
13.	Decoherence
• Classical	probabilities	are	based	on	classical (Boolean)	logic.
• The	probabilities	defined	by	the	Born	Rule	are	based	on	
quantum (non-Boolean)	logic.

A	classical	probability	theory	is	a	triple	(Ω,	ℱ,	Pr𝐶):
- Ω is	a	set	of	simple	events (the	sample	space).
- ℱ is	a	set	of	compound	events obtained	by	taking	all	combinations	
of	simple	events	using	complement	and	union.

- Pr𝐶 is	a	probability	function that	maps	elements	of	ℱ to	[0,	1] and	
satisfies	the	following	axioms:

1.	Classical	Probabilities	and	the	Classical	Or-Addition	Rule

(C1) Pr𝐶(∅)	=	0
(C2) Pr𝐶(¬𝐴)	=	1	− Pr𝐶(𝐴)
(C3) Pr𝐶(𝐴 ∪ 𝐴′)	=	Pr𝐶(𝐴)	+	Pr𝐶(𝐴′)	− Pr𝐶(𝐴 ∩ 𝐴′)

The Classical Or-
Addition Rule

1

1. Classical	Or-Addition
2. Quantum	Interference
3. Decoherence
4. Consistent	Histories

• One	consequence:	QM	probabilities	do	not	satisfy	the	classical	Or-Addition Rule.



Example:

- Then:	The	probability	of	getting	either	1	or	3	on	a	single	roll	is	given	by:

Pr𝐶({1}	∪ {3}) =	Pr𝐶({1})	+	Pr𝐶({3})	− Pr𝐶({1}	∩ {3}) (C3)
=	1/6	+	1/6	− 0	=	1/3

- And:	The	probability	of	getting	either	a	value	in	the	range	{1,	2,	3} or	a	value	in	the	
range	{3,	4,	5} on	a	single	roll	is:
Pr𝐶({1,	2,	3}	∪ {3,	4,	5})

=	Pr𝐶({1,	2,	3})	+	Pr𝐶({3,	4,	5})	− Pr𝐶({1,	2,	3}	∩ {3,	4,	5}) (C3)
=	[Pr𝐶({1})	+	Pr𝐶({2})	+	Pr𝐶({3})]	+	[Pr𝐶({3})	+	Pr𝐶({4})	+	Pr𝐶({5})]	− Pr𝐶({3})
=	[1/6	+	1/6	+	1/6]	+	[1/6	+	1/6	+	1/6]	− 1/6	=	5/6

- Let	Ω =	{1,	2,	3,	4,	5,	6} represent	all	possible	results	of	a	single	roll	of	a	die.
- ℱ	=	{{1},	{2},	...,	{1}	∪ {2},	{1}	∪ {3},	...,	¬{1},	¬{2},	...	}
- Let	Pr𝐶({𝑖})	=	1/6,	for	𝑖 =	1...6.		(Principle	of	Indifference)
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2.	Quantum	Probabilities	and	Interference

• Main	Result:	Quantum	probabilities,	so-defined,	do	not	in	general	satisfy	C3!

• Recall:	Linear	span	⊕ does	not correspond	to	classical	"or".

• Replace	the	classical	sample	space	Ωwith	a	Hilbert	space	ℋ.

(Q1) Pr𝑄(0)	=	0
(Q2) Pr𝑄(𝑉⊥)	=	1	− Pr𝑄(𝑉)
(Q3) Pr𝑄(𝑉⊕𝑊)	=	Pr𝑄(𝑉)	+	Pr𝑄(𝑊),	when	𝑉 ⊥𝑊

• They	do	satisfy	the	following	(where	𝑉,	𝑊 are	subspaces	of	ℋ and	0 is	the	
"zero"	subspace):

A	quantum	probability	theory	is	a	triple	(ℋ,	ℒ,	Pr𝑄):
- ℋ is	a	Hilbert	space	of	states	(simple	events).
- ℒ is the	collection	of	subspaces	of	ℋ (compound	events)	obtained	by	taking	
all	combinations	of	simple	events	using	orthocomplement	and	linear	span.

