12a. Modal Interpretations

1. General Features

- 1. General Features
- 2. KHD Modal Interpretation

1

3. Three Problems

- Let's return to using Hilbert spaces to represent QM state spaces, and operators to represent properties.
- <u>Recall</u>: The Kochen-Specker Theorem says that the properties associated with a Hilbert space \mathcal{H} can't all have values at the same time (if dim $\mathcal{H} \geq 3$).
- <u>One Way to Avoid KS</u>: Claim that some (not all) properties defined on H always have determinate values (even in superpositions), others do not.

Ex: Bohm's Theory One property (position) is always determinate (always has a value). All other properties are contextual – their values depend on how they are measured.

Modal Interpretations Claim:

- (A) For any Hilbert space \mathcal{H} , there is a subset of operators that represent properties that are always determinate (always possess values).
- (B) The QM probabilities for these properties are *epistemic*: for these properties, probabilities represent our ignorance of their actual values.

Modal Interpretations reject the Eigenvector/Eigenvalue Rule:

A physical system possesses the value λ of a property.

if and only if

The state of the system is represented by an eigenvector of the operator representing the property with eigenvalue λ .

- Modal intepretations allow for a state to possess the value of a property, *even when it is not an eigenvector of the associated operator*.
- <u>They claim</u>: For any given state $|\psi\rangle$, in addition to those properties for which $|\psi\rangle$ is an eigenvector, there are *other* properties for which $|\psi\rangle$ also possesses values (the always-determinate "modal" propeties).
- <u>So</u>: Modal interpretations agree with the "if" part (\Leftarrow) of EE.
- <u>But</u>: They disagree with the "only if" part (\Rightarrow) of EE.
- Initial task for Modal Interpretations: Identify the subset of alwaysdeterminate "modal" properties.

Different versions pick out different modal properties.

2. KHD Modal Interpretation Kochen (1985), Healy (1989), Dieks (1991)

 <u>Claim</u>: At any given time, the subset of alwaysdeterminate properties is given by the basis states of the *biorthogonal expansion* of the system's state vector.

Kochen Healy

Dennis Dieks

Biorthogonal Decomposition Theorem:

Let $|Q\rangle$ be a vector in the product Hilbert space $\mathcal{H}_1 \otimes \mathcal{H}_2$. Then there is a basis $|a_1\rangle, ..., |a_N\rangle$ of \mathcal{H}_1 , and a basis $|b_1\rangle, ..., |b_N\rangle$ of \mathcal{H}_2 such that $|Q\rangle$ can be expanded as:

 $|Q\rangle = c_{11}|a_1\rangle|b_1\rangle + c_{22}|a_2\rangle|b_2\rangle + \dots + c_{NN}|a_N\rangle|b_N\rangle$

And, if $|c_{11}| \neq |c_{22}| \neq \cdots \neq |c_{NN}|$, then these bases are *unique*.

- In general, if $|g_1\rangle$, ..., $|g_N\rangle$ and $|h_1\rangle$, ..., $|h_N\rangle$ are bases of \mathcal{H}_1 and \mathcal{H}_2 , then any vector $|Q\rangle$ can be expanded as

 $|Q\rangle = d_{11}|g_1\rangle|h_1\rangle + d_{12}|g_1\rangle|h_2\rangle + \dots + d_{21}|g_2\rangle|h_1\rangle + d_{22}|g_2\rangle|h_2\rangle + \dots .$

- The *Biorthog Decomp Theorem* says that there are some bases in which the "cross terms" with coefficients d_{12} , d_{21} , *etc*, all vanish. And these bases will be unique just when all the remaining coefficients are different from each other.

Why do we want bases in which the cross terms vanish?

• Because these are the bases associated with *post-measurement* systems.

