
11.	Bohm's	Theory	(Bohmian	Mechanics)	
Motivation:	Replace	Hilbert	state	space of	QM	with	one	that	is	
more	classical	and reproduces	QM	predictions.

David	Bohm
(1917-1992)

1.	Principles	of	Bohmian	Mechanics
I. States:	The	state	of	a	physical	system	is	given	by	both a	wave	

function	𝜓 and particle	positions.

• 𝑞 =	(𝑥,	𝑦,	𝑧)

𝑞′	=	(𝑥′,	𝑦′,	𝑧′)•

3-dim	configuration	
space	for	1	particle

• 𝑄 =	(𝑥1,	𝑦1,	𝑧1,	...,	𝑥𝑁,	𝑦𝑁,	z𝑁)
• 𝑄′	=	(𝑥′1,	𝑦′1,	𝑧′1,	...,	𝑥′𝑁,	𝑦′𝑁,	𝑧′𝑁)

3𝑁-dim	configuration	
space	for	𝑁 particles

Examples	of	configuration	space	(state	space	of	positions):

Now	add	specification	of	
𝜓 for	each	point	in	
configuration	space	and	
get	the	state	space	of	BM!

- Recall:	In	QM,	a	state	is	given	entirely by	a	wave	function	𝜓.
- In	classical	mechanics,	a	state	is	given	by	positions 𝑥 and	momenta	𝑝:
- 1	particle	needs	6	numbers:	(𝑥,	𝑦,	𝑧;	𝑝𝑥,	𝑝𝑦,	𝑝𝑧)	=	1 point	in	6-dim	phase	space.
- 𝑁 particles	need	6𝑁 numbers:	(𝑥1,	𝑦1,	𝑧1;	𝑝𝑥1,	𝑝𝑦1,	𝑝𝑧1;	...	;	𝑥𝑁,	𝑦𝑁,	z𝑁;	𝑝𝑥𝑁,	𝑝𝑦𝑁,	𝑝𝑧𝑁)	=	1 point	
in	6𝑁-dim	phase	space.

1. Principles
2. Example
3. Contextual	Properties
4. Locality
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II. Wave	Function	Dynamics:	The	wave	function	associated	with	a	state	evolves	
according	to	the	Schrödinger	dynamics:

𝜓(𝑄𝑖,	𝑡𝑖)		¾¾¾¾® 𝜓(𝑄𝑓,	𝑡𝑓)Schrödinger
evolution

𝑡𝑖→ 𝑡𝑓

...	is	a	function	of	it's	
mass	𝑚𝑖 and	the	𝑁-
particle	wave	function	
𝜓(𝑄),	which	depends	
on	the	positions	𝑄 of	all	
the	𝑁 particles...

The	velocity	𝑉# of	the	
𝑖th	particle,	located	
at	𝑞𝑖=	(𝑥𝑖,	𝑦𝑖,	𝑧𝑖) ...

...	where	𝐽# =	(ℏ/𝑚𝑖)Im(𝜓∗𝜕#𝜓)
is	the	"probability	current"	and	
𝜌 =	𝜓∗𝜓 =	|𝜓|2 is	the	
"probability	density".

III. Particle	Dynamics:	Particle	velocities	are	determined	by	Bohm's	Equation:

𝑉! 𝜓 𝑄 =
𝑑𝑞!
𝑑𝑡 =

ℏ
𝑚!

Im 0
𝜓∗𝜕!𝜓
𝜓∗𝜓

#

=
𝐽!
𝜌
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This entails BM is empirically indistinguishable from QM in the 
sense that BM reproduces all the QM probability predictions!

IV. The	Distribution	(or	Statistical)	Postulate:	At	some	time	𝑡0,	particle	
positions	are	given	by	a	probability	defined	by	the	wave	function	at	𝑡0:

Pr(particle	positions	are	𝑄 at	time 𝑡0)	=		|𝜓(𝑄, 𝑡0)|2

3

Why?
- QM	says: (Born	Rule)	The	probabilities	for	particle	positions	at	any
time	t are	given	by	|𝜓(𝑄, 𝑡)|2.

- BM	says	exactly	the	same	thing,	because:
- The	probability	density	𝜌 =	|𝜓|2 is	conserved by	the	Schrödinger	
equation	(𝜌 satisfies	the	equation	of	continuity:	∂𝜌/∂𝑡 +	∇ D 𝐽 =	0).

