
12a.	Modal	Interpretations	

• Let's	return	to	using	Hilbert	spaces	to	represent	QM	state	spaces,	and	operators	
to	represent	properties.

• Recall:	The	Kochen-Specker	Theorem says	that	the	properties	associated	with	a	
Hilbert	space	ℋ can't	all have	values	at	the	same	time	(if	dimℋ≥ 3).

Ex:	Bohm's	Theory
- One	property	(position)	is	always	determinate	(always	has	a	value).
- All	other	properties	are	contextual – their	values	depend	on	how	
they	are	measured.

• One	Way	to	Avoid	KS:	Claim	that	some (not	all)	properties	defined	on	H	always	
have	determinate	values	(even	in	superpositions),	others	do	not.

Modal	Interpretations	Claim:
(A) For	any	Hilbert	space	ℋ,	there	is	a	subset	of	operators	that	represent	

properties	that	are	always	determinate	(always	possess	values).		
(B) The	QM	probabilities	for	these	properties	are	epistemic:	for	these	

properties,	probabilities	represent	our	ignorance	of	their	actual	values.
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Modal Interpretations reject the Eigenvector/Eigenvalue Rule:

A	physical	system	
possesses	the	value	
𝜆 of	a	property.

The	state	of	the	system	is	
represented	by	an	eigenvector	
of	the	operator	representing	the	
property	with	eigenvalue	𝜆.

if	and	only	if

- Modal	intepretations	allow	for	a	state	to	possess	the	value	of	a	property,	
even	when	it	is	not	an	eigenvector	of	the	associated	operator.

- They	claim:	For	any	given	state	|𝜓⟩,	in	addition	to	those	properties	for	
which	|𝜓⟩ is	an	eigenvector,	there	are	other properties	for	which	|𝜓⟩
also	possesses	values	(the	always-determinate	"modal"	propeties).

- So:	Modal	interpretations	agree	with	the	"if" part	(⇐) of	EE.
- But:	They	disagree	with	the	"only	if" part	(⇒) of	EE.

• Initial	task	for	Modal	Interpretations:
Identify	the	subset	of	always-
determinate	"modal"	properties. Different versions pick out 

different modal properties.
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Biorthogonal	Decomposition	Theorem:
Let	|𝑄⟩ be	a	vector	in	the	product	Hilbert	space	ℋ1⨂	ℋ2.	Then	there	
is	a	basis	|𝑎1⟩,	…,	|𝑎𝑁⟩ of	ℋ1,	and	a	basis	|𝑏1⟩,	…,	|𝑏𝑁⟩ of	ℋ2 such	that	
|𝑄⟩ can	be	expanded	as:

|𝑄⟩ =	𝑐11|𝑎1⟩|𝑏1⟩ +	c22|𝑎2⟩|𝑏2⟩ +	⋯	+	c𝑁𝑁|𝑎𝑁⟩|𝑏𝑁⟩

And,	if	|𝑐11|	≠ |𝑐22|	≠ ⋯ ≠ |𝑐𝑁𝑁|,	then	these	bases	are	unique.

2.	KHD	Modal	Interpretation Kochen	(1985),	Healy	(1989),	Dieks	(1991)

• Claim:	At	any	given	time,	the	subset	of	always-
determinate	properties	is	given	by	the	basis	states	of	
the	biorthogonal	expansion of	the	system's	state	vector.

- In	general,	if	|𝑔1⟩,	…,	|𝑔𝑁⟩ and	|ℎ1⟩,	…,	|ℎ𝑁⟩ are	bases	of	ℋ1 and	ℋ2,	then	any	
vector	|𝑄⟩ can	be	expanded	as

|𝑄⟩ =	𝑑11|𝑔1⟩|ℎ1⟩ +	𝑑12|𝑔1⟩|ℎ2⟩ +	⋯ +	𝑑21|𝑔2⟩|ℎ1⟩ +	𝑑22|𝑔2⟩|ℎ2⟩ +	⋯ .
- The	Biorthog	Decomp	Theorem says	that	there	are	some	bases	in	which	the	
"cross	terms"	with	coefficients	𝑑12,	𝑑21,	etc,	all	vanish.	And	these	bases	will	be	
unique	just	when	all	the	remaining	coefficients	are	different	from	each	other.