Example: Composite system of *Hardness* measuring device *m* and *black* electron *e*. - A basis for *m*-*e* system: $\{|"hard"\rangle_m|hard\rangle_e, |"hard"\rangle_m|soft\rangle_e, |"soft"\rangle_m|hard\rangle_e, |"soft"\rangle_m|soft\rangle_e\}$ - General expansion of a state $|Q\rangle$ in this basis is: $|Q\rangle = a|"hard"\rangle_m|hard\rangle_e + c|"hard"\rangle_m|soft\rangle_e + d|"soft"\rangle_m|hard\rangle_e + b|"soft"\rangle_m|soft\rangle_e$ - If this basis is *biorthogonal*, then c = d = 0, and we have: $|Q\rangle = a|"hard"\rangle_m|hard\rangle_e + b|"soft"\rangle_m|soft\rangle_e$ This is just the post-measurement state of our composite system! - We could avoid the Projection Postulate if we assume that the properties associated with these bases vectors (pointing to "*hard*" or "*soft*" for *m*, being *hard* or *soft* for *e*) are always determinate.

• <u>So</u>: KHD just *stipulates* that properties associated with biorthogonal expansion bases are always determinate.

KHD Rules (replace Projection Postulate):

<u>*Rule 1*</u>: For any physical system *S* that is composed of two subsystems S_1 and S_2 , there are some properties for which *S* always possesses values. To identify them:

(i) Expand the state vector $|Q\rangle$ for *S* in its biorthogonal decomposition:

 $|Q\rangle = c_{11}|a_1\rangle|b_1\rangle + c_{22}|a_2\rangle|b_2\rangle + \dots + c_{NN}|a_N\rangle|b_N\rangle$

- (ii) The biorthogonal basis states $|a_1\rangle, ..., |a_N\rangle$, and $|b_1\rangle, ..., |b_N\rangle$ are the eigenvectors of the determinate properties, call them *A* and *B*.
- (iii) The subsystems S_1 and S_2 can be said to have determinate values for the properties *A* and *B*, so identified.

<u>*Rule 2*</u>: (*Born Rule*) If *S* is in the state $|Q\rangle$, then the probability that S_1 has the value a_i of the property *A* is c_{ii}^2 , and the probability that S_2 has the value b_i of the property *B* is c_{ii}^2 .

Why this is helpful:

• Suppose a system is in a state represented by

 $|Q\rangle = a|"hard"\rangle_m |hard\rangle_e + b|"soft"\rangle_m |soft\rangle_e \quad (a \neq b)$

- <u>A Literal Interpretation says</u>: This is a state in which *e* can't be said to have the *Hardness* property, and *m* can't be said to be indicating "*hard*" or "*soft*".
- <u>KHD says</u>: This is a state in which *e* does have a definite value of *Hardness*, and *m* is definitely pointing to either "*hard*" or "*soft*" (even though we don't know what *Hardness* value *e* has, and we don't know where *m* is pointing).

Essential Characteristics of Modal Interpretations

- (A) Rejection of *Eigenvector/Eigenvalue Rule*.
- (B) Rejection of *Projection Postulate*.
- (C) Probabilities are epistemic.

3. Three Problems with KHD

1. Non-uniqueness of biorthogonal expansions.

- Consider the biorthogonal expansion $|Q\rangle = c_{11}|a_1\rangle|b_1\rangle + \cdots + c_{NN}|a_N\rangle|b_N\rangle$.
- The *Biorthog Decomp Theorem* says this expansion is *unique*, provided that $|c_{11}| \neq |c_{11}| \neq ... \neq |c_{NN}|$.
- If this does not hold; *i.e.*, if any of the expansion coefficients are equal, then there will be other biorthogonal expansions of |Q>, in fact *infinitely* many.

$$\underline{Ex}: |Q\rangle = \sqrt{\frac{1}{2}} |"hard"\rangle_m |hard\rangle_e + \sqrt{\frac{1}{2}} |"soft"\rangle_m |soft\rangle_e = \sqrt{\frac{1}{2}} |"black"\rangle_m |black\rangle_e + \sqrt{\frac{1}{2}} |"white"\rangle_m |white\rangle_e = etc.$$

• In such cases, *KHD Rule 1* will say that infinitely many properties will have definite values at any given time, and this violates the *KS* Theorem!

