
11. Bohm's Theory (Bohmian Mechanics) 

Motivation: Replace Hilbert state space of QM with one that is 

more classical and reproduces QM predictions.

David Bohm
(1917-1992)

1. Principles of Bohmian Mechanics

I. States: The state of a physical system is given by both a wave 

function 𝜓 and particle positions.

• 𝑞 = (𝑥, 𝑦, 𝑧)

𝑞′ = (𝑥′, 𝑦′, 𝑧′)•

3-dim configuration 
space for 1 particle

• 𝑄 = (𝑥1, 𝑦1, 𝑧1, ..., 𝑥𝑁, 𝑦𝑁, z𝑁)

• 𝑄′ = (𝑥′1, 𝑦′1, 𝑧′1, ..., 𝑥′𝑁, 𝑦′𝑁, 𝑧′𝑁)

3𝑁-dim configuration 
space for 𝑁 particles

Examples of configuration space (state space of positions):

Now add specification of 

𝜓 for each point in 

configuration space and 

get the state space of BM!

- Recall: In QM, a state is given entirely by a wave function 𝜓.

- In classical mechanics, a state is given by positions 𝑥 and momenta 𝑝:

- 1 particle needs 6 numbers: (𝑥, 𝑦, 𝑧; 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = 1 point in 6-dim phase space.

- 𝑁 particles need 6𝑁 numbers: (𝑥1, 𝑦1, 𝑧1; 𝑝𝑥1, 𝑝𝑦1, 𝑝𝑧1; ... ; 𝑥𝑁, 𝑦𝑁, z𝑁; 𝑝𝑥𝑁, 𝑝𝑦𝑁, 𝑝𝑧𝑁) = 1 point 

in 6𝑁-dim phase space.

1. Principles
2. Example
3. Contextual Properties
4. Locality
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II. Wave Function Dynamics: The wave function associated with a state evolves 

according to the Schrödinger dynamics:

𝜓(𝑄𝑖, 𝑡𝑖)  ⎯⎯⎯⎯→  𝜓(𝑄𝑓, 𝑡𝑓)
Schrödinger

evolution

𝑡𝑖 → 𝑡𝑓

... is a function of it's 

mass 𝑚𝑖 and the 𝑁-

particle wave function 

𝜓(𝑄), which depends 

on the positions 𝑄 of all 

the 𝑁 particles...

The velocity 𝑉𝑖 of the 

𝑖th particle, located 

at 𝑞𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) ...

... where Ԧ𝐽𝑖 = (ℏ/𝑚𝑖)Im(𝜓∗ Ԧ𝜕𝑖𝜓) 

is the "probability current" and 

𝜌 = 𝜓∗𝜓 = |𝜓|2 is the 

"probability density".

III. Particle Dynamics: Particle velocities are determined by Bohm's Equation:

𝑉𝑖 𝜓 𝑄 =
𝑑𝑞𝑖

𝑑𝑡
=

ℏ

𝑚𝑖
Im ቮ

𝜓∗ Ԧ𝜕𝑖𝜓

𝜓∗𝜓
𝑄

=
Ԧ𝐽𝑖

𝜌
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This entails BM is empirically indistinguishable from QM in the 

sense that BM reproduces all the QM probability predictions!

IV. The Distribution (or Statistical) Postulate: At some time 𝑡0, particle 

positions are given by a probability defined by the wave function at 𝑡0:

Pr(particle positions are 𝑄 at time 𝑡0) =  |𝜓(𝑄, 𝑡0)|2

3

Why?

- QM says: (Born Rule) The probabilities for particle positions at any 

time t are given by |𝜓(𝑄, 𝑡)|2.

- BM says exactly the same thing, because:

- The probability density 𝜌 = |𝜓|2 is conserved by the Schrödinger 

equation (𝜌 satisfies the equation of continuity: ∂𝜌/∂𝑡 + ∇ ∙ Ԧ𝐽 = 0).

- So: If at time 𝑡0, the probabilities are given by |𝜓(𝑄, 𝑡0)|2 (the BM 

Distribution Postulate), then at any future (or past) time 𝑡, the 

probabilities will be given by |𝜓(𝑄, 𝑡)|2 (Born Rule).



What Principles II, III, and IV are saying:

The point 𝑄 (representing positions of all 𝑁 particles at any given time) 

moves about configuration space by being "guided" by the wave function 𝜓!

𝑄  ⎯⎯⎯→  𝑄′
particle 

dynamics via 𝜓

𝑡𝑖 → 𝑡𝑓

• One interpretation: The particles are swept along by the probability current 

defined by 𝜓 (just like charges that are swept along in an electrical current).

• Recall 2-slit experiment: Are the electrons really particles that are being guided 

by some force that makes them impact the screen in an interference pattern? 

(Bohm's Theory = "Pilot Wave" theory.)