Simon	
Kochen

Richard	
Healy

Dennis	
Dieks
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• Because	these	are	the	bases	associated	with	post-measurement systems.

Why do we want bases in which the cross terms vanish?

• So:	KHD	just	stipulates that	properties	associated	with	biorthogonal	expansion	
bases	are	always	determinate.

Example:	Composite	system	of	Hardnessmeasuring	device	𝑚 and	black electron	𝑒.
- A	basis	for	𝑚-𝑒 system:
{|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒,	|"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒,	|"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒,	|"soft"⟩𝑚|soft⟩𝑒}

- General	expansion	of	a	state	|𝑄⟩ in	this	basis	is:
|𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑐|"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒+ 𝑑|"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑏|"soft"⟩𝑚|soft⟩𝑒

- If	this	basis	is	biorthogonal,	then	𝑐 =	𝑑 =	0,	and	we	have:
|𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑏|"soft"⟩𝑚|soft⟩𝑒

- This	is	just	the	post-measurement	state	of	our	composite	system!
- We	could	avoid	the	Projection	Postulate	if	we	assume	that	the	properties	
associated	with	these	bases	vectors	(pointing	to	"hard"	or	"soft"	for	𝑚,	being	
hard or	soft for	𝑒)	are	always	determinate.
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KHD	Rules	(replace	Projection	Postulate):

(i) Expand	the	state	vector	|𝑄⟩ for	𝑆 in	its	biorthogonal	decomposition:
|𝑄⟩ =	𝑐11|𝑎1⟩|𝑏1⟩ +	c22|𝑎2⟩|𝑏2⟩ +	⋯	+	c𝑁𝑁|𝑎𝑁⟩|𝑏𝑁⟩

Rule	1:	For	any	physical	system	𝑆 that	is	composed	of	two	subsystems	𝑆1
and	𝑆2,	there	are	some	properties	for	which	𝑆 always	possesses	values.	
To	identify	them:

Rule	2:	(Born	Rule)	If	𝑆 is	in	the	state	|𝑄⟩,	then	the	probability	that	𝑆1 has	
the	value	𝑎𝑖 of	the	property	𝐴 is	𝑐𝑖𝑖2,	and	the	probability	that	𝑆2 has	the	
value	𝑏𝑖 of	the	property	𝐵 is	𝑐𝑖𝑖2.

(ii) The	biorthogonal	basis	states	|𝑎1⟩,	…,	|𝑎𝑁⟩,	and	|𝑏1⟩,	…,	|𝑏𝑁⟩ are	the	
eigenvectors	of	the	determinate	properties,	call	them	𝐴 and	𝐵.

(iii) The	subsystems	𝑆1 and	𝑆2 can	be	said	to	have	determinate	values	for	
the	properties	𝐴 and	𝐵,	so	identified.
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Why this is helpful:

• A	Literal	Interpretation	says: This	is	a	state	in	which	𝑒 can't	be	said	to	have	
the	Hardness property,	and	𝑚 can't	be	said	to	be	indicating	"hard"	or	"soft".

Essential	Characteristics	of	Modal	Interpretations
(A) Rejection	of	Eigenvector/Eigenvalue	Rule.
(B) Rejection	of	Projection	Postulate.
(C) Probabilities	are	epistemic.

• Suppose	a	system	is	in	a	state	represented	by
|𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑏|"soft"⟩𝑚|soft⟩𝑒 (𝑎 ≠ 𝑏)

• KHD	says: This	is	a	state	in	which	𝑒 does	have	a	definite	value	of	Hardness,	
and	𝑚 is	definitely	pointing	to	either	"hard"	or	"soft"	(even	though	we	don't	
know	what	Hardness value	𝑒 has,	and	we	don't	know	where	𝑚 is	pointing).
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3.	Three	Problems	with	KHD	
1.	Non-uniqueness	of	biorthogonal	expansions.
• Consider	the	biorthogonal	expansion	|𝑄⟩ =	𝑐11|𝑎1⟩|𝑏1⟩ +	⋯	+	c𝑁𝑁|𝑎𝑁⟩|𝑏𝑁⟩.
• The	Biorthog	Decomp	Theorem says	this	expansion	is	unique,	provided	that	
|𝑐11|	≠ |𝑐11|	≠…≠ |c𝑁𝑁|.

