Many Worlds faces.

Problems 1 \& 2 Combined:

- Seem to indicate that CH isn't fundamentally different from Many Worlds.
- All CH does is replace world-talk with history-talk, and adds a criterion for identifying histories that behave "classically".
- "Tracing over the environment" (or "coarse-graining" histories) does not pick out a unique measurement/interaction outcome.
- It does not effect a "collapse" of superposed states (or "interfering" histories).
- So it cannot be appealed to in order to reconcile superpositions (or "interfering" histories) with our experience of unique outcomes.

[^0]: "...just as the environmentally correlated superposition in the second experiment [b] is empirically indistinguishable from a state where the electron passes through either one slit or the other, an environmentally correlated superposition of different measurement records is empirically indistinguishable from a particular record." (Barrett, pg. 223.)

