

12a. Modal Interpretations

1. General Features

- Let's return to using Hilbert spaces to represent QM state spaces, and operators to represent properties.
- Recall: The *Kochen-Specker Theorem* says that the properties associated with a Hilbert space \mathcal{H} can't *all* have values at the same time (if $\dim\mathcal{H} \geq 3$).
- One Way to Avoid KS: Claim that *some* (not all) properties defined on \mathcal{H} always have determinate values (even in superpositions), others do not.

Ex: Bohm's Theory

- One property (position) is always determinate (always has a value).
- All other properties are *contextual* – their values depend on how they are measured.

Modal Interpretations Claim:

- For any Hilbert space \mathcal{H} , there is a subset of operators that represent properties that are always determinate (always possess values).
- The QM probabilities for these properties are *epistemic*: for these properties, probabilities represent our ignorance of their actual values.

Modal Interpretations reject the Eigenvector/Eigenvalue Rule:

A physical system possesses the value λ of a property.

if and only if

The state of the system is represented by an eigenvector of the operator representing the property with eigenvalue λ .

- Modal interpretations allow for a state to possess the value of a property, *even when it is not an eigenvector of the associated operator.*
- They claim: For any given state $|\psi\rangle$, in addition to those properties for which $|\psi\rangle$ is an eigenvector, there are *other* properties for which $|\psi\rangle$ also possesses values (the always-determinate "modal" properties).
- So: Modal interpretations agree with the "*if*" part (\Leftarrow) of EE.
- But: They disagree with the "*only if*" part (\Rightarrow) of EE.

- Initial task for Modal Interpretations:

Identify the subset of always-determinate "modal" properties.

Different versions pick out different modal properties.

2. KHD Modal Interpretation Kochen (1985), Healy (1989), Dieks (1991)

- Claim: At any given time, the subset of always-determinate properties is given by the basis states of the *biorthogonal expansion* of the system's state vector.

Simon Kochen

Richard Healy

Dennis Dieks

Biorthogonal Decomposition Theorem:

Let $|Q\rangle$ be a vector in the product Hilbert space $\mathcal{H}_1 \otimes \mathcal{H}_2$. Then there is a basis $|a_1\rangle, \dots, |a_N\rangle$ of \mathcal{H}_1 , and a basis $|b_1\rangle, \dots, |b_N\rangle$ of \mathcal{H}_2 such that $|Q\rangle$ can be expanded as:

$$|Q\rangle = c_{11}|a_1\rangle|b_1\rangle + c_{22}|a_2\rangle|b_2\rangle + \dots + c_{NN}|a_N\rangle|b_N\rangle$$

And, if $|c_{11}| \neq |c_{22}| \neq \dots \neq |c_{NN}|$, then these bases are *unique*.

- In general, if $|g_1\rangle, \dots, |g_N\rangle$ and $|h_1\rangle, \dots, |h_N\rangle$ are bases of \mathcal{H}_1 and \mathcal{H}_2 , then any vector $|Q\rangle$ can be expanded as

$$|Q\rangle = d_{11}|g_1\rangle|h_1\rangle + d_{12}|g_1\rangle|h_2\rangle + \dots + d_{21}|g_2\rangle|h_1\rangle + d_{22}|g_2\rangle|h_2\rangle + \dots$$

- The *Biorthog Decomp Theorem* says that there are bases for \mathcal{H}_1 and \mathcal{H}_2 for which the "cross terms" with coefficients d_{12}, d_{21} , etc, all vanish. And these bases will be unique just when all the remaining coefficients are different from each other.

Why do we want bases in which the cross terms vanish?

- Because these are the bases associated with *post-measurement* systems.

Example: Composite system of *Hardness* measuring device m and *black* electron e .