• If	this	does	not	hold;	i.e.,	if	any	of	the	expansion	coefficients	are	equal,	then	
there	will	be	other	biorthogonal	expansions	of	|𝑄⟩,	in	fact	infinitelymany.

• In	such	cases,	KHD Rule	1will	say	that	infinitely	many	properties	will	have	
definite	values	at	any	given	time,	and	this	violates	the	KS Theorem!

Ex:		|𝑄⟩ = ½ |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ ½ |"soft"⟩𝑚|soft⟩𝑒
=	 ½ |"black"⟩𝑚|black⟩𝑒+ ½ |"white"⟩𝑚|white⟩𝑒
=	etc.
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2.	Dynamics	for	determinate	properties.

Ex:	Bohmian	Mechanics	can	be	considered	as	a	modal	
interpretation	in	which	the	property	dynamics	(for	
the	position	property)	is	given	by	Bohm's	Equation.

• All	modal	interpretations	(not	just	KHD)	say	that,	at	any	given	time,	a	physical	
system	possesses	the	values	of	some	subset	of	properties	(in	addition	to,	and	
including	those	given	by	the	EE	Rule).

• Let	Det𝑡 be	this	set	of	determinate	properties	at	time	𝑡.
- This	set	can	change	from	moment	to	moment!
- In	other	words,	Det𝑡may	be	different	from	Det𝑡′ for	𝑡 ≠ 𝑡′.

Ex:	In	the	KHD version,	Det𝑡 depends	on	the	
component	states	of	the	composite	system,	and	
these	component	states	may	change	over	time.

• So:	All	modal	interpretations	need	to	tell	us	how	Det𝑡 changes	over	time.
-They	need	to	give	us	a	dynamics for	the	determinate	properties.
-But	KHD	does	not	specify	this.
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3.	Imperfect	Measurements.

• This	is	in	the	form	of	a	biorthogonal	expansion,	so	KHD says:	
The	electron	has	a	definite	value	of	Hardness.

• KHD seemed	to	work	for	the	post-measurement	state:
|𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑏|"soft"⟩𝑚|soft⟩𝑒 (suppose	𝑎 ≠ 𝑏)

Claim:	The	post-measurement	states	that	KHD identifies	represent	ideal perfect	
measurements.	For	actual imperfect	measurements,	KHD does	not	pick	out	the	
right	post-measurement	properties.

|𝐽⟩ =	𝑐|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑑|"soft"⟩𝑚|soft⟩𝑒+ 𝑓|"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒+ 𝑔|"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

• But:	The	Schrödinger-evolved	post-measurement	state	will	really be:

Error	terms! Represent	the	fact	that	real	
measuring	devices	will	never	perfectly	
correlate	pointers	with	Hardness	property.	
For	realistic	measuring	devices,	f	and	g	can	be	
made	very	small,	but	they	will	never	vanish.
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3.	Imperfect	Measurements.

• This	is	in	the	form	of	a	biorthogonal	expansion,	so	KHD says:	
The	electron	has	a	definite	value	of	Hardness.

