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3. Three Problems
1. General Features

e Let'sreturn to using Hilbert spaces to represent QM state spaces, and operators
to represent properties.

e Recall: The Kochen-Specker Theorem says that the properties associated with a
Hilbert space H can't all have values at the same time (if dimH = 3).

e One Way to Avoid KS: Claim that some (not all) properties defined on H always
have determinate values (even in superpositions), others do not.

. Ex: Bohm's Theory

. - One property (position) is always determinate (always has a value).
i - All other properties are contextual - their values depend on how

! they are measured.

—————————————————————————————————————————————————————

Modal Interpretations Claim:

(A) For any Hilbert space H, there is a subset of operators that represent
properties that are always determinate (always possess values).

(B) The QM probabilities for these properties are epistemic: for these
properties, probabilities represent our ignorance of their actual values.




Modal Interpretations reject the Eigenvector/Eigenvalue Rule:
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( A physical system A The state of the system is
possesses the value if and only if represented by an e1genv§ctor
2 of a property. of the operator representing the

~ | 7 property with eigenvalue A.
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- Modal intepretations allow for a state to possess the value of a property,
even when it is not an eigenvector of the associated operator.
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also possesses values (the always-determinate "modal” properties).
- So: Modal interpretations agree with the "if " part (&) of EE.
- But: They disagree with the “only if" part (=) of EE.

e [nitial task for Modal Interpretations:

[dentify the subset of always-

. . S—=X Different versions pick out
determinate "modal” properties. P

different modal propetrties.

./



2. KHD Modal Interpretation Kochen (1985), Healy (1989), Dieks (1991)

e (laim: At any given time, the subset of always-
determinate properties is given by the basis states of

Simon Richard Dennis

the biorthogonal expansion of the system's state vector. Kochen  Healy Dieks

Biorthogonal Decomposition Theorem: b
Let |Q) be a vector in the product Hilbert space H; @ H,. Then there
is a basis |a,), ..., |ay) of H;, and a basis |b,), ..., |by) of H, such that
|Q) can be expanded as:

|Q) = ci1lay)|by) + calaz)|by) + -+ + cynlay)|by)

And, if |c{{| # |cyy| # -+ # |cyy|, then these bases are unique.

- In general, if |g,), ..., |gy) and |hy), ..., |hy) are bases of H'; and H,, then any
vector |Q) can be expanded as

|Q) = di1lg1)|h) + dizlgid|hg) + - + da]g2)|he) + daal god|hg) + -+

- The Biorthog Decomp Theorem says that there are bases for H'; and H', for which
the "cross terms" with coefficients d,,, d,,, etc, all vanish. And these bases will be
unique just when all the remaining coefficients are different from each other.

———————————————————————————————————————————————————————————————



Why do we want bases in which the cross terms vanish?

e Because these are the bases associated with post-measurement systems.

- A basis for m-e system:
{I"hard"),,|hard)., | "hard”),|soft)., | "soft"),,|hard),, | "soft"),,|soft).}

General expansion of a state |Q) in this basis is:
|Q) = a|"hard"),,|hard), + c|"hard"),,|soft), + d|"soft"),,|hard), + b|"soft"),,|soft),

If this basis is biorthogonal, then ¢ = d = 0, and we have:
|Q) = a|"hard"), |hard), + b|"soft"},,|soft),

This is just the post-measurement state of our composite system!

We could avoid the Projection Postulate if we assume that the properties
associated with these bases vectors (pointing to "hard" or "soft" for m, being
hard or soft for e) are always determinate.

e So: KHD just stipulates that properties associated with biorthogonal expansion
bases are always determinate.



KHD Rules (replace Projection Postulate):

Rule 1: For any physical system S that is composed of two subsystems S,
and S,, there are some properties for which S always possesses values.
To identify them:

(i) Expand the state vector |Q) for S in its biorthogonal decomposition:
|Q) = ci1lar)|[b1) + 6alaz)|by) + -+ + cunlay) [by)

(i) The biorthogonal basis states |a,), ..., |ay), and |b;), ..., |by) are the
eigenvectors of the determinate properties, call them A and B.

