
12a. Modal Interpretations 

• Let's return to using Hilbert spaces to represent QM state spaces, and operators 

to represent properties.

• Recall: The Kochen-Specker Theorem says that the properties associated with a 

Hilbert space ℋ can't all have values at the same time (if dimℋ ≥ 3).

Ex: Bohm's Theory

- One property (position) is always determinate (always has a value).

- All other properties are contextual – their values depend on how 

they are measured.

• One Way to Avoid KS: Claim that some (not all) properties defined on ℋ always 

have determinate values (even in superpositions), others do not.

Modal Interpretations Claim:

(A) For any Hilbert space ℋ, there is a subset of operators that represent 

properties that are always determinate (always possess values).  

(B) The QM probabilities for these properties are epistemic: for these 

properties, probabilities represent our ignorance of their actual values.
1

1. General Features

1. General Features
2. KHD Modal Interpretation
3. Three Problems



Modal Interpretations reject the Eigenvector/Eigenvalue Rule:

A physical system 

possesses the value 

𝜆 of a property.

The state of the system is 

represented by an eigenvector 

of the operator representing the 

property with eigenvalue 𝜆.

if and only if

- Modal intepretations allow for a state to possess the value of a property, 

even when it is not an eigenvector of the associated operator.

- They claim: For any given state |𝜓⟩, in addition to those properties for 

which |𝜓⟩ is an eigenvector, there are other properties for which |𝜓⟩ 

also possesses values (the always-determinate "modal" properties).

- So: Modal interpretations agree with the "if" part (⇐) of EE.

- But: They disagree with the "only if" part (⇒) of EE.

• Initial task for Modal Interpretations:

 Identify the subset of always-

determinate "modal" properties.
Different versions pick out 

different modal properties.
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Biorthogonal Decomposition Theorem:

Let |𝑄⟩ be a vector in the product Hilbert space ℋ1 ⨂ ℋ2. Then there 

is a basis |𝑎1⟩, , |𝑎𝑁⟩ of ℋ1, and a basis |𝑏1⟩, , |𝑏𝑁⟩ of ℋ2 such that 

|𝑄⟩ can be expanded as:

|𝑄⟩ = 𝑐11|𝑎1⟩|𝑏1⟩ + c22|𝑎2⟩|𝑏2⟩ + ⋯ + c𝑁𝑁|𝑎𝑁⟩|𝑏𝑁⟩

And, if |𝑐11| ≠ |𝑐22| ≠ ⋯ ≠ |𝑐𝑁𝑁|, then these bases are unique.

2. KHD Modal Interpretation   Kochen (1985), Healy (1989), Dieks (1991)

• Claim: At any given time, the subset of always-

determinate properties is given by the basis states of 

the biorthogonal expansion of the system's state vector.

- In general, if |𝑔1⟩, , |𝑔𝑁⟩ and |ℎ1⟩, , |ℎ𝑁⟩ are bases of ℋ1 and ℋ2, then any 

vector |𝑄⟩ can be expanded as

  |𝑄⟩ = 𝑑11|𝑔1⟩|ℎ1⟩ + 𝑑12|𝑔1⟩|ℎ2⟩ + ⋯ + 𝑑21|𝑔2⟩|ℎ1⟩ + 𝑑22|𝑔2⟩|ℎ2⟩ + ⋯ 

- The Biorthog Decomp Theorem says that there are bases for ℋ1 and ℋ2 for which 

the "cross terms" with coefficients 𝑑12, 𝑑21, etc, all vanish. And these bases will be 

unique just when all the remaining coefficients are different from each other.

Simon 
Kochen

Richard 
Healy

Dennis 
Dieks
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• Because these are the bases associated with post-measurement systems.

Why do we want bases in which the cross terms vanish?

• So: KHD just stipulates that properties associated with biorthogonal expansion 

bases are always determinate.

Example: Composite system of Hardness measuring device 𝑚 and black electron 𝑒.

- A basis for 𝑚-𝑒 system:

 {|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒, |"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒, |"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒, |"soft"⟩𝑚|soft⟩𝑒}

- General expansion of a state |𝑄⟩ in this basis is:

 |𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑐|"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒 + 𝑑|"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑏|"soft"⟩𝑚|soft⟩𝑒

- If this basis is biorthogonal, then 𝑐 = 𝑑 = 0, and we have:

 |𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑏|"soft"⟩𝑚|soft⟩𝑒

- This is just the post-measurement state of our composite system!