2. Dynamics for determinate properties.

- All modal interpretations (not just *KHD*) say that, at any given time, a physical system possesses the values of some subset of properties (in addition to, and including those given by the *EE Rule*).
- Let *Det*_t be this set of determinate properties at time t.
 - This set can change from moment to moment!
 - In other words, Det_t may be different from $Det_{t'}$ for $t \neq t'$.

Ex: In the *KHD* version, *Det_t* depends on the component states of the composite system, and these component states may change over time.

- <u>So</u>: All modal interpretations need to tell us how Det_t changes over time.
 - They need to give us a *dynamics* for the determinate properties.
 - But KHD does not specify this.

3. Imperfect Measurements.

<u>*Claim*</u>: The post-measurement states that *KHD* identifies represent *ideal* perfect measurements. For *actual* imperfect measurements, *KHD* does not pick out the right post-measurement properties.

• *KHD* seemed to work for the post-measurement state:

 $|Q\rangle = a|"hard"\rangle_m |hard\rangle_e + b|"soft"\rangle_m |soft\rangle_e$ (suppose $a \neq b$)

- This is in the form of a biorthogonal expansion, so *KHD* says: *The electron has a definite value of Hardness.*
- *But*: The Schrödinger-evolved post-measurement state will *really* be:

 $|J\rangle = c|"hard"\rangle_{m}|hard\rangle_{e} + d|"soft"\rangle_{m}|soft\rangle_{e} + f|"hard"\rangle_{m}|soft\rangle_{e} + g|"soft"\rangle_{m}|hard\rangle_{e}$

<u>Error terms!</u> Represent the fact that real measuring devices will never perfectly correlate pointers with Hardness property. For realistic measuring devices, f and g can be made very small, but they will never vanish.

3. Imperfect Measurements.

<u>*Claim*</u>: The post-measurement states that *KHD* identifies represent *ideal* perfect measurements. For *actual* imperfect measurements, *KHD* does not pick out the right post-measurement properties.

• *KHD* seemed to work for the post-measurement state:

 $|Q\rangle = a|"hard"\rangle_m |hard\rangle_e + b|"soft"\rangle_m |soft\rangle_e$ (suppose $a \neq b$)

- This is in the form of a biorthogonal expansion, so *KHD* says: *The electron has a definite value of Hardness.*
- *<u>But</u>*: The Schrödinger-evolved post-measurement state will *really* be:

 $|J\rangle = c|"hard"\rangle_{m}|hard\rangle_{e} + d|"soft"\rangle_{m}|soft\rangle_{e} + f|"hard"\rangle_{m}|soft\rangle_{e} + g|"soft"\rangle_{m}|hard\rangle_{e}$

|J⟩ has a biorthogonal expansion (guaranteed by the *Biorthog Decomp Theorem*), but it will *not* be the one that *KHD* cites:
|J⟩ = k|w⟩_m|grump⟩_e + l|w'⟩_m|gromp⟩_e *Grump* and gromp are values of some property (they are eigenvectors of some operator), but not Hardness.
So the *KHD Rule 1* entails that, after a *Hardness* measurement, the electron is either grump or gromp, and not either hard or soft.

12b. Quantum Logic

1. Motivation

- When a physical system is in a state represented by a superposition, we can't use classical logic to describe the properties it possesses.
- Consider the state $|Q\rangle = a | "hard" \rangle_m |hard \rangle_e + b | "soft" \rangle_m |soft \rangle_e$.

<u>Recall</u>: Under a literal interpretation, an electron in this state:
(a) Can't be said to be *hard*.
(b) Can't be said to be *soft*.
(c) Can't be said to be both *hard* and *soft*.
(d) Can't be said to be neither *hard* nor *soft*.

• Perhaps to make sense of such superposed states, we need to change our logic!