- Pr𝑄 is	defined	by	Pr𝑄(|𝑎⟩,	|𝜓⟩)	=	|⟨𝑎|𝜓⟩|2,			for	any	|𝑎⟩,	|𝜓⟩	∈ ℋ.
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Example:	2-slit	probabilities	and	interference

𝐴

B

With	Slit	𝐴 open,
Pr𝑄(e	is	at	𝑥 in	state	𝜓𝐴(𝑥))	=	|𝜓𝐴(𝑥)|2

𝐴

𝐵

With	Slit	𝐵 open,
Pr𝑄(e	is	at	𝑥 in	state	𝜓𝐵(𝑥))	=	|𝜓𝐵(𝑥)|2

|𝜓𝐴(𝑥)|2

A-distribution

|𝜓𝐵(𝑥)|2

B-distribution
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A

B

• With	both	slits	open,	the	probability	that	e is	located	at	x is	|𝜓𝐴(𝑥)+𝜓𝐵(𝑥)|2.

|𝜓𝐴(𝑥)+𝜓𝐵(𝑥)|2

Interference	distribution	(what	happens)

|𝜓𝐴(𝑥)|2+|𝜓𝐵(𝑥)|2

A

B

A	or	B	distribution	(what	doesn't	happen)

• This	is	not equal	to	|𝜓𝐴(𝑥)|2+|𝜓𝐵(𝑥)|2,	which,	according	to	(C3),	represents	the	
probability	that	the	electron	eitherwent	through	slit	A or slit	B.

- The	state	corresponding	to	the	prob	distribution	|𝜓𝐴(𝑥)+𝜓𝐵(𝑥)|2 is	|𝜓𝐴(𝑥)⟩+|𝜓𝐵(𝑥)⟩.
- This	is	in	the	subspace	𝑉⊕𝑊which	is	the	linear	span	of	the	subspace	𝑉 containing	the	
state	𝜓𝐴(𝑥) and	the	subspace	𝑊 containing	the	state	𝜓𝐵(𝑥).

Example:	2-slit	probabilities	and	interference
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• Recall:	The	projection	operator	𝑃|𝑎𝑖⟩=	|𝑎𝑖⟩⟨𝑎𝑖| corresponds	to	the	1-dim	
subspace	defined	by	|𝑎𝑖⟩ (i.e.,	the	ray	in	which	|𝑎𝑖⟩ is	pointing).

Let's see how this works using projection operators...

• Tr(𝑄) = the	sum	of	the	diagonal	elements	of	any	matrix	representation	of	𝑄.
• Fact:	All	such	representations	have	this	sum	in	common:	The	trace	is	
independent	of	the	basis	it's	calculated	in.

Tr(𝜆𝐴)	=	𝜆Tr(𝐴),	where	𝜆 is	any	number
Tr(𝐴 +	𝐵)	=	Tr(𝐴)	+	Tr(𝐵)
Tr(𝐴𝐵)	=	Tr(𝐵𝐴)

• Properties	of	the	trace:

• And:		∑𝑖𝑃|𝑎𝑖⟩=	1

Def.	Suppose	𝑄 is	a	linear	operator	on	an	𝑁-dim	vector	space	ℋwith	
orthonormal	basis	|𝑏1⟩,	...	|𝑏𝑁⟩.	Then	the	trace Tr(𝑄) of	𝑄 is	given	by:

Tr 𝑄 ≡R
&'(

)

𝑏& 𝑄 𝑏& = 𝑏( 𝑄 𝑏( + 𝑏* 𝑄 𝑏* +⋯+ 𝑏) 𝑄 𝑏)
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Pr𝑄(value	of	𝐴 is	𝑎𝑖 in	state	|𝜓⟩) =	|⟨𝑎𝑖|𝜓⟩|2

=	⟨𝜓|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩

=	∑𝑗⟨𝜓|𝑃|𝑎𝑗⟩|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩ where	∑𝑗𝑃|𝑎𝑗⟩=	1

=	∑𝑗⟨𝜓|𝑎𝑗⟩⟨𝑎𝑗|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩

=	∑𝑗⟨𝑎𝑗|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩⟨𝜓|𝑎𝑗⟩

=	Tr(|𝑎𝑖⟩⟨𝑎𝑖|𝜓⟩⟨𝜓|)

=	Tr(𝑃|𝑎𝑖⟩𝑃|𝜓⟩)

The	Born	Rule	in	terms	of	projection	operators:

- 𝑃|𝑎𝑖⟩ is	the	projection	operator	corresponding	to	the	state	|𝑎𝑖⟩
(more	precisely,	the	1-dim	subspace	defined	by	|𝑎𝑖⟩).

