
13. Decoherence
• Classical probabilities are based on classical (Boolean) logic.

• The probabilities defined by the Born Rule are based on 

quantum (non-Boolean) logic.

A classical probability theory is a triple (Ω, ℱ, Pr𝐶):

- Ω is a set of simple events (the sample space).

- ℱ is a set of compound events obtained by taking all combinations 

of simple events using set complement and union.

- Pr𝐶 is a probability function that maps elements of ℱ to [0, 1] and 

satisfies the following axioms:

1. Classical Probabilities and the Classical Or-Addition Rule

(C1) Pr𝐶(∅) = 0

(C2) Pr𝐶(¬𝐴) = 1 − Pr𝐶(𝐴)

(C3) Pr𝐶(𝐴 ∪ 𝐴′) = Pr𝐶(𝐴) + Pr𝐶(𝐴′) − Pr𝐶(𝐴 ∩ 𝐴′)

The Classical Or-

Addition Rule

1

1. Classical Or-Addition
2. Quantum Interference
3. Decoherence
4. Consistent Histories

• One consequence: QM probabilities do not satisfy the classical Or-Addition Rule.



Example:

- Then: The probability of getting either 1 or 3 on a single roll is given by:

 Pr𝐶({1} ∪ {3}) = Pr𝐶({1}) + Pr𝐶({3}) − Pr𝐶({1} ∩ {3}) (C3)

  = 1/6 + 1/6 − 0 = 1/3

- And: The probability of getting either a value in the range {1, 2, 3} or a value in the 

range {3, 4, 5} on a single roll is:

Pr𝐶({1, 2, 3} ∪ {3, 4, 5})

 = Pr𝐶({1, 2, 3}) + Pr𝐶({3, 4, 5}) − Pr𝐶({1, 2, 3} ∩ {3, 4, 5}) (C3)

 = [Pr𝐶({1}) + Pr𝐶({2}) + Pr𝐶({3})] + [Pr𝐶({3}) + Pr𝐶({4}) + Pr𝐶({5})] − Pr𝐶({3})

 = [1/6 + 1/6 + 1/6] + [1/6 + 1/6 + 1/6] − 1/6 = 5/6

- Let Ω = {1, 2, 3, 4, 5, 6} represent all possible results of a single roll of a die.

- ℱ = {{1}, {2}, ..., {1} ∪ {2}, {1} ∪ {3}, ..., ¬{1}, ¬{2}, ... }

- Let Pr𝐶({𝑖}) = 1/6, for 𝑖 = 1...6.  (Principle of Indifference)
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2. Quantum Probabilities and Interference

• Main Result: Quantum probabilities, so-defined, do not in general satisfy C3!

• Recall: Linear span ⊕ does not correspond to classical "or".

• Replace the classical sample space Ω with a Hilbert space ℋ.

(Q1) Pr𝑄(0) = 0

(Q2) Pr𝑄(𝑉⊥) = 1 − Pr𝑄(𝑉)

(Q3) Pr𝑄(𝑉 ⊕ 𝑊) = Pr𝑄(𝑉) + Pr𝑄(𝑊), when 𝑉 ⊥ 𝑊

• They do satisfy the following (where 𝑉, 𝑊 are subspaces of ℋ and 0 is the 

"zero" subspace):

A quantum probability theory is a triple (ℋ, ℒ, Pr𝑄):

- ℋ is a Hilbert space of states (simple events).

- ℒ is the collection of subspaces of ℋ (compound events) obtained by taking 

all combinations of simple events using orthocomplement and linear span.

- Pr𝑄 is defined by Pr𝑄(|𝑎⟩, |𝜓⟩) = |⟨𝑎|𝜓⟩|2,   for any |𝑎⟩, |𝜓⟩ ∈ ℋ.
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Example: 2-slit probabilities and interference

𝐴

B

With Slit 𝐴 open,

Pr𝑄(e is at 𝑥 in state 𝜓𝐴(𝑥)) = |𝜓𝐴(𝑥)|2 

𝐴

𝐵

With Slit 𝐵 open,

Pr𝑄(e is at 𝑥 in state 𝜓𝐵(𝑥)) = |𝜓𝐵(𝑥)|2 

|𝜓𝐴(𝑥)|2

A-distribution

|𝜓𝐵(𝑥)|2

B-distribution
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A

B

• With both slits open, the probability that e is located at 𝑥 is |𝜓𝐴(𝑥) +𝜓𝐵(𝑥)|2.