<u>*Goal*</u>: To develop a *quantum* logic that will allow us to say meaningful things about the properties of states in superpositions.

1. Motivation

- 2. Classical Properties & Classical Logic
- 3. The Structure of Quantum Properties

2. Classical Properties and Classical Logic

- Classical mechanics represents properties in a certain way (functions on a phase space), and this way has a structure that is identical to the structure of classical logic.
- Quantum mechanics represents properties in a different way (operators on a Hilbert space), so the structure of QM properties is different from that of CM properties and classical logic.

The Logic of Classical Mechanics (CM)

• <u>Recall</u>: CM state space = phase space (set of points) CM states = points

CM properties = functions

- Consider the property, "The value of property *A* is *a*".
 - In *QM*, this property can be represented by a *projection operator*.
 - In *CM*, this property is represented by a *subset* of phase space; namely, the collection of all phase space points that represent states in which the value of property *A* is *a*.

- Let *Q* represent the property "The value of property *B* is *b*".
- The intersection $P \cap Q$ represents the property "The value of property A is a **and** the value of property B is b".
- The union P ∪ Q represents the property
 "The value of property A is a or the value of property B is b".
- The complement ¬*P* represents the property "The value of property *A* is *not a*".

which the value of

property A is a.

• <u>*Claim*</u>: The structure of sets under \cap , \cup and \neg is the same as the structure of classical sentential logic with connectives \wedge_C , \vee_C and \neg_C .

Let the set *P* represent the sentence p = "The value of property *A* is *a*." Let the set *Q* represent the sentence q = "The value of property *B* is *b*." <u>Then</u>:

- $P \cap Q$ represents $p \wedge_C q$.
- $P \cup Q$ represents $p \vee_C q$.
- $\neg P$ represents $\neg_C p$.

set operation	<u>classical logic connective</u>
\cap (intersection)	\wedge_{C} (and)
∪ (union)	V_C (or)
\neg (complement)	\neg_{c} (not)

- A collection of sets with \cap , \cup , \neg defined on it and a collection of sentences with \wedge_C , \vee_C , \neg_C defined on it are both representations of a *Boolean algebra*.
 - CM properties, collections of sets, and classical logic all have the same Boolean algebraic structure.
- <u>So</u>: Classical logic = the logic of the structure of CM properties.
 An empirical approach to logic!
- Why do we use classical logic to describe the world?
 - Because of the way classical physics describes the world.
- This suggests that, when the physics changes, so should the logic!

The Logic of Quantum Mechanics

• <u>*Recall*</u>: *QM state space* = Hilbert space \mathcal{H}

QM states = vectors

QM properties = operators

- Consider the property, "The value of property *A* is *a*".
 - Represented by a projection operator $P_{|a\rangle}$.
 - $P_{|a\rangle}$ projects any vector onto the 1-dim *subspace* of $\mathcal{H}(i.e., ray)$ defined by the eigenvector $|a\rangle$ of A with eigenvalue a.
 - <u>So</u>: In QM, properties of the type "The value of property X is x" are represented by *subspaces* (and not *subsets*).

3. The Structure of Quantum Properties

Def. A *subspace* of a Hilbert space \mathcal{H} is a subset of \mathcal{H} closed under vector addition and scalar multiplication.

- <u>This means</u>: A subspace is just a part of \mathcal{H} that is itself a vector space.
- There is a 1-1 correspondence between projection operators and subspaces.

Subspaces are related by 3 operations:		
\cap (intersection)	$V \cap W = \{ all vectors in both V and W \}$	
\oplus (linear span)	$V \oplus W = \{ all \ linear \ combinations \ of vectors \ from \ V \ and \ W \}$	
\perp (orthocomplement)	$V^{\perp} = \{ all vectors that are orthogonal to vectors in V \}$	

- If *V* and *W* are both 1-dim, then $V \oplus W$ is a 2-dim subspace; i.e., a plane containing all vectors of the form $a|v\rangle + b|w\rangle$, where $|v\rangle \in V$ and $|w\rangle \in W$.
- $V \oplus W$ corresponds to the projection operator $P_{V \oplus W} = P_{|v\rangle} + P_{|w\rangle}$.
- If *V* is 1-dim and *W* is 2-dim, then $V \oplus W$ is a 3-dim subspace; *etc*.