(iii) The subsystems S; and S, can be said to have determinate values for
the properties A and B.

Rule 2: (Born Rule) If S is in the state |Q), then the probability that S; has
the value a, of the property 4 is c;;?, and the probability that S, has the

i’

value b; of the property B is ¢,




Why this is helpful:

e Suppose a system is in a state represented by
|Q) = a|"hard"), |hard), + b|"soft"),.|soft), (a # b)

e A Literal Interpretation says: This is a state in which e can't be said to have
the Hardness property, and m can't be said to be indicating "hard" or "soft".

e KHD says: This is a state in which e does have a definite value of Hardness,
and m is definitely pointing to either "hard" or "soft" (even though we don't
know what Hardness value e has, and we don't know where m is pointing).

Essential Characteristics of Modal Interpretations

(A) Rejection of Eigenvector/Eigenvalue Rule.

(B) Rejection of Projection Postulate.

(C) Probabilities are epistemic.




3. Three Problems with KHD

1. Non-uniqueness of biorthogonal expansions.

Consider the biorthogonal expansion |Q) = c¢y;|a;)|by) + -+ + cyn|ayn)|by)-

The Biorthog Decomp Theorem says this expansion is unique, provided that
lcial # [eqal # ... # [awwl-

If this does not hold; i.e., if any of the expansion coefficients are equal, then
there will be other biorthogonal expansions of |Q), in fact infinitely many.

| Ex: |Q) = V% |"hard"), |hard), + V% | "soft"). |soft),
| =~V |"black”, |black), + Y | "white"), |white),

e Insuch cases, KHD Rule 1 will say that infinitely many properties will have
definite values at any given time, and this violates the KS Theorem!



2. Dynamics for determinate properties.

e All modal interpretations (not just KHD) say that, at any given time, a physical
system possesses the values of some subset of properties (in addition to, and
including those given by the EE Rule).

o Let Det, be this set of determinate properties at time t.

- This set can change from moment to moment!

- In other words, Det, may be different from Det, for t # t’.

| . Ex: In the KHD version, Det, depends on the

, component states of the composite system, and
|

! these component states may change over time.

e So: All modal interpretations need to tell us how Det, changes over time.
-They need to give us a dynamics for the determinate properties.
- But KHD does not specify this.

! Ex: Bohmian Mechanics can be considered as a modal :

L [ L L L I
, interpretation in which the property dynamics (for !
 the position property) is given by Bohm's Equation. !
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3. Imperfect Measurements.

Claim: The post-measurement states that KHD identifies represent ideal perfect
measurements. For actual imperfect measurements, KHD does not pick out the
right post-measurement properties.

e KHD seemed to work for the post-measurement state:
|Q) = a|"hard"), |hard), + b|"soft"), |soft), (suppose a # b)

e Thisisin the form of a biorthogonal expansion, so KHD says:
The electron has a definite value of Hardness.

e But: The Schrodinger-evolved post-measurement state will really be:

|} = c|"hard™), |hard), + d|"soft")., |soft), + f|"hard"),|soft), + g|"soft"), |hard),

| Error terms! Represent the fact that real
| ' measuring devices will never perfectly

I o_noG g g
\ For realistic measuring devices, f and g can be
|

1
1
1
1
1
' correlate pointers with Hardness property. !
1
1
| made very small, but they will never vanish.