- We could avoid the Projection Postulate if we assume that the properties 

associated with these bases vectors (pointing to "hard" or "soft" for 𝑚, being 

hard or soft for 𝑒) are always determinate.
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KHD Rules (replace Projection Postulate):

(i) Expand the state vector |𝑄⟩ for 𝑆 in its biorthogonal decomposition:

  |𝑄⟩ = 𝑐11|𝑎1⟩|𝑏1⟩ + c22|𝑎2⟩|𝑏2⟩ + ⋯ + c𝑁𝑁|𝑎𝑁⟩|𝑏𝑁⟩

Rule 1: For any physical system 𝑆 that is composed of two subsystems 𝑆1 

and 𝑆2, there are some properties for which 𝑆 always possesses values. 

To identify them:

Rule 2: (Born Rule) If 𝑆 is in the state |𝑄⟩, then the probability that 𝑆1 has 

the value 𝑎𝑖 of the property 𝐴 is 𝑐𝑖𝑖
2, and the probability that 𝑆2 has the 

value 𝑏𝑖 of the property 𝐵 is 𝑐𝑖𝑖
2.

(ii) The biorthogonal basis states |𝑎1⟩, , |𝑎𝑁⟩, and |𝑏1⟩, , |𝑏𝑁⟩ are the 

eigenvectors of the determinate properties, call them 𝐴 and 𝐵.

(iii) The subsystems 𝑆1 and 𝑆2 can be said to have determinate values for 

the properties 𝐴 and 𝐵.
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Why this is helpful:

• A Literal Interpretation says: This is a state in which 𝑒 can't be said to have 

the Hardness property, and 𝑚 can't be said to be indicating "hard" or "soft".

Essential Characteristics of Modal Interpretations

(A) Rejection of Eigenvector/Eigenvalue Rule.

(B) Rejection of Projection Postulate.

(C) Probabilities are epistemic.

• Suppose a system is in a state represented by

  |𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑏|"soft"⟩𝑚|soft⟩𝑒    (𝑎 ≠ 𝑏)

• KHD says: This is a state in which 𝑒 does have a definite value of Hardness, 

and 𝑚 is definitely pointing to either "hard" or "soft" (even though we don't 

know what Hardness value 𝑒 has, and we don't know where 𝑚 is pointing).
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3. Three Problems with KHD 

1. Non-uniqueness of biorthogonal expansions.

• Consider the biorthogonal expansion |𝑄⟩ = 𝑐11|𝑎1⟩|𝑏1⟩ + ⋯ + c𝑁𝑁|𝑎𝑁⟩|𝑏𝑁⟩.

• The Biorthog Decomp Theorem says this expansion is unique, provided that 

|𝑐11| ≠ |𝑐11| ≠  ≠ |c𝑁𝑁|.

• If this does not hold; i.e., if any of the expansion coefficients are equal, then 

there will be other biorthogonal expansions of |𝑄⟩, in fact infinitely many.

• In such cases, KHD Rule 1 will say that infinitely many properties will have 

definite values at any given time, and this violates the KS Theorem!

Ex:  |𝑄⟩ = ½ |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + ½ |"soft"⟩𝑚|soft⟩𝑒

 = ½ |"black"⟩𝑚|black⟩𝑒 + ½ |"white"⟩𝑚|white⟩𝑒

 = etc.
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2. Dynamics for determinate properties.

Ex: Bohmian Mechanics can be considered as a modal 

interpretation in which the property dynamics (for 

the position property) is given by Bohm's Equation.

• All modal interpretations (not just KHD) say that, at any given time, a physical 

system possesses the values of some subset of properties (in addition to, and 

including those given by the EE Rule).

• Let Det𝑡 be this set of determinate properties at time 𝑡.

- This set can change from moment to moment!

- In other words, Det𝑡 may be different from Det𝑡′ for 𝑡 ≠ 𝑡′.

Ex: In the KHD version, Det𝑡 depends on the 

component states of the composite system, and 

these component states may change over time.

• So: All modal interpretations need to tell us how Det𝑡 changes over time.

- They need to give us a dynamics for the determinate properties.

- But KHD does not specify this.
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3. Imperfect Measurements.

• This is in the form of a biorthogonal expansion, so KHD says: 

The electron has a definite value of Hardness.