• KHD seemed	to	work	for	the	post-measurement	state:
|𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑏|"soft"⟩𝑚|soft⟩𝑒 (suppose	𝑎 ≠ 𝑏)

Claim:	The	post-measurement	states	that	KHD identifies	represent	ideal perfect	
measurements.	For	actual imperfect	measurements,	KHD does	not	pick	out	the	
right	post-measurement	properties.

|𝐽⟩ =	𝑐|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑑|"soft"⟩𝑚|soft⟩𝑒+ 𝑓|"ℎ𝑎𝑟𝑑"⟩𝑚|soft⟩𝑒+ 𝑔|"soft"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

• But:	The	Schrödinger-evolved	post-measurement	state	will	really be:

- |𝐽⟩ has	a	biorthogonal	expansion	(guaranteed	by	the	Biorthog	
Decomp	Theorem),	but	it	will	not be	the	one	that	KHD cites:
|𝐽⟩ = 𝑘|w⟩𝑚|grump⟩𝑒+ 𝑙|w′⟩𝑚|gromp⟩𝑒

- Grump and	gromp are	values	of	some property	(they	are	
eigenvectors	of	some operator),	but	not	Hardness.

- So	the	KHD Rule 1 entails	that,	after	a	Hardnessmeasurement,	the	
electron	is	either	grump or	gromp,	and	not	either	hard or	soft.
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12b.	Quantum	Logic
1.	Motivation
• When	a	physical	system	is	in	a	state	represented	by	a	superposition,	we	
can't	use	classical	logic	to	describe	the	properties	it	possesses.

• Consider	the	state	|𝑄⟩ = 𝑎|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+ 𝑏|"soft"⟩𝑚|soft⟩𝑒 .

Goal:	To	develop	a	quantum logic	that	will	allow	us	to	say	
meaningful	things	about	the	properties	of	states	in	superpositions.

Recall:	Under	a	literal	interpretation,	an	electron	in	this	state:
(a) Can't	be	said	to	be	hard.
(b) Can't	be	said	to	be	soft.
(c) Can't	be	said	to	be	both	hard and	soft.
(d) Can't	be	said	to	be	neither	hard nor	soft.

• Perhaps	to	make	sense	of	such	superposed	states,	we	need	to	change	our	logic!
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2.	Classical	Properties	and	Classical	Logic	

The	Logic	of	Classical	Mechanics	(CM)
• Recall: CM	state	space= phase	space	(set	of	points)

CM	states= points
CM	properties= functions

• Consider	the	property,	"The	value	of	property	𝐴 is	𝑎".

- Classical	mechanics	represents	properties	in	a	certain	way	
(functions	on	a	phase	space),	and	this	way	has	a	structure	
that	is	identical	to	the	structure	of	classical	logic.

- Quantum	mechanics	represents	properties	in	a	different	way	
(operators	on	a	Hilbert	space),	so	the	structure	of	QM	properties	
is	different	from	that	of	CM	properties	and	classical	logic.		

- In	QM,	this	property	can	be	represented	by	a	projection	operator.
- In	CM,	this	property	is	represented	by	a	subset of	phase	space;	
namely,	the	collection	of	all	phase	space	points	that	represent	
states	in	which	the	value	of	property	𝐴 is	𝑎.
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• Let	𝑃 represent	the	property	"The	value	of	property	𝐴 is	𝑎".
All points in 𝑃
represent states in 
which the value of 
property 𝐴 is 𝑎.• Let	𝑄 represent	the	property	"The	value	of	property	𝐵 is	𝑏".

Phase	space	Ω and	
three	subsets:	𝑃,	𝑄,	𝑅.

•

• •
• • •

• •
•

• • •
•

•
•

• • •
•

•

•Ω

𝑃 𝑄 𝑅

𝑥
𝑦

• The	intersection	𝑃 ∩ 𝑄 represents	the	property
"The	value	of	property	𝐴 is	𝑎 and the	value	of	property	𝐵 is	𝑏".

• The	complement	¬𝑃 represents	the	property
"The	value	of	property	𝐴 is	not 𝑎".

• The	union	𝑃 ∪ 𝑄 represents	the	property
"The	value	of	property	𝐴 is	𝑎 or the	value	of	property	𝐵 is	𝑏".
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Phase	space	Ω and	
three	subsets:	𝑃,	𝑄,	𝑅.