|𝜓𝐴(𝑥) +𝜓𝐵(𝑥)|2

Interference distribution (what happens)

|𝜓𝐴(𝑥)|2+ |𝜓𝐵(𝑥)|2

A

B

A or B distribution (what doesn't happen)

• This is not equal to |𝜓𝐴(𝑥)|2+ |𝜓𝐵(𝑥)|2, which, according to (C3), represents the 

probability that the electron either went through slit A or slit B.

- The state corresponding to the prob distribution |𝜓𝐴(𝑥) +𝜓𝐵(𝑥)|2 is |𝜓𝐴(𝑥)⟩ + |𝜓𝐵(𝑥)⟩.

- This is in the subspace 𝑉⊕𝑊 which is the linear span of the subspace 𝑉 containing the 

state 𝜓𝐴(𝑥) and the subspace 𝑊 containing the state 𝜓𝐵(𝑥).

Example: 2-slit probabilities and interference
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Let's see how this works using projection operators...

• Tr(𝑄) = the sum of the diagonal elements of any matrix representation of 𝑄.

• Fact: All such representations have this sum in common: The trace is 

independent of the basis it's calculated in.

Tr(𝜆𝐴) = 𝜆Tr(𝐴), where 𝜆 is any number

Tr(𝐴 + 𝐵) = Tr(𝐴) + Tr(𝐵)

Tr(𝐴𝐵) = Tr(𝐵𝐴)

• Properties of the trace:

• Recall: The projection operator 𝑃|𝑎𝑖⟩
 = |𝑎𝑖⟩⟨𝑎𝑖| corresponds to the 1-dim 

subspace defined by |𝑎𝑖⟩ (i.e., the ray in which |𝑎𝑖⟩ is pointing).

• And:  ∑𝑖𝑃|𝑎𝑖⟩
 = 1 

Def. Suppose 𝑄 is a linear operator on an 𝑁-dim vector space ℋ with 

orthonormal basis |𝑏1⟩, ... |𝑏𝑁⟩. Then the trace Tr(𝑄) of 𝑄 is given by:

Tr 𝑄 ≡ ෍

𝑖=1

𝑁

𝑏𝑖 𝑄 𝑏𝑖 = 𝑏1 𝑄 𝑏1 + 𝑏2 𝑄 𝑏2 + ⋯ + 𝑏𝑁 𝑄 𝑏𝑁

6



Pr𝑄(value of 𝐴 is 𝑎𝑖 in state |𝜓⟩) = |⟨𝑎𝑖|𝜓⟩|2

 = ⟨𝜓|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩

 = ∑𝑗⟨𝜓|𝑃|𝑎𝑗⟩
|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩ where ∑𝑗𝑃|𝑎𝑗⟩

 = 1

 = ∑𝑗⟨𝜓|𝑎𝑗⟩⟨𝑎𝑗|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩

 = ∑𝑗⟨𝑎𝑗|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩⟨𝜓|𝑎𝑗⟩

 = Tr(|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩⟨𝜓|)

 = Tr(𝑃|𝑎𝑖⟩
𝑃|𝜓⟩)

The Born Rule in terms of projection operators:

- 𝑃|𝑎𝑖⟩
 is the projection operator corresponding to the state |𝑎𝑖⟩ 

(more precisely, the 1-dim subspace defined by |𝑎𝑖⟩).

- 𝑃|𝜓⟩ is the projection operator corresponding to the state |𝜓⟩ 

(more precisely, the 1-dim subspace defined by |𝜓⟩).