3. The Structure of Quantum Properties

Def. A *subspace* of a Hilbert space \mathcal{H} is a subset of \mathcal{H} closed under vector addition and scalar multiplication.

- <u>This means</u>: A subspace is just a part of \mathcal{H} that is itself a vector space.
- There is a 1-1 correspondence between projection operators and subspaces.

Subspaces are related by 3 operations:		
\cap (intersection)	$V \cap W = \{ all vectors in both V and W \}$	
\oplus (linear span)	$V \oplus W = \{ all \ linear \ combinations \ of vectors \ from \ V \ and \ W \}$	
\perp (orthocomplement)	$V^{\perp} = \{ all vectors that are orthogonal to vectors in V \}$	

- <u>Why linear span replaces union</u>: The union of two subspaces is not in general a subspace.
 - Suppose V, W are both 1-dim subspaces of \mathcal{H} .
 - Then $V \cup W$ is the set of all vectors in both V and W.
 - *This set is not a subspace*: The sum of two vectors from *V* and *W* may not itself be
 - in $V \cup W$ (it may point in a direction other than the directions defined by V and W)

The structure of *QM* properties is given by the *subspace structure* of a Hilbert space (as opposed to the *subset structure* of a phase space).

• Important property of the subspace structure: *It is not distributive!*

Claim: For any subspaces *V*, *W*, *X*, of \mathcal{H} , it is not in general the case that $X \cap (V \oplus W) = (X \cap V) \oplus (X \cap W)$

<u>Proof</u>:

- Suppose *V*, *W* and *X* are subspaces of \mathcal{H} and suppose *X* is a subspace of $V \oplus W$ such that *X* is neither a subset of *V* nor a subset of *W*.
- This means: Any vector $|x\rangle$ in *X* can be written as $|x\rangle = a|v\rangle + b|w\rangle$, with $|v\rangle \in V$, $|w\rangle \in W$, and *a*, *b* nonzero.

```
- Then X \cap (V \oplus W) = X.
```

- But $(X \cap V) \oplus (X \cap W) = 0 \oplus 0 = 0$.

- Since Boolean algebras are distributive, this means that the subspace structure of QM properties is not a Boolean algebra.
 - So it really is different from the subset structure of CM properties and the structure of classical logic (which are Boolean)!

Boolean algebras are distributive

<u>Set theory example</u>:

 $P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R)$

<u>Classical logic example</u>: $p \wedge_C (q \vee_C r) \equiv (p \wedge_C q) \vee_C (p \wedge_C r)$

p	q	r	$q \vee_{C} r$	$p \wedge_{C} (q \vee_{C} r)$	$(p \wedge_C q)$	$(p \wedge_{C} r)$	$(p \wedge_C q) \vee_C (p \wedge_C r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	F
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	T	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

<u>Now</u>: Construct a *non-Boolean* quantum logic based on the following correspondences:

sub	ospace operation	qua	ntum logic connective
\cap	(intersection)	\wedge_Q	(and)
\oplus	(linear span)	V_Q	(<i>or</i>)
\bot	(orthocomplement)	\neg_{Q}	(not)
		C	Γ

Let the subspace V represent the sentence v = "The value of property A is a."
Let the subspace W represent the sentence w = "The value of property B is b."
Let the subspace X represent the sentence x = "The value of property C is c."

- $V \cap W$ represents "The value of property *A* is *a* and the value of property *B* is *b*" (or " $v \wedge_Q w$ ").
- $V \oplus W$ represents "The value of property A is a or the value of property C is c"
- (or " $v \vee_Q w$ ").
- V^{\perp} represents "The value of property *A* is not *a*" (or " $\neg_Q v$ ").