- So:	If	at	time	𝑡0,	the	probabilities	are	given	by	|𝜓(𝑄, 𝑡0)|2 (the	BM
Distribution	Postulate),	then	at	any	future	(or	past)	time	𝑡,	the	
probabilities	will	be	given	by	|𝜓(𝑄, 𝑡)|2 (Born	Rule).



What	Principles	II,	III,	and	IV	are	saying:
The	point	𝑄 (representing	positions	of	all	𝑁 particles	at	any	given	time)	
moves	about	configuration	space	by	being	"guided"	by	the	wave	function	𝜓!

𝑄 ¾¾¾® 𝑄′
particle	

dynamics	via	𝜓

𝑡𝑖→ 𝑡𝑓

• One	interpretation:	The	particles	are	swept	along	by	the	probability	current	
defined	by	𝜓 (just	like	charges	that	are	swept	along	in	an	electrical	current).

• Recall	2-slit	experiment:	Are	the	electrons	really	particles	that	are	being	guided	
by	some	force	that	makes	them	impact	the	screen	in	an	interference	pattern?	
(Bohm's	Theory	=	"Pilot	Wave"	theory.)

- But:	This	analogy	is	not	perfect:	𝜓 is	a	function	on	configuration	space	
(6𝑁-dim	for	𝑁 particles),	not	physical	space	(3-dim	Euclidean	space).

- So:	𝜓 literally	isn't a	physical	force	(like	an	electric	field).
- But:	Maybe	it	encodes	properties	of	a	physical	force.

4



Characteristics	of	Bohmian	Mechanics
(A) Positions	of	particles	are	always	determinate.	(Particles	

always	have	definite	positions.)
(B) Positions	evolve	completely	deterministically.	(Any	initial	

position	state	𝑄 evolves	to	a	unique final	position	state	𝑄′.)
(C) BM	reproduces	the	same	probability	predictions	as	QM.

But:	In	BM,	probabilities	are	epistemic!	Particles	always
have	definite	positions,	and	BM	probabilities	just	reflect	
our	ignorance	as	to	what	they	are.
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configuration space region 
in which black electron 
wave function is non-zero

2.	Example:	Measuring	the	Hardness	of	a	black	electron

•

H

hard

soft

•

electron initially 
located at point 𝑎

soft wave 
function

hard wave 
function

•

• Inside	Hardness box,	blackwave	function	"splits"	into	soft and	hardwave	functions.

• electron finally 
located at point 𝑏

point 𝑐
(no electron)

• Depending	on	where	electron	is	initially	located,	it	will	either	be	carried	up	with	the	
hardwave	function,	or	down	with	the	softwave	function.

• An	initial	position	in	upper	half	of	the	blackwave	function	entails	it	gets	carried	up.

• |black⟩|𝜓𝑎(𝑥)⟩ ¾® ½ |hard⟩|𝜓𝑏(𝑥)⟩	+	 ½ |soft⟩|𝜓𝑐(𝑥)⟩ 6



Now:	Start	with	black electron.	First	measure	Hardness,	then	Color.

e2

e1

• If	a	black electron	is	initially	located	in	the	top	half	of	the	blackwave	function,	it	
has	a	50/50	chance	of	being	either	in	the	upper	top	half	or	the	lower	top	half.

• So:	It	has	a	50/50	chance	of	emerging	as	a	black electron	out	of	the	Color box.

Black wave function 
splits into hard and 
soft wave functions.

e1
e2

e1,	e2 were initially in top 
half of black wave 
function, so they are 
carried out with hard 
wave function.

e1
e2

As hard wave function enters Color 
box, e1 is in top half and e2 is in 
bottom half. Thus e1 is carried up 
with black wave function and e2 is 
carried down with white wave 
function.

- QM:	Pr(black)	=	Pr(white)	=	½.
- BM:	Electron's	initial	location	determines	what	its	final	Color value	will	be:

soft

hard

black

white

H C
e1
e2

2 electrons e1,	e2, 
initially located in top 
half of black wave 
function.
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e2

e1

e1
e2

e1
e2

black

white

C

soft

hard

H

e1
e2

• If	a	black electron	is	initially	located	in	the	bottom	half	of	the	blackwave	function,	it	has	
a	50/50	chance	of	being	either	in	the	upper	bottom	half	or	the	lower	bottom	half.

• So:	It	has	a	50/50	chance	of	emerging	as	a	black electron	out	of	the	Color box.
• Thus:	There	is	a	50/50	chance	of	the	black electron	being	black after	the	Color
measurement,	if	all	we	know	is	that	it	is	initially	located	somewhere in	the	blackwave	
function.