- A basis for m - e system:

$$\{|"hard"\rangle_m|hard\rangle_e, |"hard"\rangle_m|soft\rangle_e, |"soft"\rangle_m|hard\rangle_e, |"soft"\rangle_m|soft\rangle_e\}$$

- General expansion of a state $|Q\rangle$ in this basis is:

$$|Q\rangle = a|"hard"\rangle_m|hard\rangle_e + c|"hard"\rangle_m|soft\rangle_e + d|"soft"\rangle_m|hard\rangle_e + b|"soft"\rangle_m|soft\rangle_e$$

- If this basis is *biorthogonal*, then $c = d = 0$, and we have:

$$|Q\rangle = a|"hard"\rangle_m|hard\rangle_e + b|"soft"\rangle_m|soft\rangle_e$$

- This is just the post-measurement state of our composite system!

- We could avoid the Projection Postulate if we assume that the properties associated with these bases vectors (pointing to "hard" or "soft" for m , being *hard* or *soft* for e) are always determinate.

- So: KHD just *stipulates* that properties associated with biorthogonal expansion bases are always determinate.

KHD Rules (replace Projection Postulate):

Rule 1: For any physical system S that is composed of two subsystems S_1 and S_2 , there are some properties for which S always possesses values. To identify them:

- (i) Expand the state vector $|Q\rangle$ for S in its biorthogonal decomposition:

$$|Q\rangle = c_{11}|a_1\rangle|b_1\rangle + c_{22}|a_2\rangle|b_2\rangle + \cdots + c_{NN}|a_N\rangle|b_N\rangle$$

- (ii) The biorthogonal basis states $|a_1\rangle, \dots, |a_N\rangle$, and $|b_1\rangle, \dots, |b_N\rangle$ are the eigenvectors of the determinate properties, call them A and B .
- (iii) The subsystems S_1 and S_2 can be said to have determinate values for the properties A and B .

Rule 2: (Born Rule) If S is in the state $|Q\rangle$, then the probability that S_1 has the value a_i of the property A is c_{ii}^2 , and the probability that S_2 has the value b_i of the property B is c_{ii}^2 .

Why this is helpful:

- Suppose a system is in a state represented by

$$|Q\rangle = a| "hard" \rangle_m |hard\rangle_e + b| "soft" \rangle_m |soft\rangle_e \quad (a \neq b)$$

- A Literal Interpretation says: This is a state in which e can't be said to have the *Hardness* property, and m can't be said to be indicating "hard" or "soft".
- KHD says: This is a state in which e does have a definite value of *Hardness*, and m is definitely pointing to either "hard" or "soft" (even though we don't know what *Hardness* value e has, and we don't know where m is pointing).

Essential Characteristics of Modal Interpretations

- (A) Rejection of *Eigenvector/Eigenvalue Rule*.
- (B) Rejection of *Projection Postulate*.
- (C) Probabilities are epistemic.

3. Three Problems with KHD

1. Non-uniqueness of biorthogonal expansions.

- Consider the biorthogonal expansion $|Q\rangle = c_{11}|a_1\rangle|b_1\rangle + \dots + c_{NN}|a_N\rangle|b_N\rangle$.
- The *Biorthog Decomp Theorem* says this expansion is *unique*, provided that $|c_{11}| \neq |c_{11}| \neq \dots \neq |c_{NN}|$.
- If this does not hold; *i.e.*, if any of the expansion coefficients are equal, then there will be other biorthogonal expansions of $|Q\rangle$, in fact *infinitely* many.

Ex: $|Q\rangle = \sqrt{\frac{1}{2}}| "hard" \rangle_m|hard\rangle_e + \sqrt{\frac{1}{2}}| "soft" \rangle_m|soft\rangle_e$
 $= \sqrt{\frac{1}{2}}| "black" \rangle_m|black\rangle_e + \sqrt{\frac{1}{2}}| "white" \rangle_m|white\rangle_e$
 $= etc.$

- In such cases, *KHD Rule 1* will say that infinitely many properties will have definite values at any given time, and this violates the *KS Theorem*!

2. Dynamics for determinate properties.

- All modal interpretations (not just *KHD*) say that, at any given time, a physical system possesses the values of some subset of properties (in addition to, and including those given by the *EE Rule*).
- Let Det_t be this set of determinate properties at time t .
 - This set can change from moment to moment!
 - In other words, Det_t may be different from $Det_{t'}$ for $t \neq t'$.

Ex: In the *KHD* version, Det_t depends on the component states of the composite system, and these component states may change over time.