•

• •
• • •

• •
•

• • •
•

•
•

• • •
•

•

•Ω

𝑃 𝑄 𝑅

𝑥
𝑦

• Claim:	The	structure	of	sets	under	∩,	∪ and	¬ is	the	same	as	the	
structure	of	classical	sentential	logic	with	connectives	∧𝐶,	∨𝐶 and	¬𝐶.

Let	the	set	𝑃 represent	the	sentence	𝑝 = "The	value	of	property	𝐴 is	𝑎."
Let	the	set	𝑄 represent	the	sentence	𝑞 = "The	value	of	property	𝐵 is	𝑏."
Then:
- 𝑃 ∩ 𝑄 represents	𝑝 ∧𝐶 𝑞.
- 𝑃 ∪ 𝑄 represents	𝑝 ∨𝐶 𝑞.
- ¬𝑃 represents	¬𝐶𝑝.
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set	operation classical	logic	connective
∩ (intersection) ∧𝐶 (and)
∪ (union) ∨𝐶 (or)
¬ (complement) ¬𝐶 (not)

• A	collection	of	sets	with	∩,	∪,	¬ defined	on	it	and	a	collection	of	sentences	
with	∧𝐶,	∨𝐶,	¬𝐶 defined	on	it	are	both	representations	of	a	Boolean	algebra.
- CM	properties,	collections	of	sets,	and	classical	logic	all	have	the	same	Boolean	
algebraic	structure.

• So:	Classical	logic	= the	logic	of	the	structure	of	CM properties.
An empirical approach to logic!

"Even	logic	must	
give	way	to	physics."

• This	suggests	that,	when	the	physics	changes,	so	should	the	logic!

• Why	do	we	use	classical	logic	to	describe	the	world?
- Because	of	the	way	classical	physics	describes	the	world.
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The	Logic	of	Quantum	Mechanics

• Recall: QM	state	space= Hilbert	space	ℋ
QM	states= vectors
QM	properties= operators

• Consider	the	property,	"The	value	of	property	𝐴 is	𝑎".

- Represented	by	a	projection	operator	𝑃|𝑎⟩.
- 𝑃|𝑎⟩ projects	any	vector	onto	the	1-dim	subspace of	ℋ(i.e.,	ray)	
defined	by	the	eigenvector	|𝑎⟩ of	Awith	eigenvalue	𝑎.

- So:	In	QM,	properties	of	the	type	"The	value	of	property	𝑋 is	𝑥"	
are	represented	by	subspaces (and	not	subsets).
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• If	𝑉 and	𝑊 are	both	1-dim,	then	𝑉⨁𝑊 is	a	2-dim	subspace;	i.e.,	a	plane	
containing	all	vectors	of	the	form	𝑎|𝑣⟩ +	𝑏|𝑤⟩,	where	|𝑣⟩ ∈ 𝑉 and	|𝑤⟩ ∈𝑊.

• 𝑉⨁𝑊 corresponds	to	the	projection	operator	𝑃𝑉⨁𝑊=	𝑃|𝑣⟩+	𝑃|𝑤⟩.
• If	𝑉 is	1-dim	and	𝑊 is	2-dim,	then	𝑉⨁𝑊 is	a	3-dim	subspace;	etc.

• This	means:	A	subspace	is	just	a	part	of	ℋ that	is	itself	a	vector	space.
• There	is	a	1-1	correspondence	between	projection	operators	and	subspaces.

Def.	A	subspace of	a	Hilbert	space	ℋ is	a	subset	of	ℋ
closed	under	vector	addition	and	scalar	multiplication.

∩ (intersection) 𝑉 ∩	𝑊=	{all	vectors	in	both	𝑉 and	𝑊}
⨁ (linear	span) 𝑉⨁𝑊=	{all	linear	combinations of	vectors	from	𝑉 and	𝑊}
⊥ (orthocomplement) 𝑉⊥=	{all	vectors	that	are	orthogonal to	vectors	in	𝑉}

Subspaces	are	related	by	3	operations:

3.	The	Structure	of	Quantum	Properties	
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• This	means:	A	subspace	is	just	a	part	of	ℋ that	is	itself	a	vector	space.
• There	is	a	1-1	correspondence	between	projection	operators	and	subspaces.