Now:	Start	with	black electron.	First	measure	Hardness,	then	Color.
- QM:	Pr(black)	=	Pr(white)	=	½.
- BM:	Electron's	initial	location	determines	what	its	final	Color value	will	be:
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Now:	Send	black electrons	through	a	2-path	device,	without	barrier.
- QM:	100%	will	emerge	black.

black wave 
function splits...

|black⟩|𝜓𝑎(𝑥)⟩

e1
e2

C

b

w

H
s

h

e2

e1

e1 carried by hard 
wave function.

e2 carried by soft 
wave function.

- BM:	100%	will	emerge	black.

So	all electrons,	no	matter	
what	their	initial	positions,	
get	carried	up	with	black
wave	function.

e1
e2

|black⟩|𝜓𝑏(𝑥)⟩

hard and soft wave functions 
recombine to form black 
wave function

e1
e2
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So it gets carried up by black wave function.

e1

If	e1was	initially	in	bottom	top	
half	of	black	wave	function,	it	
would	enter	Color box	in	bottom	
half	of	hardwave	function,	and	
exit	as	a	white electron!

Now:	Send	black electrons	through	a	2-path	device,	with	barrier.
- QM:	Of	those	that	get	through,	50%	will	be	black,	50%	will	be	white.
- BM:	Of	those	that	get	through,	50%	will	be	black,	50%	will	be	white.

|black⟩|𝜓𝑎(𝑥)⟩

C

b

w

H
s

h

e1
e2

Suppose e1 is in upper top half and e2 is in 
lower half of black wave function.

Bonk!

e2

e1

|hard⟩|𝜓𝑏(𝑥)⟩

Only e1 gets through due to its initial 
location in top half of black wave function.  
It's position is now in upper half of hard 
wave function.

e1
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3.	Contextual	Properties

- A	property	is	intrinsic just	when,	whether	or	not	a	physical	
system	possesses	it	does	not	depend	on	how	it	is	measured.

- A	property	is	contextual just	when,	whether	or	not	a	physical	
system	possesses	it	depends	on	how	it	is	measured.

H

h

s
|black⟩|𝜓𝑎(𝑥)⟩

|hard⟩|𝜓𝑏(𝑥)⟩

|soft⟩|𝜓𝑐(𝑥)⟩

• Electron	starts	out	in	same	initial	location.

H

s

h
|black⟩|𝜓𝑎(𝑥)⟩

|soft⟩|𝜓𝑏(𝑥)⟩

|hard⟩|𝜓𝑐(𝑥)⟩

Rotate	Hardness	box ⇒

• In	BM,	position	is	an	intrinsic	property;	all	others	are	contextual.
• Ex:	In	BM,	Hardness is	a	contextual	property.

Depending on how it is measured, it's Hardness value will be either hard or soft.
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4.	Locality

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

• Now	measure	Hardness of	e1,	with	result:
½|hard⟩1|𝜓𝑏(𝑥)⟩1|soft⟩2|𝜓𝑓(𝑥)⟩2 − ½ |soft⟩1|𝜓𝑐(𝑥)⟩1|hard⟩2|𝜓𝑓(𝑥)⟩2

• Now	measure	Hardness of	e2:

H

h

s

e2 is carried down through soft exit (only soft wave function acts on it)!

|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2

• Consider:	2	electrons	in	an	entangled	state	(e1 at	point	𝑎, e2 at	point	𝑓):

½|hard⟩1|𝜓𝑎(𝑥)⟩1|soft⟩2|𝜓𝑓(𝑥)⟩2 − ½ |soft⟩1|𝜓𝑎(𝑥)⟩1|hard⟩2|𝜓𝑓(𝑥)⟩2

"effectively"	zero

If e1 had not been measured, then e2 would have come out hard! 
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In	Bohm's	Theory,	electrons	always have	a	definite	position,	and	the	final	position	
of	e2 is	determined	by	the	final	position	of	e1.

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

H

h

s
|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2

• Suppose:	Alice	and	e1 are	very	far	from	Bob	and	e2.
• Suppose:	Bob	knows	the	initial	positions	of	e1 and	e2,	and	he	gets	the	strange	
result	that	e2 came	out	soft (when	it	should	have	come	out	hard,	given	it's	initial	
location).

• Then:	Bob	knows	that	Alice	way	over	there	must	have	used	a	hard-side	up	
Hardness box	to	measure	e1!