- So: All modal interpretations need to tell us how Det_t changes over time.
 - They need to give us a *dynamics* for the determinate properties.
 - But *KHD* does not specify this.

Ex: Bohmian Mechanics can be considered as a modal interpretation in which the property dynamics (for the position property) is given by Bohm's Equation.

3. Imperfect Measurements.

Claim: The post-measurement states that *KHD* identifies represent *ideal* perfect measurements. For *actual* imperfect measurements, *KHD* does not pick out the right post-measurement properties.

- *KHD* seemed to work for the post-measurement state:

$$|Q\rangle = a|"\text{hard}"\rangle_m|\text{hard}\rangle_e + b|"\text{soft}"\rangle_m|\text{soft}\rangle_e \quad (\text{suppose } a \neq b)$$

- This is in the form of a biorthogonal expansion, so *KHD* says:
The electron has a definite value of Hardness.

- But: The Schrödinger-evolved post-measurement state will *really* be:

$$|J\rangle = c|"\text{hard}"\rangle_m|\text{hard}\rangle_e + d|"\text{soft}"\rangle_m|\text{soft}\rangle_e + f|"\text{hard}"\rangle_m|\text{soft}\rangle_e + g|"\text{soft}"\rangle_m|\text{hard}\rangle_e$$

Error terms! Represent the fact that real measuring devices will never perfectly correlate pointers with Hardness property. For realistic measuring devices, f and g can be made very small, but they will never vanish.

3. Imperfect Measurements.

Claim: The post-measurement states that *KHD* identifies represent *ideal* perfect measurements. For *actual* imperfect measurements, *KHD* does not pick out the right post-measurement properties.

- *KHD* seemed to work for the post-measurement state:

$$|Q\rangle = a|"\text{hard}"\rangle_m|\text{hard}\rangle_e + b|"\text{soft}"\rangle_m|\text{soft}\rangle_e \quad (\text{suppose } a \neq b)$$

- This is in the form of a biorthogonal expansion, so *KHD* says:
The electron has a definite value of Hardness.

- But: The Schrödinger-evolved post-measurement state will *really* be:

$$|J\rangle = c|"\text{hard}"\rangle_m|\text{hard}\rangle_e + d|"\text{soft}"\rangle_m|\text{soft}\rangle_e + f|"\text{hard}"\rangle_m|\text{soft}\rangle_e + g|"\text{soft}"\rangle_m|\text{hard}\rangle_e$$

- $|J\rangle$ has a biorthogonal expansion (guaranteed by the *Biorthog Decomp Theorem*), but it will *not* be the one that *KHD* cites:

$$|J\rangle = k|w\rangle_m|\text{grump}\rangle_e + l|w'\rangle_m|\text{gromp}\rangle_e$$

- *Grump* and *gromp* are values of *some* property (they are eigenvectors of *some* operator), but not *Hardness*.
- So the *KHD Rule 1* entails that, after a *Hardness* measurement, the electron is either *grump* or *gromp*, and not either *hard* or *soft*.

12b. Quantum Logic

1. Motivation

2. Classical Properties & Classical Logic

3. The Structure of Quantum Properties

1. Motivation

- When a physical system is in a state represented by a superposition, we can't use classical logic to describe the properties it possesses.
- Consider the state $|Q\rangle = a|"\text{hard}"\rangle_m|\text{hard}\rangle_e + b|"\text{soft}"\rangle_m|\text{soft}\rangle_e$.

Recall: Under a literal interpretation, an electron in this state:

- (a) Can't be said to be *hard*.
- (b) Can't be said to be *soft*.
- (c) Can't be said to be both *hard* and *soft*.
- (d) Can't be said to be neither *hard* nor *soft*.

- Perhaps to make sense of such superposed states, we need to change our logic!

Goal: To develop a *quantum* logic that will allow us to say meaningful things about the properties of states in superpositions.

2. Classical Properties and Classical Logic

- Classical mechanics represents properties in a certain way (functions on a phase space), and this way has a structure that is identical to the structure of classical logic.
- Quantum mechanics represents properties in a different way (operators on a Hilbert space), so the structure of QM properties is different from that of CM properties and classical logic.