- The projection operator corresponding to a state is called the 

statistical operator (or density matrix) for the state.
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• So: Pr𝑄(value of 𝐴 is 𝑎𝑖 in state |𝜓⟩) = Tr(𝑃|𝑎𝑖⟩
𝑃|𝜓⟩)

  = Tr(½𝑃|𝑎𝑖⟩
𝑃|′ℎ′⟩ ⊗ 𝑃|ℎ⟩) + Tr(½𝑃|𝑎𝑖⟩

𝑃|′𝑠′⟩ ⊗ 𝑃|𝑠⟩)

 + Tr(½𝑃|𝑎𝑖⟩
|′ℎ′⟩⟨′𝑠′| ⊗|ℎ⟩⟨𝑠|) + Tr(½𝑃|𝑎𝑖⟩

|′𝑠′⟩⟨′ℎ′| ⊗|𝑠⟩⟨ℎ|)

• Its statistical operator 𝑃|𝜓⟩ = |𝜓⟩⟨𝜓| is given by:

 𝑃|𝜓⟩ = ½{|′ℎ′⟩|ℎ⟩ + |′𝑠′⟩|𝑠⟩}{⟨′ℎ′|⟨ℎ| + ⟨′𝑠′|⟨𝑠|}

Consider composite state of Hardness measuring device and black electron:

 |𝜓⟩ = ½ {|′ℎ′⟩|ℎ⟩ + |′𝑠′⟩|𝑠⟩}

= Pr𝑄(value of 𝐴 is 𝑎𝑖 in state |′ℎ′⟩|ℎ⟩) + Pr𝑄(value of 𝐴 is 𝑎𝑖 in state |′𝑠′⟩|𝑠⟩) 

   + interference terms

 = ½{|′ℎ′⟩|ℎ⟩⟨′ℎ′|⟨ℎ| + |′𝑠′⟩|𝑠⟩⟨′𝑠′|⟨𝑠| + |′ℎ′⟩|ℎ⟩⟨′𝑠′|⟨𝑠| + |′𝑠′⟩|𝑠⟩⟨′ℎ′|⟨ℎ|}

  = ½{|′ℎ′⟩⟨′ℎ′| ⊗|ℎ⟩⟨ℎ| + |′𝑠′⟩⟨′𝑠′| ⊗|𝑠⟩⟨𝑠|

         + |′ℎ′⟩⟨′𝑠′| ⊗|ℎ⟩⟨𝑠| + |′𝑠′⟩⟨′ℎ′| ⊗|𝑠⟩⟨ℎ|}

interference terms!stat operator for |′𝑠′⟩|𝑠⟩stat operator for |′ℎ′⟩|ℎ⟩

 = ½{𝑃|′ℎ′⟩ ⊗ 𝑃|ℎ⟩ + 𝑃|′𝑠′⟩ ⊗ 𝑃|𝑠⟩ + |′ℎ′⟩⟨′𝑠′| ⊗|ℎ⟩⟨𝑠| + |′𝑠′⟩⟨′ℎ′| ⊗|𝑠⟩⟨ℎ|}

8



- Recall: To distinguish between (1) and (2), we would need a very complex multi-

particle property that (1) possesses and that neither state in (2) possesses.

3. Decoherence   Zeh (1970)

• Claim: When an observer ends up in an entangled state with a 

measuring device, environmental interactions destroy interference 

effects and decohere the entangled state into one associated with a 

definite measurement outcome.

• Let |hard⟩𝐸, |soft⟩𝐸 be states of the environment 𝐸 in which it's correlated with 

a hard electron and a soft electron, respectively.

• Then: It is experimentally impossible to distinguish between:

(1) The state ½ { |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 + |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸}

(2) Either of the states:  |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 or |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸.

- Given that E realistically has a huge number of degrees of freedom, it is experi-

mentally impossible to measure such a property.

- So (1) and (2) are indistinguishable for all practical purposes!

9
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What this is supposed to mean:

- Whenever the post-measurement state of a composite system is of the form of (1), 

it does, for all practical purposes, describe a situation in which a definite 

measurement outcome occurred.

- The environment, for all practical purposes, collapses the entangled superposition.

• Claim: When an observer ends up in an entangled state with a 

measuring device, environmental interactions destroy interference 

effects and decohere the entangled state into one associated with a 

definite measurement outcome.

• Let |hard⟩𝐸, |soft⟩𝐸 be states of the environment 𝐸 in which it's correlated with 

a hard electron and a soft electron, respectively.

• Then: It is experimentally impossible to distinguish between:

(1) The state ½ { |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 + |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸}

(2) Either of the states:  |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 or |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸.