- 𝑃|𝜓⟩ is	the	projection	operator	corresponding	to	the	state	|𝜓⟩
(more	precisely,	the	1-dim	subspace	defined	by	|𝜓⟩).

- The	projection	operator	corresponding	to	a	state	is	called	the	
statistical	operator (or	density	matrix)	for	the	state.

7



• So:	Pr𝑄(value	of	𝐴 is	𝑎𝑖 in	state	|𝜓⟩)	=	Tr(𝑃|𝑎𝑖⟩𝑃|𝜓⟩)

=	Tr(½𝑃|𝑎𝑖⟩𝑃|′ℎ′⟩⨂	𝑃|ℎ⟩)	+	Tr(½𝑃|𝑎𝑖⟩𝑃|′𝑠′⟩⨂	𝑃|𝑠⟩)

+	Tr(½𝑃|𝑎𝑖⟩|′ℎ′⟩⟨′𝑠′|⨂ |ℎ⟩⟨𝑠|)	+	Tr(½𝑃|𝑎𝑖⟩|′𝑠′⟩⟨′ℎ′|⨂ |𝑠⟩⟨ℎ|)

• Its	statistical	operator	𝑃|𝜓⟩=	|𝜓⟩⟨𝜓| is	given	by:

𝑃|𝜓⟩ =	½{|′ℎ′⟩|ℎ⟩	+	|′𝑠′⟩|𝑠⟩}{⟨′ℎ′|⟨ℎ|	+	⟨′𝑠′|⟨𝑠|}

interference terms!stat operator for |′𝑠′⟩|𝑠⟩stat operator for |′ℎ′⟩|ℎ⟩

Consider	composite	state	of	Hardnessmeasuring	device	and	black electron:
|𝜓⟩	=	 ½ {|′ℎ′⟩|ℎ⟩	+	|′𝑠′⟩|𝑠⟩}

=	Pr𝑄(value	of	𝐴 is	𝑎𝑖 in	state	|′ℎ′⟩|ℎ⟩)	+	Pr𝑄(value	of	𝐴 is	𝑎𝑖 in	state	|′𝑠′⟩|𝑠⟩)
+ interference	terms

=	½{|′ℎ′⟩|ℎ⟩⟨′ℎ′|⟨ℎ|	+	|′𝑠′⟩|𝑠⟩⟨′𝑠′|⟨𝑠|	+	|′ℎ′⟩|ℎ⟩⟨′𝑠′|⟨𝑠|	+	|′𝑠′⟩|𝑠⟩⟨′ℎ′|⟨ℎ|}

=	½{|′ℎ′⟩⟨′ℎ′|⨂ |ℎ⟩⟨ℎ|	+	|′𝑠′⟩⟨′𝑠′|⨂ |𝑠⟩⟨𝑠|

+	|′ℎ′⟩⟨′𝑠′|⨂ |ℎ⟩⟨𝑠|	+	|′𝑠′⟩⟨′ℎ′|⨂ |𝑠⟩⟨ℎ|}

=	½{𝑃|′ℎ′⟩⨂	𝑃|ℎ⟩+	𝑃|′𝑠′⟩⨂	𝑃|𝑠⟩+	|′ℎ′⟩⟨′𝑠′|⨂ |ℎ⟩⟨𝑠|	+	|′𝑠′⟩⟨′ℎ′|⨂ |𝑠⟩⟨ℎ|}
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- Recall:	To	distinguish	between	(1)	and	(2),	we	would	need	a	very	complex	multi-
particle	property	that	(1)	possesses	and	that	neither	state	in	(2)	possesses.

3.	Decoherence Zeh	(1970)

• Claim:	When	an	observer	ends	up	in	an	entangled	state	with	a	
measuring	device,	environmental	interactions	destroy	interference	
effects	and	decohere the	entangled	state	into	one	associated	with	a	
definite	measurement	outcome.