Def.	A	subspace of	a	Hilbert	space	ℋ is	a	subset	of	ℋ
closed	under	vector	addition	and	scalar	multiplication.

3.	The	Structure	of	Quantum	Properties	

• Why	linear	span	replaces	union:	The	union of	two	subspaces	is	not	
in	general	a	subspace.

- Suppose	𝑉,	𝑊 are	both	1-dim	subspaces	of	ℋ.
- Then	𝑉 ∪𝑊 is	the	set	of	all	vectors	in	both	𝑉 and	𝑊.
- This	set	is	not	a	subspace:	The	sum	of	two	vectors	from	𝑉 and	𝑊may	not	itself	be	
in	𝑉 ∪𝑊 (it	may	point	in	a	direction	other	than	the	directions	defined	by	𝑉 and	𝑊)
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∩ (intersection) 𝑉 ∩	𝑊=	{all	vectors	in	both	𝑉 and	𝑊}
⨁ (linear	span) 𝑉⨁𝑊=	{all	linear	combinations of	vectors	from	𝑉 and	𝑊}
⊥ (orthocomplement) 𝑉⊥=	{all	vectors	that	are	orthogonal to	vectors	in	𝑉}

Subspaces	are	related	by	3	operations:



The	structure	of	QM properties	is	given	by	the	subspace	structure of	a	Hilbert	
space	(as	opposed	to	the	subset	structure of	a	phase	space).

• Since	Boolean	algebras	are	distributive,	this	means	that	the	subspace	
structure	of	QM	properties	is	not	a	Boolean	algebra.
- So	it	really	is	different	from	the	subset	structure	of	CM	properties	and	the	
structure	of	classical	logic	(which	are	Boolean)!

• Important	property	of	the	subspace	structure:			It is not distributive!

Claim:	For any	subspaces 𝑉,	𝑊,	𝑋, of	ℋ,	it	is	not	in	general	the	case	that
𝑋 ∩ (𝑉 ⨁𝑊)	=	(𝑋 ∩ 𝑉)	⨁ (𝑋 ∩𝑊)

Proof:
- Suppose	𝑉,	𝑊 and	𝑋 are	subspaces	of	ℋ and	suppose	𝑋 is	a	subspace	of	𝑉⨁𝑊
such	that	𝑋 is	neither	a	subset	of	𝑉 nor	a	subset	of	𝑊.

- This	means:		Any	vector	|𝑥⟩ in	𝑋 can	be	written	as	|𝑥⟩	=	𝑎|𝑣⟩	+	𝑏|𝑤⟩,	with	
|𝑣⟩∈𝑉,	|𝑤⟩∈𝑊,	and	𝑎,	𝑏 nonzero.

- Then	𝑋 ∩ (𝑉⨁𝑊)	=	𝑋.
- But	(𝑋 ∩ 𝑉)	⨁ (𝑋 ∩𝑊)	=	0	⨁ 0	=	0.
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Boolean	algebras	are	distributive

Classical	logic	example:		𝑝 ∧𝐶 (𝑞 ∨𝐶 𝑟)	≡ (𝑝 ∧𝐶 𝑞)	∨𝐶 (𝑝 ∧𝐶 𝑟)

𝑝 𝑞 𝑟 𝑞 ∨𝐶 𝑟 𝑝 ∧𝐶 (𝑞 ∨𝐶 𝑟) (𝑝 ∧𝐶 𝑞) (𝑝 ∧𝐶 𝑟) (𝑝 ∧𝐶 𝑞)	∨𝐶 (𝑝 ∧𝐶 𝑟)
T T T T T T T T
T T F T T T F T
T F T T T F T F
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

𝑃 𝑄

𝑅

Set	theory	example:
𝑃 ∩ (𝑄 ∪ 𝑅)	=	(𝑃 ∩ 𝑄)	∪ (𝑃 ∩ 𝑅)
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- Let	the	subspace	𝑉 represent	the	sentence	𝑣 = "The	value	of	property	𝐴 is	𝑎."
- Let	the	subspace	𝑊 represent	the	sentence	𝑤= "The	value	of	property	𝐵 is	𝑏."
- Let	the	subspace	𝑋 represent	the	sentence	𝑥 = "The	value	of	property	𝐶 is	𝑐."