The Logic of Classical Mechanics (CM)

- Recall: CM state space = phase space (set of points)

CM states = points

CM properties = functions

- Consider the property, "The value of property A is a ".

- In QM, this property can be represented by a *projection operator*.
- In CM, this property is represented by a *subset* of phase space; namely, the collection of all phase space points that represent states in which the value of property A is a .

Phase space Ω and three subsets: P, Q, R .

- Let P represent the property "The value of property A is a ".
- Let Q represent the property "The value of property B is b ".
- The intersection $P \cap Q$ represents the property "The value of property A is a **and** the value of property B is b ".
- The union $P \cup Q$ represents the property "The value of property A is a **or** the value of property B is b ".
- The complement $\neg P$ represents the property "The value of property A is **not** a ".

All points in P represent states in which the value of property A is a .

Phase space Ω and three subsets: P, Q, R .

- Claim: The structure of sets under \cap , \cup and \neg is the same as the structure of classical sentential logic with connectives \wedge_C , \vee_C and \neg_C .

Let the set P represent the sentence p = "The value of property A is a ."

Let the set Q represent the sentence q = "The value of property B is b ."

Then:

- $P \cap Q$ represents $p \wedge_C q$.
- $P \cup Q$ represents $p \vee_C q$.
- $\neg P$ represents $\neg_C p$.

<u>set operation</u>	<u>classical logic connective</u>
\cap (<i>intersection</i>)	\wedge_C (<i>and</i>)
\cup (<i>union</i>)	\vee_C (<i>or</i>)
\neg (<i>complement</i>)	\neg_C (<i>not</i>)

- A collection of sets with \cap , \cup , \neg defined on it and a collection of sentences with \wedge_C , \vee_C , \neg_C defined on it are both representations of a *Boolean algebra*.
 - *CM properties, collections of sets, and classical logic all have the same Boolean algebraic structure.*
- So: Classical logic = the logic of the structure of *CM* properties.
An empirical approach to logic!
- Why do we use classical logic to describe the world?
 - *Because of the way classical physics describes the world.*
- This suggests that, when the physics changes, so should the logic!

"Even logic must give way to physics."

The Logic of Quantum Mechanics

- Recall: QM state space = Hilbert space \mathcal{H}
 QM states = vectors
 QM properties = operators
- Consider the property, "The value of property A is a ".

- Represented by a projection operator $P_{|a\rangle}$.
- $P_{|a\rangle}$ projects any vector onto the 1-dim *subspace* of \mathcal{H} (*i.e.*, ray) defined by the eigenvector $|a\rangle$ of A with eigenvalue a .
- So: In QM , properties of the type "The value of property X is x " are represented by *subspaces* (and not *subsets*).

3. The Structure of Quantum Properties

Def. A *subspace* of a Hilbert space \mathcal{H} is a subset of \mathcal{H} closed under vector addition and scalar multiplication.

- This means: A subspace is just a part of \mathcal{H} that is itself a vector space.
- There is a 1-1 correspondence between projection operators and subspaces.

Subspaces are related by 3 operations:

\cap (intersection)	$V \cap W = \{\text{all vectors in both } V \text{ and } W\}$
\oplus (linear span)	$V \oplus W = \{\text{all linear combinations of vectors from } V \text{ and } W\}$
\perp (orthocomplement)	$V^\perp = \{\text{all vectors that are orthogonal to vectors in } V\}$

- If V and W are both 1-dim, then $V \oplus W$ is a 2-dim subspace; i.e., a plane containing all vectors of the form $a|v\rangle + b|w\rangle$, where $|v\rangle \in V$ and $|w\rangle \in W$.
- $V \oplus W$ corresponds to the projection operator $P_{V \oplus W} = P_{|v\rangle} + P_{|w\rangle}$.
- If V is 1-dim and W is 2-dim, then $V \oplus W$ is a 3-dim subspace; etc.

3. The Structure of Quantum Properties

Def. A *subspace* of a Hilbert space \mathcal{H} is a subset of \mathcal{H} closed under vector addition and scalar multiplication.