- But: This analogy is not perfect: 𝜓 is a function on configuration space 

(6𝑁-dim for 𝑁 particles), not physical space (3-dim Euclidean space).

- So: 𝜓 literally isn't a physical force (like an electric field).

- But: Maybe it encodes properties of a physical force.
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Characteristics of Bohmian Mechanics

(A) Positions of particles are always determinate. (Particles 

always have definite positions.)

(B) Positions evolve completely deterministically. (Any initial 

position state 𝑄 evolves to a unique final position state 𝑄′.)

(C) BM reproduces the same probability predictions as QM.

 But: In BM, probabilities are epistemic! Particles always 

have definite positions, and BM probabilities just reflect 

our ignorance as to what they are.

5



configuration space region 

in which black electron 
wave function is non-zero

2. Example: Measuring the Hardness of a black electron

•

H

hard

soft

•

electron initially 

located at point 𝑎

soft wave 

function

hard wave 

function

•

• Inside Hardness box, black wave function "splits" into soft and hard wave functions.

•
electron finally 

located at point 𝑏

point 𝑐
(no electron)

• Depending on where electron is initially located, it will either be carried up with the 

hard wave function, or down with the soft wave function.

• An initial position in upper half of the black wave function entails it gets carried up.

• |black⟩|𝜓𝑎(𝑥)⟩  ⎯→ ½ |hard⟩|𝜓𝑏(𝑥)⟩ + ½ |soft⟩|𝜓𝑐(𝑥)⟩
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Now: Start with black electron. First measure Hardness, then Color.

e2

e1

• If a black electron is initially located in the top half of the black wave function, it 

has a 50/50 chance of being either in the upper top half or the lower top half.

- So: It has a 50/50 chance of emerging as a black electron out of the Color box.

Black wave function 

splits into hard and 
soft wave functions.

e1

e2

e1, e2 were initially in 

top half of black wave 
function, so they are 

carried out with hard 
wave function.

e1

e2

As hard wave function enters Color 

box, e1 is in top half and e2 is in 

bottom half. Thus e1 is carried up 

with black wave function and e2 is 

carried down with white wave 

function.

- QM: Pr(black) = Pr(white) = ½.

- BM: Electron's initial location determines what its final Color value will be:

soft

hard

black

white

H
C

e1

e2

2 electrons e1, e2, 

initially located in top 
half of black wave 

function.
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e2

e1

e1

e2

e1

e2

black

white

C

soft

hard

H

e1

e2

• If a black electron is initially located in the bottom half of the black wave function, it has 

a 50/50 chance of being either in the upper bottom half or the lower bottom half.

- So: It has a 50/50 chance of emerging as a black electron out of the Color box.

Now: Start with black electron. First measure Hardness, then Color.

- QM: Pr(black) = Pr(white) = ½.

- BM: Electron's initial location determines what its final Color value will be:
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Thus: There is a 50/50 chance of the black electron being black after the Color 

measurement, if all we know is that it is initially located somewhere in the black 

wave function.



Now: Send black electrons through a 2-path device, without barrier.

- QM: 100% will emerge black.

black wave 

function splits...

|black⟩|𝜓𝑎(𝑥)⟩

e1
e2

C

b

w

H
s

h

e2

e1

e1 carried by hard 

wave function.

e2 carried by soft 

wave function.

- BM: 100% will emerge black.

So all electrons, no matter 
what their initial positions, 
get carried up with black 
wave function.

e1

e2

|black⟩|𝜓𝑏(𝑥)⟩

hard and soft wave functions 

recombine to form black 
wave function

e1
e2
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So it gets carried up by black wave function.

e1

If e1 was initially in bottom top 
half of black wave function, it 
would enter Color box in bottom 
half of hard wave function, and 
exit as a white electron!

Now: Send black electrons through a 2-path device, with barrier.

- QM: Of those that get through, 50% will be black, 50% will be white.

- BM: Of those that get through, 50% will be black, 50% will be white.

|black⟩|𝜓𝑎(𝑥)⟩

C

b

w

H
s

h

e1

e2

Suppose e1 is in upper top half and e2 is in 

lower half of black wave function.

Bonk!

e2

e1

|hard⟩|𝜓𝑏(𝑥)⟩

Only e1 gets through due to its initial 

location in top half of black wave function.  
It's position is now in upper half of hard 

wave function.

e1
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3. Contextual Properties

- A property is intrinsic just when, whether or not a physical 

system possesses it does not depend on how it is measured.

- A property is contextual just when, whether or not a physical 

system possesses it depends on how it is measured.

H

h

s

|black⟩|𝜓𝑎(𝑥)⟩

|hard⟩|𝜓𝑏(𝑥)⟩

|soft⟩|𝜓𝑐(𝑥)⟩

• Electron starts out in same initial location.