• KHD seemed to work for the post-measurement state:

 |𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑏|"soft"⟩𝑚|soft⟩𝑒      (suppose 𝑎 ≠ 𝑏)

Claim: The post-measurement states that KHD identifies represent ideal perfect 

measurements. For actual imperfect measurements, KHD does not pick out the 

right post-measurement properties.

|𝐽⟩ = 𝑐|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑑|"soft"⟩𝑚|soft⟩𝑒 + 𝑓|"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒 + 𝑔|"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

• But: The Schrödinger-evolved post-measurement state will really be:

Error terms! Represent the fact that real 

measuring devices will never perfectly 

correlate pointers with Hardness property. 

For realistic measuring devices, f and g can be 

made very small, but they will never vanish.
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3. Imperfect Measurements.

• This is in the form of a biorthogonal expansion, so KHD says: 

The electron has a definite value of Hardness.

• KHD seemed to work for the post-measurement state:

 |𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑏|"soft"⟩𝑚|soft⟩𝑒      (suppose 𝑎 ≠ 𝑏)

Claim: The post-measurement states that KHD identifies represent ideal perfect 

measurements. For actual imperfect measurements, KHD does not pick out the 

right post-measurement properties.

|𝐽⟩ = 𝑐|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑑|"soft"⟩𝑚|soft⟩𝑒 + 𝑓|"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒 + 𝑔|"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

• But: The Schrödinger-evolved post-measurement state will really be:

- |𝐽⟩ has a biorthogonal expansion (guaranteed by the Biorthog 

Decomp Theorem), but it will not be the one that KHD cites:

  |𝐽⟩ = 𝑘|w⟩𝑚|grump⟩𝑒 + 𝑙|w′⟩𝑚|gromp⟩𝑒 

- Grump and gromp are values of some property (they are 

eigenvectors of some operator), but not Hardness.

- So the KHD Rule 1 entails that, after a Hardness measurement, the 

electron is either grump or gromp, and not either hard or soft.
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12b. Quantum Logic
1. Motivation

• When a physical system is in a state represented by a superposition, we 

can't use classical logic to describe the properties it possesses.

• Consider the state |𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑏|"soft"⟩𝑚|soft⟩𝑒 .

Goal: To develop a quantum logic that will allow us to say 

meaningful things about the properties of states in superpositions.

Recall: Under a literal interpretation, an electron in this state:

(a) Can't be said to be hard.

(b) Can't be said to be soft.

(c) Can't be said to be both hard and soft.

(d) Can't be said to be neither hard nor soft.

• Perhaps to make sense of such superposed states, we need to change our logic!
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2. Classical Properties and Classical Logic 

The Logic of Classical Mechanics (CM)

• Recall: CM state space = phase space (set of points)

  CM states = points

  CM properties = functions

• Consider the property, "The value of property 𝐴 is 𝑎".

- Classical mechanics represents properties in a certain way 

(functions on a phase space), and this way has a structure 

that is identical to the structure of classical logic.

- Quantum mechanics represents properties in a different way 

(operators on a Hilbert space), so the structure of QM properties 

is different from that of CM properties and classical logic.  

- In QM, this property can be represented by a projection operator.

- In CM, this property is represented by a subset of phase space; 

namely, the collection of all phase space points that represent 

states in which the value of property 𝐴 is 𝑎.
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• Let 𝑃 represent the property "The value of property 𝐴 is 𝑎".
All points in 𝑃 

represent states in 

which the value of 

property 𝐴 is 𝑎.• Let 𝑄 represent the property "The value of property 𝐵 is 𝑏".

Phase space Ω and 

three subsets: 𝑃, 𝑄, 𝑅.

•

• •
• • •

• •
•

• •
•

•

•
•

• • •
•

•

•
Ω

𝑃 𝑄 𝑅

𝑥

𝑦

• The intersection 𝑃 ∩ 𝑄 represents the property

  "The value of property 𝐴 is 𝑎 and the value of property 𝐵 is 𝑏".

• The complement ¬𝑃 represents the property

  "The value of property 𝐴 is not 𝑎".

• The union 𝑃 ∪ 𝑄 represents the property

  "The value of property 𝐴 is 𝑎 or the value of property 𝐵 is 𝑏".

13



Phase space Ω and 

three subsets: 𝑃, 𝑄, 𝑅.

•

• •
• • •

• •
•

• •
•

•

•
•

• • •
•

•

•
Ω

𝑃 𝑄 𝑅

𝑥

𝑦

• Claim: The structure of sets under ∩, ∪ and ¬ is the same as the 

structure of classical sentential logic with connectives ∧𝐶, ∨𝐶 and ¬𝐶.

Let the set 𝑃 represent the sentence 𝑝 = "The value of property 𝐴 is 𝑎."