<u>Why this is supposed to help</u>: We can now claim that, as a matter of QL (Quantum Logic):

(1) "*A* has a definite value" is a *QL tautology* (always a true statement), for *all* properties *A*.

- <u>Now note</u>: $V_1 \oplus \cdots \oplus V_N = \mathcal{H}$, and it's always true that the state of a system lies in its state space \mathcal{H} .
- <u>So</u>: As a matter of *QL*, all properties *always* have definite values at all times, *even properties of measuring devices in superposed states!*

(2) Statements about incompatible properties possessing simultaneous values are contradictory (always false).

- <u>Note</u>: Since V_i and W_j are disjoint for any *i*, *j*, all the intersection terms are the empty subspace \emptyset (contains no vectors), and we're left with $\emptyset \oplus \emptyset \oplus \dots \oplus \emptyset = \emptyset$.
- *But*: The state of the system is *somewhere* in *H*. So the statement that it is "nowhere" (*i.e.*, in the empty subspace) is always false.

Essential Characteristics of QL Interpretation

- (A) Rejects *Eigenvector/Eigenvalue Rule*
- (B) Rejects of *Projection Postulate*

(C) Probabilities are epistemic

• All 3 characteristics are a result of the QL claim that all properties have determinate values at all times.

<u>Major Problem</u>: If QL says all properties of a system have definite values at all times, this gets around the Measurement Problem, but it then runs up against the Kochen-Specker Theorem!

How QL can get around the KS Theorem:

• First show that, according to QL, to say that every property always has a value is not to say that there is always a value that every property has:

- Let V_1 , V_2 , ..., V_N and W_1 , W_2 , ..., W_N be the 1-dim subspaces spanned by the eigenvectors $|a_1\rangle$, $|a_2\rangle$, ..., $|a_N\rangle$ and $|b_1\rangle$, $|b_2\rangle$, ..., $|b_N\rangle$ of two operators A, B.

- Then W_i ∩ (V₁ ⊕ V₂ ⊕ … ⊕ V_N) represents the sentence:
 "The value of property *B* is b_i and property *A* has a definite value." (*)
- And $(W_i \cap V_1) \oplus (W_i \cap V_2) \oplus \cdots \oplus (W_i \cap V_N)$ represents the sentence:

"(The value of *B* is b_i and the value of *A* is a_1) or (the value of *B* is b_i and the value of *A* is a_2) or ... or (**) (the value of *B* is b_i and the value of *A* is a_N)."

- *Which means*: "The value of *B* is b_i and the value of *A* lies in $\{a_1, a_2, ..., a_N\}$."
- *Which means*: "The value of *B* is *b_i* and there is a value that *A* has."
- <u>Now</u>: $W_i \cap (V_1 \oplus V_2 \oplus \cdots \oplus V_N) \neq (W_i \cap V_1) \oplus (W_i \cap V_2) \oplus \cdots \oplus (W_i \cap V_N).$
- <u>So</u>: The sentences (*) and (**) do not mean the same thing!
- <u>*Thus*</u>: To say that property *A* has a definite value is not to say that there is some definite value (*a*₁, *a*₂, ..., *a_N*) it has!

• *Next*: Define the notion of a "disjunctive property":

Def. A *disjunctive property* is a property that possesses a *disjunction* (a_1 or a_2 or a_3 or ...) of individual values, any one of which the property cannot be said to possess.

• *Now Claim*: All quantum properties are disjunctive properties!

How this gets around the KS Theorem:

- *KS says*: A quantum property may fail to possess a value at a given time.
- <u>QL agrees and says</u>: While a quantum property may fail to possess any given value at a given time, it always possesses a disjunction of all of its values at all times.

• *Lingering Concern*:

- Under this view, QL is motivated by the desire to view properties realistically.
- Does the notion of a disjunctive property really provide us with an adequate notion of property realism?