H. Dieter Zeh
(1932-2018)
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"During decoherence, entanglement does not really disappear, but 

goes further and further into the environment; in practice, it becomes 

rapidly completely impossible to detect." (Laloe 2012, pg. 136.)

• Claim: When an observer ends up in an entangled state with a 

measuring device, environmental interactions destroy interference 

effects and decohere the entangled state into one associated with a 

definite measurement outcome.

• Let |hard⟩𝐸, |soft⟩𝐸 be states of the environment 𝐸 in which it's correlated with 

a hard electron and a soft electron, respectively.

• Then: It is experimentally impossible to distinguish between:

(1) The state ½ { |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 + |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸}

(2) Either of the states:  |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 or |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸.

H. Dieter Zeh
(1932-2018)
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Let's see how this is supposed to work using statistical operators...

• The statistical operator 𝑃|𝜓⟩ = |𝜓⟩⟨𝜓| for the state in (1) is:

  𝑃|𝜓⟩ = ½{|′ℎ′⟩|ℎ⟩|𝐸h⟩ + |′𝑠′⟩|𝑠⟩|𝐸𝑠⟩}{⟨′ℎ′|⟨ℎ|⟨𝐸h| + ⟨′𝑠′|⟨𝑠|⟨𝐸𝑠|}

   = ½|′ℎ′⟩|ℎ⟩|𝐸h⟩⟨′ℎ′|⟨ℎ|⟨𝐸h| + ½|′𝑠′⟩|𝑠⟩|𝐸𝑠⟩⟨′𝑠′|⟨𝑠|⟨𝐸𝑠|

        + ½|′ℎ′⟩|ℎ⟩|𝐸h⟩⟨′𝑠′|⟨𝑠|⟨𝐸𝑠| + ½|′𝑠′⟩|𝑠⟩|𝐸𝑠⟩⟨′ℎ′|⟨ℎ|⟨𝐸h|

   = ½|′ℎ′⟩⟨′ℎ′| ⊗|ℎ⟩⟨ℎ| ⊗|𝐸h⟩⟨𝐸h| + ½|′𝑠′⟩⟨′𝑠′| ⊗|𝑠⟩⟨𝑠| ⊗|𝐸𝑠⟩⟨𝐸𝑠|

        + ½|′ℎ′⟩⟨′𝑠′| ⊗|ℎ⟩⟨𝑠| ⨂ |𝐸h⟩⟨𝐸𝑠| + ½|′𝑠′⟩⟨′ℎ′| ⊗|𝑠⟩⟨ℎ| ⊗|𝐸𝑠⟩⟨𝐸h|

   = ½𝑃|′ℎ′⟩⊗𝑃|ℎ⟩⊗𝑃|𝐸h⟩ + ½𝑃|′𝑠′⟩⊗𝑃|𝑠⟩⊗𝑃|𝐸𝑠⟩ + (interference terms)

• Now: Take the "partial trace" of 𝑃|𝜓⟩ with respect to the Environment basis:

  Tr𝐸(𝑃|𝜓⟩) = ⟨𝐸h|𝑃|𝜓⟩|𝐸h⟩ + ⟨𝐸𝑠|𝑃|𝜓⟩|𝐸𝑠⟩

   = ½𝑃|′ℎ′⟩⊗𝑃|ℎ⟩ + ½𝑃|′𝑠′⟩⊗𝑃|𝑠⟩

"Tracing over the environment" kills the interference terms!
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"...just as the environmentally correlated superposition in the second 

experiment [b] is empirically indistinguishable from a state where the 

electron passes through either one slit or the other, an environmentally 

correlated superposition of different measurement records is empirically 

indistinguishable from a particular record."   (Barrett, pg. 223.)
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Does decoherence solve the measurement problem?

- This is the statistical operator for a "mixed state": This is 

how the state of a system is represented when its exact form 

is known only to lie within a set of possible states.

• No!

- In this case, the state of the system is either of the pair

  {|′hard′⟩𝑚|hard⟩𝑒, |′soft′⟩𝑚|soft⟩𝑒}

 each with equal weight ½.

- But: The result of a measurement (as given by the Projection 

Postulate and by our experience) is a definite outcome.