Let the set 𝑄 represent the sentence 𝑞 = "The value of property 𝐵 is 𝑏."

Then:

- 𝑃 ∩ 𝑄 represents 𝑝 ∧𝐶 𝑞.

- 𝑃 ∪ 𝑄 represents 𝑝 ∨𝐶 𝑞.

- ¬𝑃 represents ¬𝐶𝑝.
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set operation classical logic connective

∩  (intersection)  ∧𝐶  (and)

∪  (union)  ∨𝐶  (or)

¬  (complement)  ¬𝐶  (not)

• A collection of sets with ∩, ∪, ¬ defined on it and a collection of sentences 

with ∧𝐶, ∨𝐶, ¬𝐶 defined on it are both representations of a Boolean algebra.

- CM properties, collections of sets, and classical logic all have the same Boolean 

algebraic structure.

• So: Classical logic = the logic of the structure of CM properties.

An empirical approach to logic!

"Even logic must 
give way to physics."

• This suggests that, when the physics changes, so should the logic!

• Why do we use classical logic to describe the world?

- Because of the way classical physics describes the world.
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The Logic of Quantum Mechanics

• Recall: QM state space = Hilbert space ℋ

  QM states = vectors

  QM properties = operators

• Consider the property, "The value of property 𝐴 is 𝑎".

- Represented by a projection operator 𝑃|𝑎⟩.

- 𝑃|𝑎⟩ projects any vector onto the 1-dim subspace of ℋ (i.e., ray) 

defined by the eigenvector |𝑎⟩ of A with eigenvalue 𝑎.

- So: In QM, properties of the type "The value of property 𝑋 is 𝑥" 

are represented by subspaces (and not subsets).
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• If 𝑉 and 𝑊 are both 1-dim, then 𝑉 ⨁ 𝑊 is a 2-dim subspace; i.e., a plane 

containing all vectors of the form 𝑎|𝑣⟩ + 𝑏|𝑤⟩, where |𝑣⟩ ∈ 𝑉 and |𝑤⟩ ∈ 𝑊.

• 𝑉 ⨁ 𝑊 corresponds to the projection operator 𝑃𝑉⨁𝑊 = 𝑃|𝑣⟩ + 𝑃|𝑤⟩.

• If 𝑉 is 1-dim and 𝑊 is 2-dim, then 𝑉 ⨁ 𝑊 is a 3-dim subspace; etc.

• This means: A subspace is just a part of ℋ that is itself a vector space.

• There is a 1-1 correspondence between projection operators and subspaces.

Def. A subspace of a Hilbert space ℋ is a subset of ℋ 

closed under vector addition and scalar multiplication.

∩  (intersection) 𝑉 ∩ 𝑊 = {all vectors in both 𝑉 and 𝑊}

⨁  (linear span) 𝑉 ⨁ 𝑊 = {all linear combinations of vectors from 𝑉 and 𝑊}

⊥  (orthocomplement) 𝑉⊥ = {all vectors that are orthogonal to vectors in 𝑉}

Subspaces are related by 3 operations:

3. The Structure of Quantum Properties 
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• This means: A subspace is just a part of ℋ that is itself a vector space.

• There is a 1-1 correspondence between projection operators and subspaces.

Def. A subspace of a Hilbert space ℋ is a subset of ℋ 

closed under vector addition and scalar multiplication.

3. The Structure of Quantum Properties 

• Why linear span replaces union: The union of two subspaces is not 

in general a subspace.

- Suppose 𝑉, 𝑊 are both 1-dim subspaces of ℋ.

- Then 𝑉 ∪ 𝑊 is the set of all vectors in both 𝑉 and 𝑊.

- This set is not a subspace: The sum of two vectors from 𝑉 and 𝑊 may not itself be 

in 𝑉 ∪ 𝑊 (it may point in a direction other than the directions defined by 𝑉 and 𝑊)
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The structure of QM properties is given by the subspace structure of a Hilbert 

space (as opposed to the subset structure of a phase space).

• Since Boolean algebras are distributive, this means that the subspace 

structure of QM properties is not a Boolean algebra.

- So it really is different from the subset structure of CM properties and the 

structure of classical logic (which are Boolean)!

• Important property of the subspace structure:   It is not distributive!