- This means: A subspace is just a part of \mathcal{H} that is itself a vector space.
- There is a 1-1 correspondence between projection operators and subspaces.

Subspaces are related by 3 operations:

\cap (intersection)

$V \cap W = \{\text{all vectors in both } V \text{ and } W\}$

\oplus (linear span)

$V \oplus W = \{\text{all linear combinations of vectors from } V \text{ and } W\}$

\perp (orthocomplement)

$V^\perp = \{\text{all vectors that are orthogonal to vectors in } V\}$

- Why linear span replaces union: The *union* of two subspaces is not in general a subspace.

- Suppose V, W are both 1-dim subspaces of \mathcal{H} .

- Then $V \cup W$ is the set of all vectors in both V and W .

- *This set is not a subspace:* The sum of two vectors from V and W may not itself be in $V \cup W$ (it may point in a direction other than the directions defined by V and W)

The structure of *QM* properties is given by the *subspace structure* of a Hilbert space (as opposed to the *subset structure* of a phase space).

- Important property of the subspace structure: *It is not distributive!*

Claim: For any subspaces V, W, X , of \mathcal{H} , it is *not* in general the case that

$$X \cap (V \oplus W) = (X \cap V) \oplus (X \cap W)$$

Proof:

- Suppose V, W and X are subspaces of \mathcal{H} and suppose X is a subspace of $V \oplus W$ such that X is neither a subset of V nor a subset of W .
- This means: Any vector $|x\rangle$ in X can be written as $|x\rangle = a|v\rangle + b|w\rangle$, with $|v\rangle \in V, |w\rangle \in W$, and a, b nonzero.
- Then $X \cap (V \oplus W) = X$.
- But $(X \cap V) \oplus (X \cap W) = 0 \oplus 0 = 0$.

- Since Boolean algebras are distributive, this means that the subspace structure of QM properties is not a Boolean algebra.
 - *So it really is different from the subset structure of CM properties and the structure of classical logic (which are Boolean)!*

Boolean algebras are distributive

Set theory example:

$$P \cap (Q \cup R) = (P \cap Q) \cup (P \cap R)$$

Classical logic example: $p \wedge_C (q \vee_C r) \equiv (p \wedge_C q) \vee_C (p \wedge_C r)$

p	q	r	$q \vee_C r$	$p \wedge_C (q \vee_C r)$	$(p \wedge_C q)$	$(p \wedge_C r)$	$(p \wedge_C q) \vee_C (p \wedge_C r)$
T	T	T	T	T	T	T	T
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	F
T	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

Now: Construct a *non-Boolean* quantum logic based on the following correspondences:

<i>subspace operation</i>	<i>quantum logic connective</i>
\cap (<i>intersection</i>)	\wedge_Q (<i>and</i>)
\oplus (<i>linear span</i>)	\vee_Q (<i>or</i>)
\perp (<i>orthocomplement</i>)	\neg_Q (<i>not</i>)

- Let the subspace V represent the sentence v = "The value of property A is a ."
- Let the subspace W represent the sentence w = "The value of property B is b ."
- Let the subspace X represent the sentence x = "The value of property C is c ."

- $V \cap W$ represents "The value of property A is a and the value of property B is b " (or " $v \wedge_Q w$ ").
- $V \oplus W$ represents "The value of property A is a or the value of property C is c " (or " $v \vee_Q w$ ").
- V^\perp represents "The value of property A is not a " (or " $\neg_Q v$ ").

Why this is supposed to help: We can now claim that, as a matter of Quantum Logic:

(1) "A has a definite value" is a *QL tautology* (always a true statement), for *all* properties A.

Why?

$\left["A \text{ has a definite value.} \right]$ means

$\left[\begin{array}{l} \text{"The value of property } A \text{ is } a_1, \text{ or} \\ \text{the value of property } A \text{ is } a_2, \text{ or } \dots, \text{ or} \\ \text{the value of property } A \text{ is } a_N. \end{array} \right]$

which means

$\left[\begin{array}{l} \text{"The state of the system} \\ \text{lies in } V_1 \oplus \dots \oplus V_N." \end{array} \right]$

where V_1, \dots, V_N are the 1-dim subspaces spanned respectively by the eigenvectors $|a_1\rangle, \dots, |a_N\rangle$ of A.