- In this case, the result is either |′hard′⟩𝑚|hard⟩𝑒 or |′soft′⟩𝑚|soft⟩𝑒.

- It's definitely one of these two alternatives.

- It's not a weighted sum of them both!

• When we "trace over the environment", we're left with the statistical operator

  ½𝑃|′hard′⟩⊗𝑃|hard⟩ + ½𝑃|′soft′⟩⊗𝑃|soft⟩
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4. Consistent Histories   Griffiths (1984)

• 𝑃1(𝑡1) might be 𝑃|hard⟩(𝑡1) which represents the property, at time 𝑡1, 

"The value of Hardness is hard".

• Or: It might be 𝑃|𝑎⟩(𝑡1) which represents the property, at time 𝑡1, "The 

value of the property 𝐴 is 𝑎".

Def. 1. A history ℎ is a time-indexed sequence of facts, represented by 

time-indexed projection operators:

 ℎ = (𝑃1(𝑡1), 𝑃2(𝑡2), ..., 𝑃𝑛(𝑡𝑛)).

• Projection operators evolve via the Schrödinger dynamics:

  𝑃(𝑡) = 𝑒𝑖𝐻𝑡/ℏ𝑃(0)𝑒−𝑖𝐻𝑡/ℏ

• Recall: A state of a system is a description of the system in terms of 

the values its properties take at an instant of time.

• A history of a system is a description of the system in terms of the 

values its properties take over an interval of time.

Robert Griffiths
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Def. 2. The probability associated with a history h is given by:

 Pr𝑄(ℎ) = Tr(𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)𝑃2(𝑡2)...𝑃𝑛(𝑡𝑛))

where 𝑃|𝜓⟩ is the statistical operator associated with an initial state |𝜓⟩.

• All the terms inside a trace commute with each other, so:

  Pr𝑄(ℎ) = Tr(𝑃𝑛(𝑡𝑛)𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃2(𝑡2)𝑃1(𝑡1)𝑃1(𝑡1)𝑃|𝜓⟩)

• Since projection operators are idempotent, this is equal to:

  Pr𝑄(ℎ) = Tr(𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃1(𝑡1)𝑃|𝜓⟩) 

• And: This can be thought of as the trace version of the Born Rule for the 

probability that the system in the state |𝜓⟩, has the "historical property" 

represented by the operator 𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃1(𝑡1).
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Def. 3. A family of histories is a time-indexed sequence of sets of 

"exhaustive" facts:

({𝑃1
𝛼1(𝑡1)}, {𝑃2

𝛼2(𝑡2)}, ..., {𝑃𝑛
𝛼𝑛(𝑡𝑛)})

where each index 𝛼𝑖 = 1, ..., 𝑁 and {𝑃𝑖
𝛼𝑖(𝑡𝑖)} = {𝑃𝑖

1(𝑡𝑖), 𝑃𝑖
2(𝑡𝑖), ..., 𝑃𝑖

𝑁(𝑡𝑖)}, 

such that 𝑃𝑖
1(𝑡𝑖) + 𝑃𝑖

2(𝑡𝑖) + ⋯ + 𝑃𝑖
𝑁(𝑡𝑖) = 𝐼𝑁.

• The projection operators in any set {𝑃𝑖
𝛼𝑖(𝑡𝑖)} represent all the possible values 

of the property associated with 𝑃𝑖(𝑡𝑖).
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Histories can be embedded in families of histories:

𝑃|𝜓⟩𝑡 = 0 {𝑃|𝜓⟩}

𝑡 = 𝑡1 𝑃1
1(𝑡1) 𝑃1

2(𝑡1) .... .... 𝑃1
N(𝑡1) {𝑃1

𝛼1(𝑡1)}



𝑃2
1(𝑡2) 𝑃2

2(𝑡2) .... .... 𝑃2
𝑁(𝑡2)𝑡 = 𝑡2 {𝑃2

𝛼2(𝑡2)}



• ℎ = (𝑃|𝜓⟩, 𝑃1
1(𝑡1), 𝑃2

2(𝑡2), ..., 𝑃𝑛
1(𝑡𝑛))