This allows Bob and Alice to send instantaneous signals to each other!
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- If	Alice	wants	Bob	to	push	Button	A,	then	before	t she	orients	her	Hardness
box	so	that	a	Hardnessmeasurement	will	yield	the	value	hard.

- If	Alice	wants	Bob	to	push	Button	B,	then	before	t she	orients	her	Hardness
box	so	that	a	Hardnessmeasurement	will	yield	the	value	soft.

• At	t,	Bob	measures	his	electron:	This	will	tell	him	what	the	outcome	of	Alice's	
measurement	was,	and	hence	which	Button	she	wants	him	to	push!

How	to	send	an	instantaneous	message	in	BM:

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

H

h

s
|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2

• Suppose:	Alice	desires	to	send	Bob	a	message	instructing	him	to	push	either	
Button	A or	Button	B at	some	future	time	t.

• They	share	initial	positions	of	their	e1 and	e2 and	agree	to	the	following:
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• Under	a	literal	interpretation	of	QM:
- The	outcome	of	an	e2	measurement	depends	non-locally	
on	the	outcome	of	an	e1	measurement.

- But:	The	outcome	of	an	e2	measurement	does	not depend	
on	whether	or	not	an	e1	measurement	was	done.

• In	BM:
- The	outcome	of	an	e2	measurement	does depend	on	
whether	or	not	an	e1	measurement	was	done.

QM	vs	BM	on	instantaneous	messaging:

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

H

h

s
|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2
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Claim:	For	any	given	measurement	set-up,	the	
initial	positions	of	particles	can	never be	known	
in	BM.		All that	can	be	known	is	the	wave	function.

Does	BM	violate	Special	Relativity?

• Thus:	In	practice,	instantaneous	signaling	is	not possible	in	BM.
• So:	In	practice,	the	privileged	simultaneity	frame	cannot	be	determined.
• And	so:	In	practice,	BM	does	not	violate	Special	Relativity.

• So:	BM	will	violate	special	relativity,	unless	it	can	explain	why	the	
privileged	reference	frame	is	in	principle	unobservable.

• In	BM,	there	is a	fact	of	the	matter	(a	"privileged"	reference	frame	that	
determines	the	simultaneity	of	distant	events).

• In	Special	Relativity,	the	simultaneity	of	distant	events	in	the	same	
inertial	reference	frame	is	relative:	there	is	no absolute	fact	of	the	
matter	which	occurs	before	the	other.

harumph!

Why?	Because,	if they	can	instantaneous	message,	Alice	and	Bob	
will	always	agree	on	the	order	of	their	measurements.
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Why	initial	particle	positions	can	never	be	known	in	BM

• Ifwe	could	determine	e's	initial	position,	then	we	could	predict	with	certainty	
which	exit	it	will	take:
- Initially	in	upper	half,	then	hard exit.
- Initially	in	lower	half,	then	soft exit.

• So:	How	could	we	determine	initial	position?
• Problem:	According	to	BM,	any	attempt	will	change	the	pre-Hardness
measurement	wave	function,	and	so	affect	all	subsequent	measurements!

H

h

s
|𝜓𝑎(𝑥)⟩e|black⟩e

• Consider	measuring	the	Hardness of	a	black electron	e:
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• If	e is	measured	to	be	in	the	upper-half of	𝜓𝑎(𝑥),	then	it's	(effective)	wave	
function	is	now	𝜓𝑎

+(𝑥).

• If	e is	initially	in	upper-half	of	𝜓𝑎(𝑥),	then	it	will	emerge	from	𝑚 as	𝜓𝑎
+(𝑥).

• But:	To	predict	where	it	will	emerge	from	H,	we	need	to	know	if	it's	in	the	
upper-half or	lower-half of	𝜓𝑎

+(𝑥)!
• And	to	measure	this	is	to	disrupt	the	wave	function	again!

Suppose:	Before	measuring	Hardness of	e,	we	measure	its	position:

|ready⟩𝑚|𝜓𝑎(𝑥)⟩e|black⟩e® ½ |+⟩𝑚|𝜓𝑎
+(𝑥)⟩e|soft⟩e +	 ½ |−⟩𝑚|𝜓𝑎

−(𝑥)⟩e|black⟩e

|𝜓𝑎(𝑥)⟩e|black⟩e

𝑚 +

−

|𝜓𝑎+(𝑥)⟩e|black⟩e

|𝜓𝑎−(𝑥)⟩e|black⟩e

H

h

s

• This	will	not	allow	us	to	predict	how	it	will	move	through	a	Hardness device:
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