• Let	|hard⟩𝐸, |soft⟩𝐸 be	states	of	the	environment	𝐸 in	which	it's	correlated	with	
a	hard	electron	and	a	soft	electron,	respectively.

• Then: It	is	experimentally	impossible	to	distinguish	between:

(1) The	state	 ½ { |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸+ |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸}
(2) Either	of	the	states:		|′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 or	|′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸.

- Given	that	E realistically	has	a	huge	number	of	degrees	of	freedom,	it	is	experi-
mentally	impossible	to	measure	such	a	property.

- So	(1)	and	(2)	are	indistinguishable for	all	practical	purposes!

9

H.	Dieter	Zeh
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What	this	is	supposed	to	mean:
- Whenever	the	post-measurement	state	of	a	composite	system	is	of	the	form	of	(1),	
it	does,	for	all	practical	purposes,	describe	a	situation	in	which	a	definite	
measurement	outcome	occurred.

- The	environment,	for	all	practical	purposes,	collapses	the	entangled	superposition.

• Claim:	When	an	observer	ends	up	in	an	entangled	state	with	a	
measuring	device,	environmental	interactions	destroy	interference	
effects	and	decohere the	entangled	state	into	one	associated	with	a	
definite	measurement	outcome.

• Let	|hard⟩𝐸, |soft⟩𝐸 be	states	of	the	environment	𝐸 in	which	it's	correlated	with	
a	hard	electron	and	a	soft	electron,	respectively.

• Then: It	is	experimentally	impossible	to	distinguish	between:

(1) The	state	 ½ { |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸+ |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸}
(2) Either	of	the	states:		|′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 or	|′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸.

H.	Dieter	Zeh
(1932-2018)
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"During	decoherence,	entanglement	does	not	really	disappear,	but	
goes	further	and	further	into	the	environment;	in	practice,	it	becomes	
rapidly	completely	impossible	to	detect."	(Laloe	2012,	pg.	136.)

• Claim:	When	an	observer	ends	up	in	an	entangled	state	with	a	
measuring	device,	environmental	interactions	destroy	interference	
effects	and	decohere the	entangled	state	into	one	associated	with	a	
definite	measurement	outcome.

• Let	|hard⟩𝐸, |soft⟩𝐸 be	states	of	the	environment	𝐸 in	which	it's	correlated	with	
a	hard	electron	and	a	soft	electron,	respectively.

• Then: It	is	experimentally	impossible	to	distinguish	between:

(1) The	state	 ½ { |′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸+ |′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸}
(2) Either	of	the	states:		|′hard′⟩𝑚|hard⟩𝑒|hard⟩𝐸 or	|′soft′⟩𝑚|soft⟩𝑒|soft⟩𝐸.

H.	Dieter	Zeh
(1932-2018)
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Let's	see	how	this	is	supposed	to	work	using	statistical	operators...

• The	statistical	operator	𝑃|𝜓⟩=	|𝜓⟩⟨𝜓| for	the	state	in	(1)	is:

𝑃|𝜓⟩ =	½{|′ℎ′⟩|ℎ⟩|𝐸h⟩	+	|′𝑠′⟩|𝑠⟩|𝐸𝑠⟩}{⟨′ℎ′|⟨ℎ|⟨𝐸h|	+	⟨′𝑠′|⟨𝑠|⟨𝐸𝑠|}

=	½|′ℎ′⟩|ℎ⟩|𝐸h⟩⟨′ℎ′|⟨ℎ|⟨𝐸h|	+	½|′𝑠′⟩|𝑠⟩|𝐸𝑠⟩⟨′𝑠′|⟨𝑠|⟨𝐸𝑠|

+	½|′ℎ′⟩|ℎ⟩|𝐸h⟩⟨′𝑠′|⟨𝑠|⟨𝐸𝑠|	+	½|′𝑠′⟩|𝑠⟩|𝐸𝑠⟩⟨′ℎ′|⟨ℎ|⟨𝐸h|

=	½|′ℎ′⟩⟨′ℎ′|⨂ |ℎ⟩⟨ℎ|⨂ |𝐸h⟩⟨𝐸h|	+	½|′𝑠′⟩⟨′𝑠′|⨂ |𝑠⟩⟨𝑠|⨂ |𝐸𝑠⟩⟨𝐸𝑠|

+	½|′ℎ′⟩⟨′𝑠′|⨂ |ℎ⟩⟨𝑠|⨂ |𝐸h⟩⟨𝐸𝑠|	+	½|′𝑠′⟩⟨′ℎ′|⨂ |𝑠⟩⟨ℎ|⨂ |𝐸𝑠⟩⟨𝐸h|

=	½𝑃|′ℎ′⟩⨂𝑃|ℎ⟩⨂𝑃|𝐸h⟩+	½𝑃|′𝑠′⟩⨂	𝑃|𝑠⟩⨂𝑃|𝐸𝑠⟩+	(interference	terms)