3. Imperfect Measurements.

Claim: The post-measurement states that KHD identifies represent ideal perfect
measurements. For actual imperfect measurements, KHD does not pick out the
right post-measurement properties.

e KHD seemed to work for the post-measurement state:
|Q) = a|"hard"), |hard), + b|"soft"), |soft), (suppose a # b)

e Thisisin the form of a biorthogonal expansion, so KHD says:
The electron has a definite value of Hardness.

e But: The Schrodinger-evolved post-measurement state will really be:

|} = c|"hard™), |hard), + d|"soft")., |soft), + f|"hard"),|soft), + g|"soft"), |hard),

. - |/) has a biorthogonal expansion (guaranteed by the Biorthog
\  Decomp Theorem), but it will not be the one that KHD cites:
|

| ) = klw)nlgrump), + l|w'),.|gromp),

|

| - Grump and gromp are values of some property (they are

| eigenvectors of some operator), but not Hardness.

|

|

|

|

- So the KHD Rule 1 entails that, after a Hardness measurement, the
electron is either grump or gromp, and not either hard or soft.

10



1. Motivation
2. Classical Properties & Classical Logic
3. The Structure of Quantum Properties

12b. Quantum Logic
1. Motivation

e When a physical system is in a state represented by a superposition, we
can't use classical logic to describe the properties it possesses.

e Consider the state |Q) = a|"hard"), |hard), + b|"soft"), |soft). .

i Recall: Under a literal interpretation, an electron in this state: |
i (a) Can't be said to be hard. i

(b) Can't be said to be soft. i
(c) Can't be said to be both hard and soft. i
' (d) Can't be said to be neither hard nor soft. i

e Perhaps to make sense of such superposed states, we need to change our logic!

Goal: To develop a quantum logic that will allow us to say
meaningful things about the properties of states in superpositions.

11



2. Classical Properties and Classical Logic

- Classical mechanics represents properties in a certain way
(functions on a phase space), and this way has a structure
that is identical to the structure of classical logic.

- Quantum mechanics represents properties in a different way
(operators on a Hilbert space), so the structure of QM properties
is different from that of CM properties and classical logic. 7

The Logic of Classical Mechanics (CM)

e Recall: CM state space = phase space (set of points)

CM states = points

CM properties = functions

e Consider the property, "The value of property A is a".

- In CM, this property is represented by a subset of phase space;
namely, the collection of all phase space points that represent
states in which the value of property 4 is a.



Let P represent the property "The value of property A is a".
Let Q represent the property "The value of property B is b".

The intersection P N Q represents the property

Phase space (2 and
three subsets: P, Q, R.

All points in P

represent states in
which the value of

property A is a.

"The value of property A is a and the value of property B is b".

The union P U Q represents the property

"The value of property A is a or the value of property B is b".

The complement —P represents the property
"The value of property A is not a".

13



Phase space (2 and
three subsets: P, Q, R.

e (Claim: The structure of sets under N, U and — is the same as the
structure of classical sentential logic with connectives A, V- and —.

Let the set P represent the sentence p = "The value of property 4 is a.”
Let the set Q represent the sentence g = "The value of property B is b."
Then:

- PN Q represents p A; q.
- P U Q represents p V. q.
- =P represents —.p.

14



set operation classical logic connective
N (intersection) Ac (and)

U (union) V. (or)

— (complement) - (not) 7

A collection of sets with N, U, = defined on it and a collection of sentences
with A, V¢, = defined on it are both representations of a Boolean algebra.

- CM properties, collections of sets, and classical logic all have the same Boolean
algebraic structure.

So: Classical logic = the logic of the structure of CM properties.

An empirical approach to logic!

Why do we use classical logic to describe the world?

- Because of the way classical physics describes the world.

This suggests that, when the physics changes, so should the logic!

"Even logic must
give way to physics."




The Logic of Quantum Mechanics

e Recall: QM state space = Hilbert space H
QM states = vectors
QM properties = operators

e Consider the property, "The value of property A is a”.

- P, projects any vector onto the 1-dim subspace of H (i.e., ray)

- So: In QM, properties of the type "The value of property X is x"
are represented by subspaces (and not subsets).