Now:	Construct	a	non-Boolean quantum	logic	based	on	the	following	
correspondences:

- 𝑉 ∩W represents	"The	value	of	property	𝐴 is	𝑎 and	the	value	of	property	𝐵 is	𝑏"
(or	"𝑣 ∧𝑄𝑤").

- 𝑉⨁𝑊 represents	"The	value	of	property	𝐴 is	𝑎 or	the	value	of	property	C is	c"
(or	"𝑣 ∨𝑄𝑤").

- 𝑉⊥ represents	"The	value	of	property	𝐴 is	not	𝑎"	(or	"¬𝑄𝑣").

subspace	operation quantum	logic	connective
∩ (intersection) ∧𝑄 (and)
⨁ (linear	span) ∨𝑄 (or)
⊥ (orthocomplement) ¬𝑄 (not)
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Why	this	is	supposed	to	help:	We	can	now	claim	that,	as	a	matter	of	QL	(Quantum	
Logic):

Why? "The	value	of	property	𝐴 is	𝑎1,	or
the	value	of	property	𝐴 is	𝑎2,	or ...,	or
the	value	of	property	𝐴 is	𝑎𝑁."

means

- Now	note:	𝑉1⨁⋯	⨁ 𝑉𝑁=	ℋ,	and	it's	always	true	that	the	state	of	a	system	
lies	in	its	state	space	ℋ.

- So:	As	a	matter	of	QL,	all	properties	always have	definite	values	at	all	times,	
even	properties	of	measuring	devices	in	superposed	states!

(1) "𝐴 has	a	definite	value"	is	a	QL tautology (always	a	true	statement),	for	all
properties	𝐴.

where	𝑉1,	...,	𝑉𝑁 are	the	1-dim	
subspaces	spanned	respectively	by	
the	eigenvectors	|𝑎1⟩,	...,	|𝑎𝑁⟩ of	𝐴.

which
means

"The	state	of	the	system	
lies	in	𝑉1⨁⋯	⨁ 𝑉𝑁."

"𝐴 has	a	definite	value."
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(2) Statements	about	incompatible	properties	possessing	simultaneous	
values	are	contradictory	(always	false).

Why? Suppose	𝐴 and	𝐵 are	incompatible	properties	(i.e.,	Hardness and	Color).

"Property	𝐴 has	a	
value	and	property	
𝐵 has	a	value."

means

"(The	value	of	𝐴 is	𝑎1 and the	value	of	𝐵 is	𝑏1)	or
(the	value	of	𝐴 is	𝑎1 and the	value	of	𝐵 is	𝑏2)	or ...	or
(the	value	of	𝐴 is	𝑎2 and the	value	of	𝐵 is	𝑏1)	or ...	or
(the	value	of	𝐴 is	𝑎𝑁 and the	value	of	𝐵 is	𝑏𝑁)."

which
means

"The	state	of	the	system	lies	in	(𝑉1 ∩𝑊1)	⨁ (𝑉1 ∩𝑊2)	⨁⋯	
⨁ (𝑉2 ∩𝑊1)	⨁⋯	⨁ (𝑉𝑁∩𝑊𝑁)."

- Note:	Since	𝑉𝑖 and	𝑊𝑗 are	disjoint	for	any	𝑖,	𝑗,	all	the	intersection	
terms	are	the	empty	subspace	∅ (contains	no	vectors),	and	we're	left	
with	∅	⨁ ∅	⨁⋯	⨁ ∅	=	∅.

- But:	The	state	of	the	system	is	somewhere in	ℋ.	So	the	statement	that	
it	is	"nowhere"	(i.e.,	in	the	empty	subspace)	is	always	false.
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Essential	Characteristics	of	QL	Interpretation
(A) Rejects	Eigenvector/Eigenvalue	Rule
(B) Rejects	of	Projection	Postulate
(C) Probabilities	are	epistemic

• All	3	characteristics	are	a	result	of	the	QL	claim	that	all	properties	have	
determinate	values	at	all	times.