• Now:	Take	the	"partial	trace"	of	𝑃|𝜓⟩with	respect	to	the	Environment	basis:

Tr𝐸(𝑃|𝜓⟩) =	⟨𝐸h|𝑃|𝜓⟩|𝐸h⟩	+	⟨𝐸𝑠|𝑃|𝜓⟩|𝐸𝑠⟩

=	½𝑃|′ℎ′⟩⨂𝑃|ℎ⟩+	½𝑃|′𝑠′⟩⨂	𝑃|𝑠⟩

"Tracing over the environment" kills the interference terms!
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"...just	as	the	environmentally	correlated	superposition	in	the	second	
experiment	[b]	is	empirically	indistinguishable	from	a	state	where	the	
electron	passes	through	either	one	slit	or	the	other,	an	environmentally	
correlated	superposition	of	different	measurement	records	is	empirically	
indistinguishable	from	a	particular	record."			(Barrett,	pg.	223.)
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Does decoherence solve the measurement problem?

- This	is	the	statistical	operator	for	a	"mixed	state":	This	is	
how	the	state	of	a	system	is	represented	when	its	exact	form	
is	known	only	to	lie	within	a	set	of	possible	states.

• No!

- In	this	case,	the	state	of	the	system	is	either of	the	pair

{|′hard′⟩𝑚|hard⟩𝑒,	|′soft′⟩𝑚|soft⟩𝑒}

each	with	equal	weight	½.

- But:	The	result	of	a	measurement	(as	given	by	the	Projection	
Postulate and	by	our	experience)	is	a	definite outcome.
- In	this	case,	the	result	is	either |′hard′⟩𝑚|hard⟩𝑒 or |′soft′⟩𝑚|soft⟩𝑒.
- It's	definitely	one	of	these	two	alternatives.
- It's	not	a	weighted	sum	of	them	both!

• When	we	"trace	over	the	environment",	we're	left	with	the	statistical	operator
½𝑃|′hard′⟩⨂𝑃|hard⟩+	½𝑃|′soft′⟩⨂	𝑃|soft⟩
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4.	Consistent	Histories Griffiths	(1984)

• 𝑃1(𝑡1)might	be	𝑃|hard⟩(𝑡1)which	represents	the	property,	at	time	𝑡1,	
"The	value	of	Hardness is	hard".

• Or:	It	might	be	𝑃|𝑎⟩(𝑡1)which	represents	the	property,	at	time	𝑡1,	"The	
value	of	the	property	𝐴 is	𝑎".

Def. 1.	A	history ℎ is	a	time-indexed	sequence	of	facts,	represented	by	
time-indexed	projection	operators:

ℎ	=	(𝑃1(𝑡1),	𝑃2(𝑡2),	...,	𝑃𝑛(𝑡𝑛)).

• Projection	operators	evolve	via the	Schrödinger	dynamics:
𝑃(𝑡)	=	𝑒𝑖𝐻𝑡/ℏ𝑃(0)𝑒−𝑖𝐻𝑡/ℏ

• Recall:	A	state of	a	system	is	a	description	of	the	system	in	terms	of	
the	values	its	properties	take	at	an	instant	of	time.

• A	history of	a	system	is	a	description	of	the	system	in	terms	of	the	
values	its	properties	take	over	an	interval	of	time.

Robert	Griffiths
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Def.	2.	The	probability associated	with	a	history	h is	given	by:

Pr𝑄(ℎ)	=	Tr(𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)𝑃2(𝑡2)...𝑃𝑛(𝑡𝑛))
where	𝑃|𝜓⟩ is	the	statistical	operator	associated	with	an	initial	state	|𝜓⟩.