——————————————————————————————————————————————————————

i defined by the eigenvector |a) of A with eigenvalue a. E

16



3. The Structure of Quantum Properties

Def. A subspace of a Hilbert space H is a subset of H
closed under vector addition and scalar multiplication.

This means: A subspace is just a part of H that is itself a vector space.

There is a 1-1 correspondence between projection operators and subspaces.

Subspaces are related by 3 operations: R
N (intersection) V nw = {all vectors in both V and W}

@ (linear span) V @ W = {all linear combinations of vectors from V and W}
1 (orthocomplement) V+ = {all vectors that are orthogonal to vectors in '’}

If V.and W are both 1-dim, then V @ W is a 2-dim subspace; i.e., a plane
containing all vectors of the form a|v) + b|w), where |v) € V and |w) € W.

V @ W corresponds to the projection operator Py gy, = P,y + P},
[fVis 1-dim and W is 2-dim, then V @ W is a 3-dim subspace; etc.

17



3. The Structure of Quantum Properties

Def. A subspace of a Hilbert space H is a subset of H j
n

closed under vector addition and scalar multiplication.

e This means: A subspace is just a part of H that is itself a vector space.

e Thereis a1-1 correspondence between projection operators and subspaces.

Subspaces are related by 3 operations: R
N (intersection) V nw = {all vectors in both V and W}

@ (linear span) V @ W = {all linear combinations of vectors from V and W}
1 (orthocomplement) V+ = {all vectors that are orthogonal to vectors in '’}

e Why linear span replaces union: The union of two subspaces is not

in general a subspace.

- Suppose V, W are both 1-dim subspaces of H.
- Then VV U W is the set of all vectors in both IV and W.

- This set is not a subspace: The sum of two vectors from V and W may not itself be
inV U W (it may point in a direction other than the directions defined by I and W)

18



The structure of QM properties is given by the subspace structure of a Hilbert
space (as opposed to the subset structure of a phase space).

e Important property of the subspace structure: It is not distnbutive!

\N

Claim: For any subspaces V, W, X, of H, it is not in general the case that
XnlVew)y=Xn)eXnwWw)

Proof:

- Suppose V, W and X are subspaces of H and suppose X is a subspace of VW
such that X is neither a subset of V nor a subset of W.

- This means: Any vector |x) in X can be written as |x) = a|v) + b|w), with
|lv)eV, |w)eW, and a, b nonzero.

- ThenX N (V@ W) = X.
“But(XNnV)®@XnNW)=0@0=0.

e Since Boolean algebras are distributive, this means that the subspace
structure of QM properties is not a Boolean algebra.

-So it really is different from the subset structure of CM properties and the
structure of classical logic (which are Boolean)!

19



Boolean algebras are distributive

Set theory example:
PN(QUR)=(PNQ)U(PNR)

Classical logic example: D A (QV:7)= P A-q) Ve (P AsT)

qVer | pAc(q V)

(p Acq)

(P AcT)

(P Acq) Ve (@ AcT)

T T

™ T T ] 1 1S
m om 49 9 m o™ g g
T
oIS I I I S JENSC R
T T T

T

o TS S - T S

T

e I I T S T S R R |

T

oo T T T ]
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Now: Construct a non-Boolean quantum logic based on the following
correspondences:

subspace operation quantum logic connective
N (intersection) No  (and)
@ (linear span) Vo  (or)
1 (orthocomplement) -9 (not)
4

i - Let the subspace V represent the sentence v = "The value of property Ais a." !
. - Let the subspace W represent the sentence w = "The value of property B is b." E
|

| |
| 1

- Let the subspace X represent the sentence x = "The value of property C is c."

- V N W represents "The value of property A is a and the value of property B is b"
(or "v Ay w").

|
|
|
|
|
|
' - V @ W represents "The value of property A is a or the value of property Cis c"
. (or"vvyw").

|

|

|

- Vi represents "The value of property A isnot a” (or "—,v").