ℎ

𝑃𝑛
1(𝑡𝑛) 𝑃𝑛

2(𝑡𝑛) .... .... 𝑃𝑛𝑁(𝑡𝑛)𝑡 = 𝑡𝑛 {𝑃𝑛
𝛼𝑛(𝑡𝑛)}



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



ℎ′

• ℎ′ = (𝑃|𝜓⟩, 𝑃1
2(𝑡1), 𝑃2

𝑁(𝑡2), ..., 𝑃𝑛
2(𝑡𝑛))

• ℎ and ℎ′ are two histories within the family ({𝑃|𝜓⟩}, {𝑃1
𝛼1(𝑡1)}, ..., {𝑃𝑛

𝛼𝑛(𝑡𝑛)}).
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Histories can be embedded in families of histories:

𝑃|𝜓⟩𝑡 = 0 {𝑃|𝜓⟩}

𝑡 = 𝑡1 𝑃1
1(𝑡1) 𝑃1

2(𝑡1) .... .... 𝑃1
N(𝑡1) {𝑃1

𝛼1(𝑡1)}



𝑃2
1(𝑡2) 𝑃2

2(𝑡2) .... .... 𝑃2
𝑁(𝑡2)𝑡 = 𝑡2 {𝑃2

𝛼2(𝑡2)}



ℎ

𝑃𝑛
1(𝑡𝑛) 𝑃𝑛

2(𝑡𝑛) .... .... 𝑃𝑛𝑁(𝑡𝑛)𝑡 = 𝑡𝑛 {𝑃𝑛
𝛼𝑛(𝑡𝑛)}



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



ℎ′

• We can assign probabilities to histories within a family by means of Def. 2.

• These are quantum probabilities that exhibit interference effects.

Are there histories within a given family that can be assigned classical probabilties?
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ℎ𝐴 = (𝑃1(𝑡1), ..., 𝑃𝑖
𝐴(𝑡𝑖), ..., 𝑃𝑛(𝑡𝑛))

ℎ𝐵 = (𝑃1(𝑡1), ..., 𝑃𝑖
𝐵(𝑡𝑖), ..., 𝑃𝑛(𝑡𝑛))

Simple case: Suppose ℎ𝐴 and ℎ𝐵 are histories that differ only 

in the property at 𝑡 = 𝑡𝑖:

Are there histories within a given family that do not interfere with each other?

Pr𝑄(ℎ or ℎ′) = Pr𝑄(ℎ) + Pr𝑄(ℎ′)

• These would be histories ℎ, ℎ′ whose probabilities obey the classical 

Or-Addition Rule:

• First: Need an expression for the disjunction, ℎ or ℎ′, of two histories ℎ, ℎ′.

- Now let the history, ℎ𝐴 or ℎ𝐵, be given by:

ℎ𝐴 or ℎ𝐵 = (𝑃1(𝑡1), ..., 𝑃𝑖
𝐴(𝑡𝑖) + 𝑃𝑖

𝐵(𝑡𝑖), ..., 𝑃𝑛(𝑡𝑛))
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Simple case, continued:

• ℎ𝐴 or ℎ𝐵 = (𝑃1(𝑡1), ..., 𝑃𝑖
𝐴(𝑡𝑖) + 𝑃𝑖

𝐵(𝑡𝑖), ..., 𝑃𝑛(𝑡𝑛))

• So: For an initial state |𝜓⟩:

Pr𝑄(ℎ𝐴 or ℎ𝐵)

 = Tr(𝑃𝑛(𝑡𝑛)...[𝑃𝑖
𝐴(𝑡𝑖) + 𝑃𝑖

𝐵(𝑡𝑖)]...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...[𝑃𝑖
𝐴(𝑡𝑖) + 𝑃𝑖

𝐵(𝑡𝑖)]...𝑃𝑛(𝑡𝑛))

• Which means: The probabilities assigned to ℎ𝐴 and ℎ𝐵 by Def. 2 will be 

classical (i.e., will obey the classical Or-Addition Rule) just when the 

interference terms vanish.

= Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖
𝐴(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖

𝐴(𝑡𝑖)...𝑃𝑛(𝑡𝑛)) 

  + Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖
𝐵(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖

𝐵(𝑡𝑖)...𝑃𝑛(𝑡𝑛))

  + {Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖
𝐴(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖

𝐵(𝑡𝑖)...𝑃𝑛(𝑡𝑛)) 

  + Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖
𝐵(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖

𝐴(𝑡𝑖)...𝑃𝑛(𝑡𝑛))}

= Pr𝑄(ℎ𝐴) + Pr𝑄(ℎ𝐵) + {interference terms}
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Now: Consider the general case of ℎ, ℎ′ differing on all properties:

ℎ = (𝑃1(𝑡1), ..., 𝑃𝑛(𝑡𝑛))

ℎ′ = (𝑃1′(𝑡1), ..., 𝑃𝑛′(𝑡𝑛))

ℎ or ℎ′ = ([𝑃1(𝑡1) + 𝑃1′(𝑡1)], ..., [𝑃𝑖(𝑡𝑖) + 𝑃𝑖′(𝑡𝑖)], ..., [𝑃𝑛(𝑡𝑛) + 𝑃𝑛′(𝑡𝑛)])

Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛)) = 0

• The probabilities assigned to ℎ and ℎ′ by Def. 2 will be classical just when the 

general interference term vanishes:

Def. 4. Two histories ℎ = (𝑃1(𝑡1), ..., 𝑃𝑛(𝑡𝑛)), ℎ′ = (𝑃1′(𝑡1), ..., 𝑃𝑛′(𝑡𝑛)) are 

consistent just when Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛)) = 0.

Def. 5. A consistent family of histories is a family of histories 

such that any two histories embeddable in it are consistent.

• A consistent family of histories is a collection of histories that defines a classical 

sample space! You can assign classical probabilities to its members.
22



Def. 6.

(1) ℎ is a fine-grained history just when all projection 

operators in ℎ are 1-dim.

(2) ℎ′ is a coarse-graining of ℎ just when some projection 

operators in ℎ′ are sums of projection operators in ℎ.

• Fine-grained histories cannot in general be assigned classical probabilities.

• Course-grained histories can be assigned approximate classical probabilities, 

and these get more classical as Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛)) → 0.

• As Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛)) → 0, such course-grained histories 

"decohere".

• Coarse-graining a family of histories corresponds to tracing out the 

environment.

• The environment interacts with the coarse-grained histories to damp out 

the interference effects, rendering the family approximately consistent.

23



Def. 7. Two histories ℎ = (𝑃1(𝑡1), ..., 𝑃𝑛(𝑡𝑛)), ℎ′ = (𝑃1′(𝑡1), ..., 𝑃𝑛′(𝑡𝑛)) are 

decoherent just when Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛)) → 0.

Def. 8. A decoherent family of histories is a family of histories 

such that any two histories embeddable in it are decoherent.

Characteristics of the Consistent/Decoherent Histories (CH) Approach

- Replaces states of a physical system with histories a physical system.

- The properties (projection operators) that make up a history evolve only 

via the Schrödinger dynamics (no Projection Postulate).

- Identifies a way to associate a probability with a history (Def. 2).

- Identifies a condition that picks out those families of histories that are 

classical (or approximately classical) (Defs. 4, 5).
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Problems

1. How are alternative histories within a decoherent family to be interpreted?

2. How are alternative decoherent families to be interpreted?

• Any history ℎ can be embedded in many different mutually incompatible 

decoherent families (any one of which defines an approximately classical 

probability space).

Problems 1 & 2 Combined:

• Seem to indicate that CH isn't fundamentally different from Many Worlds.

- All CH does is replace world-talk with history-talk, and adds a criterion for identifying 

histories that behave "classically".

• Is one history actual and the others just possible?

• Or do all histories within a decoherent family occur? If so, then how are 

probabilities explained?

- This is the Problem of Probabilities that Many Worlds faces.

• Which do we choose in order to calculate the probability of ℎ?

- This is the Preferred Basis Problem that Many Worlds faces.
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3. General Problem with the Notion of Decoherence

• "Tracing over the environment" (or "coarse-graining" histories) does not pick 

out a unique measurement/interaction outcome.

• It does not effect a "collapse" of superposed states (or "interfering" histories).

• So it cannot be appealed to in order to reconcile superpositions (or "interfering" 

histories) with our experience of unique outcomes.
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