• All	the	terms	inside	a	trace	commute	with	each	other,	so:

Pr𝑄(ℎ)	=	Tr(𝑃𝑛(𝑡𝑛)𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃2(𝑡2)𝑃1(𝑡1)𝑃1(𝑡1)𝑃|𝜓⟩)

• Since	projection	operators	are	idempotent,	this	is	equal	to:

Pr𝑄(ℎ)	=	Tr(𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃1(𝑡1)𝑃|𝜓⟩)

• And:	This	can	be	thought	of	as	the	trace	version	of	the	Born	Rule for	the	
probability	that	the	system	in	the	state	|𝜓⟩,	has	the	"historical	property"	
represented	by	the	operator	𝑃𝑛(𝑡𝑛)...𝑃2(𝑡2)𝑃1(𝑡1).
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Def.	3.	A	family	of histories is	a	time-indexed	sequence	of	sets	of	
"exhaustive"	facts:

({𝑃1𝛼1(𝑡1)},	{𝑃2𝛼2(𝑡2)},	...,	{𝑃𝑛𝛼𝑛(𝑡𝑛)})

where	each	index	𝛼𝑖=	1,	...,	𝑁 and	{𝑃𝑖𝛼𝑖(𝑡𝑖)}	=	{𝑃𝑖1(𝑡𝑖),	𝑃𝑖2(𝑡𝑖),	...,	𝑃𝑖𝑁(𝑡𝑖)},	
such	that	𝑃𝑖1(𝑡𝑖)	+ 𝑃𝑖2(𝑡𝑖)	+ ⋯	+ 𝑃𝑖𝑁(𝑡𝑖)	=	𝐼𝑁.

• The	projection	operators	in	any	set	{𝑃𝑖𝛼𝑖(𝑡𝑖)} represent	all	the	possible	values	
of	the	property	associated	with	𝑃𝑖(𝑡𝑖).
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Histories	can	be	embedded	in	families	of	histories:

𝑃|𝜓⟩𝑡 =	0 {𝑃|𝜓⟩}

𝑡 =	𝑡1 𝑃11(𝑡1) 𝑃12(𝑡1)	.... .... 𝑃1N(𝑡1) {𝑃1𝛼1(𝑡1)}

­

𝑃21(𝑡2) 𝑃22(𝑡2)	.... .... 𝑃2𝑁(𝑡2)𝑡 =	𝑡2 {𝑃2𝛼2(𝑡2)}

­

• ℎ	=	(𝑃|𝜓⟩,	𝑃11(𝑡1),	𝑃22(𝑡2),	...,	𝑃𝑛1(𝑡𝑛))

ℎ

𝑃𝑛1(𝑡𝑛) 𝑃𝑛2(𝑡𝑛)	.... ....	𝑃𝑛𝑁(𝑡𝑛)𝑡 =	𝑡𝑛 {𝑃𝑛𝛼𝑛(𝑡𝑛)}

­

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

­

ℎ′

• ℎ′	=	(𝑃|𝜓⟩,	𝑃12(𝑡1),	𝑃2𝑁(𝑡2),	...,	𝑃𝑛2(𝑡𝑛))
• ℎ and	ℎ′ are	two	histories	within	the	family	({𝑃|𝜓⟩},	{𝑃1𝛼1(𝑡1)},	...,	{𝑃𝑛𝛼𝑛(𝑡𝑛)}).
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Histories	can	be	embedded	in	families	of	histories:

𝑃|𝜓⟩𝑡 =	0 {𝑃|𝜓⟩}

𝑡 =	𝑡1 𝑃11(𝑡1) 𝑃12(𝑡1)	.... .... 𝑃1N(𝑡1) {𝑃1𝛼1(𝑡1)}

­

𝑃21(𝑡2) 𝑃22(𝑡2)	.... .... 𝑃2𝑁(𝑡2)𝑡 =	𝑡2 {𝑃2𝛼2(𝑡2)}

­

ℎ

𝑃𝑛1(𝑡𝑛) 𝑃𝑛2(𝑡𝑛)	.... ....	𝑃𝑛𝑁(𝑡𝑛)𝑡 =	𝑡𝑛 {𝑃𝑛𝛼𝑛(𝑡𝑛)}

­

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

­

ℎ′

• We	can	assign	probabilities	to	histories	within	a	family	by	means	of	Def.	2.
• These	are	quantum probabilities	that	exhibit	interference	effects.