Claim: For any subspaces 𝑉, 𝑊, 𝑋, of ℋ, it is not in general the case that

  𝑋 ∩ (𝑉 ⨁ 𝑊) = (𝑋 ∩ 𝑉) ⨁ (𝑋 ∩ 𝑊)

Proof:

- Suppose 𝑉, 𝑊 and 𝑋 are subspaces of ℋ and suppose 𝑋 is a subspace of 𝑉⨁𝑊 

such that 𝑋 is neither a subset of 𝑉 nor a subset of 𝑊.

- This means:  Any vector |𝑥⟩ in 𝑋 can be written as |𝑥⟩ = 𝑎|𝑣⟩ + 𝑏|𝑤⟩, with 

|𝑣⟩ ∈𝑉, |𝑤⟩ ∈𝑊, and 𝑎, 𝑏 nonzero.

- Then 𝑋 ∩ (𝑉 ⨁ 𝑊) = 𝑋.

- But (𝑋 ∩ 𝑉) ⨁ (𝑋 ∩ 𝑊) = 0 ⨁ 0 = 0.
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Boolean algebras are distributive

Classical logic example:  𝑝 ∧𝐶 (𝑞 ∨𝐶 𝑟) ≡ (𝑝 ∧𝐶 𝑞) ∨𝐶 (𝑝 ∧𝐶 𝑟)

𝑝 𝑞 𝑟 𝑞 ∨𝐶 𝑟 𝑝 ∧𝐶 (𝑞 ∨𝐶 𝑟) (𝑝 ∧𝐶 𝑞) (𝑝 ∧𝐶 𝑟) (𝑝 ∧𝐶 𝑞) ∨𝐶 (𝑝 ∧𝐶 𝑟)

T T T T T T T T

T T F T T T F T

T F T T T F T F

T F F F F F F F

F T T T F F F F

F T F T F F F F

F F T T F F F F

F F F F F F F F

𝑃 𝑄

𝑅

Set theory example:

 𝑃 ∩ (𝑄 ∪ 𝑅) = (𝑃 ∩ 𝑄) ∪ (𝑃 ∩ 𝑅)
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- Let the subspace 𝑉 represent the sentence 𝑣 = "The value of property 𝐴 is 𝑎."

- Let the subspace 𝑊 represent the sentence 𝑤 = "The value of property 𝐵 is 𝑏."

- Let the subspace 𝑋 represent the sentence 𝑥 = "The value of property 𝐶 is 𝑐."

Now: Construct a non-Boolean quantum logic based on the following 

correspondences:

- 𝑉 ∩ 𝑊 represents "The value of property 𝐴 is 𝑎 and the value of property 𝐵 is 𝑏"

 (or "𝑣 ∧𝑄 𝑤").

- 𝑉 ⨁ 𝑊 represents "The value of property 𝐴 is 𝑎 or the value of property C is c"

 (or "𝑣 ∨𝑄 𝑤").

- 𝑉⊥ represents "The value of property 𝐴 is not 𝑎" (or "¬𝑄𝑣").

subspace operation quantum logic connective

∩ (intersection) ∧𝑄 (and)

⨁ (linear span) ∨𝑄 (or)

⊥ (orthocomplement) ¬𝑄 (not)
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Why this is supposed to help: We can now claim that, as a matter of Quantum Logic:

Why?
"The value of property 𝐴 is 𝑎1, or 

the value of property 𝐴 is 𝑎2, or ..., or 

the value of property 𝐴 is 𝑎𝑁."

means

- Now note: 𝑉1 ⨁ ⋯ ⨁ 𝑉𝑁 = ℋ, and it's always true that the state of a system 

lies in its state space ℋ.

- So: As a matter of QL, all properties always have definite values at all times, 

even properties of measuring devices in superposed states!

(1) "𝐴 has a definite value" is a QL tautology (always a true statement), for all 

properties 𝐴.

where 𝑉1, ..., 𝑉𝑁 are the 1-dim 

subspaces spanned respectively by 

the eigenvectors |𝑎1⟩, ..., |𝑎𝑁⟩ of 𝐴.

which
means

"The state of the system 

lies in 𝑉1 ⨁ ⋯ ⨁ 𝑉𝑁."

"𝐴 has a definite value."
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Why? Suppose 𝐴 and 𝐵 are incompatible properties (i.e., Hardness and Color).