Why this is supposed to help: We can now claim that, as a matter of Qquantum Logic:

(1) "A has a definite value" is a QL tautology (always a true statement), for all
properties A.

? - a
iy "The value of property A is a,, or
"A has a definite value.” ] means the value of property A is a,, or ..., or

the value of property A is ay."

. ~
I - T T T T TTsTE TS T s sEEEES T 1
hich [ "The state of the system ] | whereV, ..,V are the 1-dim :
. . . T 1 subspaces spanned respectively by
A lies in Vl ® D VN' : the eigenvectors |a,), ..., |ay) of A :

- Nownote: V, @ --- @ Vy = H, and it's always true that the state of a system

lies in its state space H.

- So: As a matter of QL, all properties always have definite values at all times,
even properties of measuring devices in superposed states!

22



Why this is supposed to help: We can now claim that, as a matter of Qquantum Logic:

(2) Statements about incompatible properties possessing simultaneous
values are contradictory (always false).

Why? Suppose A and B are incompatible properties (i.e., Hardness and Color).

_ N
"(The value of A is a; and the value of B is b,) or

(the value of A is a, and the value of B is b,) or ... or
(the value of A is a, and the value of B is b;) or ... or
\(the value of A is ay and the value of B is by)."

"Property A has a
value and property | means
B has a value.”

J

Tk "The state of the system liesin (V,nW )& (V,NnW,) & -
means |©VNW)@ - VynWy)"

- Note: Since V; and W, are disjoint for any i, j, all the intersection
terms are the empty subspace @ (contains no vectors), and we're left
with@ oD --- DD =0.

- But: The state of the system is somewhere in H. So the statement that
it is "nowhere" (i.e,, in the empty subspace) is always false.




Essential Characteristics of QL Interpretation

(A) Rejects Eigenvector/Eigenvalue Rule
(B) Rejects of Projection Postulate

(C) Probabilities are epistemic 7

e All 3 characteristics are a result of the QL claim that all properties have
determinate values at all times.

i Major Problem: If QL says all properties of a system have definite E
 values at all times, this gets around the Measurement Problem, |

i but it then runs up against the Kochen-Specker Theorem!



How OL can get around the KS Theorem:

e First show that, according to QL, to say that every property always has
a value is not to say that there is always a value that every property has:

- LetV,V,, .., Vyand W, W,, .., W, be the 1-dim subspaces spanned by the
eigenvectors |a,), |a,), .., |ay) and |b,), |b,), ..., |by) of two operators A4, B.

ThenW, NV, ®V,® --- @ V) represents the sentence:
"The value of property B is b; and property A has a definite value." (*)

And W, nV)d W;nV,) & - & (W;NnVy) represents the sentence:

"(The value of B is b; and the value of A is a,) or
(the value of B is b; and the value of A is a,) or ... or (%)
(the value of B is b; and the value of A is ay)."

Which means: "The value of B is b; and the value of A lies in {a,, a,, .., ay}.

Which means: "The value of B is b; and there is a value that A has."
- Now: W, n(V, @V, @@ Vy) =W, nV)S W, NVy) & & W;nVy).

- So: The sentences (*) and (*#*) do not mean the same thing!

- Thus: To say that property A has a definite value is not to say that there is
some definite value (a,, a,, .., ay) it has!

25



e Next: Define the notion of a "disjunctive property":

Def. A disjunctive property is a property that possesses a
disjunction (a, or a, or a; or ...) of individual values, any
one of which the property cannot be said to possess.

4

e Now Claim: All quantum properties are disjunctive properties!

- KS says: A quantum property may fail to possess a value at a given time.

- QL agrees and says: While a quantum property may fail to possess any
given value at a given time, it always possesses a disjunction of all of its
values at all times.

e Lingering Concern:

- Under this view, QL is motivated by the desire to view properties realistically.

- Does the notion of a disjunctive property really provide us with an adequate
notion of property realism?
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