Are there histories within a given family that can be assigned classical probabilties?
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ℎ𝐴=	(𝑃1(𝑡1),	...,	𝑃𝑖𝐴(𝑡𝑖),	...,	𝑃𝑛(𝑡𝑛))
ℎ𝐵=	(𝑃1(𝑡1),	...,	𝑃𝑖𝐵(𝑡𝑖),	...,	𝑃𝑛(𝑡𝑛))

Simple	case:	Suppose	ℎ𝐴 and	ℎ𝐵 are	histories	that	differ	only
in	the	property	at	𝑡 =	𝑡𝑖:

Are there histories within a given family that do not interfere with each other?

Pr𝑄(ℎ	or ℎ′)	=	Pr𝑄(ℎ)	+	Pr𝑄(ℎ′)

• These	would	be	histories	ℎ,	ℎ′whose	probabilities	obey	the	classical	
Or-Addition	Rule:

• First:	Need	an	expression	for	the	disjunction,	ℎ or ℎ′,	of	two	histories	ℎ,	ℎ′.

- Now	let	the	history,	ℎ𝐴 or ℎ𝐵,	be	given	by:

ℎ𝐴 or ℎ𝐵=	(𝑃1(𝑡1),	...,	𝑃𝑖𝐴(𝑡𝑖)	+ 𝑃𝑖𝐵(𝑡𝑖),	...,	𝑃𝑛(𝑡𝑛))
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Simple	case,	continued:
• ℎ𝐴 or ℎ𝐵=	(𝑃1(𝑡1),	...,	𝑃𝑖𝐴(𝑡𝑖)	+ 𝑃𝑖𝐵(𝑡𝑖),	...,	𝑃𝑛(𝑡𝑛))
• So:	For	an	initial	state	|𝜓⟩:

Pr𝑄(ℎ𝐴 or ℎ𝐵)

=	Tr(𝑃𝑛(𝑡𝑛)...[𝑃𝑖𝐴(𝑡𝑖)	+ 𝑃𝑖𝐵(𝑡𝑖)]...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...[𝑃𝑖𝐴(𝑡𝑖)	+ 𝑃𝑖𝐵(𝑡𝑖)]...𝑃𝑛(𝑡𝑛))

• Which	means:	The	probabilities	assigned	to	ℎ𝐴 and	ℎ𝐵 by	Def.	2	will	be	
classical	(i.e.,	will	obey	the	classical	Or-Addition	Rule)	just	when	the	
interference	terms	vanish.

=	Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖𝐴(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖𝐴(𝑡𝑖)...𝑃𝑛(𝑡𝑛))

+	Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖𝐵(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖𝐵(𝑡𝑖)...𝑃𝑛(𝑡𝑛))

+	{Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖𝐴(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖𝐵(𝑡𝑖)...𝑃𝑛(𝑡𝑛))

+	Tr(𝑃𝑛(𝑡𝑛)...𝑃𝑖𝐵(𝑡𝑖)...𝑃1(𝑡1)𝑃|𝜓⟩𝑃1(𝑡1)...𝑃𝑖𝐴(𝑡𝑖)...𝑃𝑛(𝑡𝑛))}
=	Pr𝑄(ℎ𝐴)	+	Pr𝑄(ℎ𝐵)	+	{interference	terms}
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Now:	Consider	the	general	case	of	ℎ,	ℎ′ differing	on	all	properties:

ℎ	=	(𝑃1(𝑡1),	...,	𝑃𝑛(𝑡𝑛))
ℎ′	=	(𝑃1′(𝑡1),	...,	𝑃𝑛′(𝑡𝑛))
ℎ or ℎ′	=	([𝑃1(𝑡1)	+ 𝑃1′(𝑡1)],	...,	[𝑃𝑖(𝑡𝑖)	+ 𝑃𝑖′(𝑡𝑖)],	...,	[𝑃𝑛(𝑡𝑛)	+ 𝑃𝑛′(𝑡𝑛)])

Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛))	=	0

• The	probabilities	assigned	to	ℎ and	ℎ′ by	Def.	2	will	be	classical	just	when	the	
general	interference	term	vanishes:

Def.	4.	Two	histories	ℎ	=	(𝑃1(𝑡1),	...,	𝑃𝑛(𝑡𝑛)),	ℎ′	=	(𝑃1′(𝑡1),	...,	𝑃𝑛′(𝑡𝑛)) are	
consistent just	when	Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛))	=	0.