"Property 𝐴 has a 

value and property 

𝐵 has a value."

means

"(The value of 𝐴 is 𝑎1 and the value of 𝐵 is 𝑏1) or 

(the value of 𝐴 is 𝑎1 and the value of 𝐵 is 𝑏2) or ... or 

(the value of 𝐴 is 𝑎2 and the value of 𝐵 is 𝑏1) or ... or 

(the value of 𝐴 is 𝑎𝑁 and the value of 𝐵 is 𝑏𝑁)."

which
means

"The state of the system lies in (𝑉1 ∩ 𝑊1) ⨁ (𝑉1 ∩ 𝑊2) ⨁ ⋯ 

⨁ (𝑉2 ∩ 𝑊1) ⨁ ⋯ ⨁ (𝑉𝑁 ∩ 𝑊𝑁)."

- Note: Since 𝑉𝑖 and 𝑊𝑗 are disjoint for any 𝑖, 𝑗, all the intersection 

terms are the empty subspace ∅ (contains no vectors), and we're left 

with ∅ ⨁ ∅ ⨁ ⋯ ⨁ ∅ = ∅.

- But: The state of the system is somewhere in ℋ. So the statement that 

it is "nowhere" (i.e., in the empty subspace) is always false.
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Why this is supposed to help: We can now claim that, as a matter of Quantum Logic:

(2) Statements about incompatible properties possessing simultaneous 

values are contradictory (always false).



Essential Characteristics of QL Interpretation

(A) Rejects Eigenvector/Eigenvalue Rule

(B) Rejects of Projection Postulate

(C) Probabilities are epistemic

• All 3 characteristics are a result of the QL claim that all properties have 

determinate values at all times.

Major Problem: If QL says all properties of a system have definite 

values at all times, this gets around the Measurement Problem, 

but it then runs up against the Kochen-Specker Theorem!
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- Let 𝑉1, 𝑉2, ..., 𝑉𝑁 and 𝑊1, 𝑊2, ..., 𝑊𝑁 be the 1-dim subspaces spanned by the 

eigenvectors |𝑎1⟩, |𝑎2⟩, ..., |𝑎𝑁⟩ and |𝑏1⟩, |𝑏2⟩, ..., |𝑏𝑁⟩ of two operators 𝐴, 𝐵.

How QL can get around the KS Theorem:

• First show that, according to QL, to say that every property always has 

a value is not to say that there is always a value that every property has:

- Then 𝑊𝑖 ∩ (𝑉1 ⨁ 𝑉2 ⨁ ⋯ ⨁ 𝑉𝑁) represents the sentence:

 "The value of property 𝐵 is 𝑏𝑖 and property 𝐴 has a definite value." (∗)

- Which means: "The value of 𝐵 is 𝑏𝑖 and the value of 𝐴 lies in {𝑎1, 𝑎2, ..., 𝑎𝑁}."

- Which means: "The value of 𝐵 is 𝑏𝑖 and there is a value that 𝐴 has."

- Now: 𝑊𝑖 ∩ (𝑉1 ⨁ 𝑉2 ⨁ ⋯ ⨁ 𝑉𝑁) ≠ (𝑊𝑖 ∩ 𝑉1) ⨁ (𝑊𝑖 ∩ 𝑉2) ⨁ ⋯ ⨁ (𝑊𝑖 ∩ 𝑉𝑁).

- So: The sentences (∗) and (∗∗) do not mean the same thing!

- Thus: To say that property 𝐴 has a definite value is not to say that there is 

some definite value (𝑎1, 𝑎2, ..., 𝑎𝑁) it has!

- And (𝑊𝑖 ∩ 𝑉1) ⨁ (𝑊𝑖 ∩ 𝑉2) ⨁ ⋯ ⨁ (𝑊𝑖 ∩ 𝑉𝑁) represents the sentence:

"(The value of 𝐵 is 𝑏𝑖 and the value of 𝐴 is 𝑎1) or 

(the value of 𝐵 is 𝑏𝑖 and the value of 𝐴 is 𝑎2) or ... or 

(the value of 𝐵 is 𝑏𝑖 and the value of 𝐴 is 𝑎𝑁)."

(∗∗)
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Def. A disjunctive property is a property that possesses a 

disjunction (𝑎1 or 𝑎2 or 𝑎3 or ...) of individual values, any 

one of which the property cannot be said to possess.

• Now Claim: All quantum properties are disjunctive properties!

• Lingering Concern:

- Under this view, QL is motivated by the desire to view properties realistically.

- Does the notion of a disjunctive property really provide us with an adequate 

notion of property realism?

• Next: Define the notion of a "disjunctive property":

How this gets around the KS Theorem:

- KS says: A quantum property may fail to possess a value at a given time.

- QL agrees and says: While a quantum property may fail to possess any 

given value at a given time, it always possesses a disjunction of all of its 

values at all times.
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