- Now note: $V_1 \oplus \dots \oplus V_N = \mathcal{H}$, and it's always true that the state of a system lies in its state space \mathcal{H} .
- So: As a matter of *QL*, all properties *always* have definite values at all times, *even properties of measuring devices in superposed states!*

Why this is supposed to help: We can now claim that, as a matter of Quantum Logic:

(2) Statements about incompatible properties possessing simultaneous values are contradictory (always false).

Why? Suppose A and B are incompatible properties (*i.e.*, Hardness and Color).

"Property A has a value and property B has a value."

means

"(The value of A is a_1 and the value of B is b_1) or (the value of A is a_1 and the value of B is b_2) or ... or (the value of A is a_2 and the value of B is b_1) or ... or (the value of A is a_N and the value of B is b_N)."

which means

"The state of the system lies in $(V_1 \cap W_1) \oplus (V_1 \cap W_2) \oplus \dots \oplus (V_2 \cap W_1) \oplus \dots \oplus (V_N \cap W_N)$."

- Note: Since V_i and W_j are disjoint for any i, j , all the intersection terms are the empty subspace \emptyset (contains no vectors), and we're left with $\emptyset \oplus \emptyset \oplus \dots \oplus \emptyset = \emptyset$.
- But: The state of the system is *somewhere* in \mathcal{H} . So the statement that it is "nowhere" (*i.e.*, in the empty subspace) is always false.

Essential Characteristics of QL Interpretation

- (A) Rejects *Eigenvector/Eigenvalue Rule*
- (B) Rejects of *Projection Postulate*
- (C) Probabilities are epistemic

- All 3 characteristics are a result of the QL claim that all properties have determinate values at all times.

Major Problem: If QL says all properties of a system have definite values at all times, this gets around the Measurement Problem, but it then runs up against the Kochen-Specker Theorem!

How QL can get around the KS Theorem:

- First show that, according to QL, to say that every property always has a value is not to say that there is always a value that every property has:

- Let V_1, V_2, \dots, V_N and W_1, W_2, \dots, W_N be the 1-dim subspaces spanned by the eigenvectors $|a_1\rangle, |a_2\rangle, \dots, |a_N\rangle$ and $|b_1\rangle, |b_2\rangle, \dots, |b_N\rangle$ of two operators A, B .
- Then $W_i \cap (V_1 \oplus V_2 \oplus \dots \oplus V_N)$ represents the sentence:
"The value of property B is b_i and property A has a definite value." (*)
- And $(W_i \cap V_1) \oplus (W_i \cap V_2) \oplus \dots \oplus (W_i \cap V_N)$ represents the sentence:
"(The value of B is b_i and the value of A is a_1) or
(the value of B is b_i and the value of A is a_2) or ... or
(the value of B is b_i and the value of A is a_N)."
- Which means: "The value of B is b_i and the value of A lies in $\{a_1, a_2, \dots, a_N\}$ ".
- Which means: "The value of B is b_i and there is a value that A has."
- Now: $W_i \cap (V_1 \oplus V_2 \oplus \dots \oplus V_N) \neq (W_i \cap V_1) \oplus (W_i \cap V_2) \oplus \dots \oplus (W_i \cap V_N)$.
- So: The sentences (*) and (**) do not mean the same thing!
- Thus: To say that property A has a definite value is not to say that there is some definite value (a_1, a_2, \dots, a_N) it has!

- Next: Define the notion of a "disjunctive property":

Def. A *disjunctive property* is a property that possesses a *disjunction* (a_1 or a_2 or a_3 or ...) of individual values, any one of which the property cannot be said to possess.

- Now Claim: All quantum properties are disjunctive properties!

How this gets around the KS Theorem:

- KS says: A quantum property may fail to possess a value at a given time.
- QL agrees and says: While a quantum property may fail to possess any given value at a given time, it always possesses a disjunction of all of its values at all times.

- Lingering Concern:

- Under this view, QL is motivated by the desire to view properties realistically.
- Does the notion of a disjunctive property really provide us with an adequate notion of property realism?