Def.	5.	A	consistent	family	of	histories is	a	family	of	histories	
such	that	any	two	histories	embeddable	in	it	are	consistent.

• A	consistent	family	of	histories is	a	collection	of	histories	that	defines	a	classical	
sample	space!	You	can	assign	classical	probabilities	to	its	members.
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Def.	6.
(1) ℎ is	a	fine-grained	history just	when	all	projection	

operators	in	ℎ are	1-dim.
(2) ℎ′ is	a	coarse-graining	of ℎ just	when	some	projection	

operators	in	ℎ′ are	sums	of	projection	operators	in	ℎ.

• Fine-grained	histories	cannot	in	general	be	assigned	classical	probabilities.
• Course-grained	histories	can	be	assigned	approximate classical	probabilities,	
and	these	get	more	classical	as	Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛))→ 0.

• As	Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛))→ 0,	such	course-grained	histories	
"decohere".

• Coarse-graining a	family	of	histories	corresponds	to	tracing	out	the	
environment.

• The	environment	interacts	with	the	coarse-grained	histories	to	damp	out	
the	interference	effects,	rendering	the	family	approximately	consistent.
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Def.	7.	Two	histories	ℎ	=	(𝑃1(𝑡1),	...,	𝑃𝑛(𝑡𝑛)),	ℎ′	=	(𝑃1′(𝑡1),	...,	𝑃𝑛′(𝑡𝑛)) are	
decoherent just	when	Tr(𝑃𝑛(𝑡𝑛)...𝑃1(𝑡1))𝑃|𝜓⟩𝑃1′(𝑡1)...𝑃𝑛′(𝑡𝑛))→ 0.

Def.	8.	A	decoherent	family	of	histories is	a	family	of	histories	
such	that	any	two	histories	embeddable	in	it	are	decoherent.

Characteristics	of	the	Consistent/Decoherent	Histories	(CH)	Approach
- Replaces	states of	a	physical	system	with	histories a	physical	system.
- The	properties	(projection	operators)	that	make	up	a	history	evolve	only	
via the	Schrödinger	dynamics	(no	Projection	Postulate).

- Identifies	a	way	to	associate	a	probability	with	a	history	(Def.	2).
- Identifies	a	condition	that	picks	out	those	families	of	histories	that	are	
classical	(or	approximately	classical)	(Defs.	4,	5).
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Problems
1.	How	are	alternative	histories	within	a	decoherent	family	to	be	interpreted?

2.	How	are	alternative	decoherent	families	to	be	interpreted?
• Any	history	ℎ can	be	embedded	in	many	different	mutually	incompatible	
decoherent	families	(any	one	of	which	defines	an	approximately	classical	
probability	space).

Problems	1	&	2	Combined:
• Seem	to	indicate	that	CH	isn't	fundamentally	different	from	Many	Worlds.
- All	CH	does	is	replace	world-talk	with	history-talk,	and	adds	a	criterion	for	identifying	
histories	that	behave	"classically".

• Is	one	history	actual	and	the	others	just	possible?
• Or	do	all	histories	within	a	decoherent	family	occur?	If	so,	then	how	are	
probabilities	explained?
- This	is	the	Problem	of	Probabilities	that	Many	Worlds	faces.

• Which	do	we	choose	in	order	to	calculate	the	probability	of	ℎ?
- This	is	the	Preferred	Basis	Problem	that	Many	Worlds	faces.
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3.	General	Problem	with	the	Notion	of	Decoherence

• "Tracing	over	the	environment"	(or	"coarse-graining"	histories)	does	not	pick	
out	a	unique	measurement/interaction	outcome.

• It	does	not	effect	a	"collapse"	of	superposed	states	(or	"interfering"	histories).
• So	it	cannot	be	appealed	to	in	order	to	reconcile	superpositions	(or	"interfering"	
histories)	with	our	experience	of	unique	outcomes.

26