Major	Problem:	If	QL	says	all	properties	of	a	system	have	definite	
values	at	all	times,	this	gets	around	the	Measurement	Problem,	
but	it	then	runs	up	against	the	Kochen-Specker	Theorem!
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- Let	𝑉1,	𝑉2,	...,	𝑉𝑁 and	𝑊1,	𝑊2,	...,	𝑊𝑁 be	the	1-dim	subspaces	spanned	by	the	
eigenvectors	|𝑎1⟩,	|𝑎2⟩,	...,	|𝑎𝑁⟩ and	|𝑏1⟩, |𝑏2⟩,	...,	|𝑏𝑁⟩ of	two	operators	𝐴,	𝐵.

How	QL	can	get	around	the	KS	Theorem:
• First	show	that,	according	to	QL,	to	say	that	every	property	always	has	
a	value	is	not	to	say	that	there	is	always	a	value	that	every	property	has:

- Then	𝑊𝑖 ∩ (𝑉1⨁𝑉2⨁⋯	⨁ 𝑉𝑁) represents	the	sentence:
"The	value	of	property	𝐵 is	𝑏𝑖 and property	𝐴 has	a	definite	value." (∗)

- Which	means:	"The	value	of	𝐵 is	𝑏𝑖 and the	value	of	𝐴 lies	in	{𝑎1,	𝑎2,	...,	𝑎𝑁}."
- Which	means:	"The	value	of	𝐵 is	𝑏𝑖 and there	is	a	value	that	𝐴 has."
- Now:	𝑊𝑖 ∩ (𝑉1⨁𝑉2⨁⋯	⨁ 𝑉𝑁)	≠ (𝑊𝑖 ∩ 𝑉1)	⨁ (𝑊𝑖 ∩ 𝑉2)	⨁⋯	⨁ (𝑊𝑖 ∩ 𝑉𝑁).
- So:	The	sentences	(∗) and	(∗∗) do	not	mean	the	same	thing!
- Thus:	To	say	that	property	𝐴 has	a	definite	value	is	not	to	say	that	there	is	
some	definite	value	(𝑎1,	𝑎2,	...,	𝑎𝑁)	it	has!

- And	(𝑊𝑖 ∩ 𝑉1)	⨁ (𝑊𝑖 ∩ 𝑉2)	⨁⋯	⨁ (𝑊𝑖 ∩ 𝑉𝑁) represents	the	sentence:

"(The	value	of	𝐵 is	𝑏𝑖 and the	value	of	𝐴 is	𝑎1)	or
(the	value	of	𝐵 is	𝑏𝑖 and the	value	of	𝐴 is	𝑎2)	or ...	or
(the	value	of	𝐵 is	𝑏𝑖 and the	value	of	𝐴 is	𝑎𝑁)."

(∗∗)

25



Def. A	disjunctive	property is	a	property	that	possesses	a	
disjunction	(𝑎1 or	𝑎2 or	𝑎3 or	...)	of	individual	values,	any	
one	of	which	the	property	cannot	be	said	to	possess.

• Now	Claim:	All	quantum	properties	are	disjunctive	properties!

• Lingering	Concern:
- Under	this	view,	QL	is	motivated	by	the	desire	to	view	properties	realistically.
- Does	the	notion	of	a	disjunctive	property	really	provide	us	with	an	adequate	
notion	of	property	realism?

• Next:	Define	the	notion	of	a	"disjunctive	property":

How	this	gets	around	the	KS	Theorem:
- KS	says:	A	quantum	property	may	fail	to	possess	a	value	at	a	given	time.
- QL	agrees	and	says:	While	a	quantum	property	may	fail	to	possess	any	
given	value	at	a	given	time,	it	always	possesses	a	disjunction	of	all	of	its	
values	at	all	times.
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