H

s

h

|black⟩|𝜓𝑎(𝑥)⟩

|soft⟩|𝜓𝑏(𝑥)⟩

|hard⟩|𝜓𝑐(𝑥)⟩

Rotate Hardness box ⇒

• In BM, position is an intrinsic property; all others are contextual.

• Ex: In BM, Hardness is a contextual property.

Depending on how it is measured, it's Hardness value will be either hard or soft.
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4. Locality

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

• Now measure Hardness of e1, with result:

 ½|hard⟩1|𝜓𝑏(𝑥)⟩1|soft⟩2|𝜓𝑓(𝑥)⟩2 − ½ |soft⟩1|𝜓𝑐(𝑥)⟩1|hard⟩2|𝜓𝑓(𝑥)⟩2

• Now measure Hardness of e2:

H

h

s

e2 is carried down through soft exit (only soft wave function acts on it)!

|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2

• Consider: 2 electrons in an entangled state (e1 at point 𝑎, e2 at point 𝑓):

 ½|hard⟩1|𝜓𝑎(𝑥)⟩1|soft⟩2|𝜓𝑓(𝑥)⟩2 − ½ |soft⟩1|𝜓𝑎(𝑥)⟩1|hard⟩2|𝜓𝑓(𝑥)⟩2

"effectively" zero

If e1 had not been measured, then e2 would have come out hard! 
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In Bohm's Theory, electrons always have a definite position, and the final position 

of e2 is determined by the final position of e1.

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

H

h

s

|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2

• Suppose: Alice and e1 are very far from Bob and e2.

• Suppose: Bob knows the initial positions of e1 and e2, and he gets the strange 

result that e2 came out soft (when it should have come out hard, given it's initial 

location).

• Then: Bob knows that Alice way over there must have used a hard-side up 

Hardness box to measure e1!

This allows Bob and Alice to send instantaneous signals to each other!
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- If Alice wants Bob to push Button A, then before t she orients her Hardness 

box so that a Hardness measurement will yield the value hard.

- If Alice wants Bob to push Button B, then before t she orients her Hardness 

box so that a Hardness measurement will yield the value soft.

• At t, Bob measures his electron: This will tell him what the outcome of Alice's 

measurement was, and hence which Button she wants him to push!

How to send an instantaneous message in BM:

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

H

h

s

|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2

• Suppose: Alice desires to send Bob a message instructing him to push either 

Button A or Button B at some future time t.

• They share initial positions of their e1 and e2 and agree to the following:
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• Under a literal interpretation of QM:

- The outcome of an e2 measurement depends non-locally 

on the outcome of an e1 measurement.

- But: The outcome of an e2 measurement does not depend 

on whether or not an e1 measurement was done.

• In BM:

- The outcome of an e2 measurement does depend on 

whether or not an e1 measurement was done.

QM vs BM on instantaneous messaging:

H

h

s

|hard⟩1|𝜓𝑏(𝑥)⟩1

|soft⟩1|𝜓𝑐(𝑥)⟩1

H

h

s

|𝜓𝑎(𝑥)⟩1 |𝜓𝑓(𝑥)⟩2
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Claim: For any given measurement set-up, the 

initial positions of particles can never be known 

in BM.  All that can be known is the wave function.

Does BM violate Special Relativity?

• Thus: In practice, instantaneous signaling is not possible in BM.

• So: In practice, the privileged simultaneity frame cannot be determined.

• And so: In practice, BM does not violate Special Relativity.

• So: BM will violate special relativity, unless it can explain why the 

privileged reference frame is in principle unobservable.

• In BM, there is a fact of the matter (a "privileged" reference frame that 

determines the simultaneity of distant events).

• In Special Relativity, the simultaneity of distant events in the same 

inertial reference frame is relative: there is no absolute fact of the 

matter which occurs before the other.

harumph!

Why? Because, if they can instantaneous message, Alice and Bob 

will always agree on the order of their measurements.
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Why initial particle positions can never be known in BM

• If we could determine e's initial position, then we could predict with certainty 

which exit it will take:

- Initially in upper half, then hard exit.

- Initially in lower half, then soft exit.

• So: How could we determine initial position?

• Problem: According to BM, any attempt will change the pre-Hardness 

measurement wave function, and so affect all subsequent measurements!

H

h

s

|𝜓𝑎(𝑥)⟩e|black⟩e

• Consider measuring the Hardness of a black electron e:
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• If e is measured to be in the upper-half of 𝜓𝑎(𝑥), then it's (effective) wave 

function is now 𝜓𝑎
+(𝑥).

• If e is initially in upper-half of 𝜓𝑎(𝑥), then it will emerge from 𝑚 as 𝜓𝑎
+(𝑥).

• But: To predict where it will emerge from H, we need to know if it's in the 

upper-half or lower-half of 𝜓𝑎
+(𝑥)!

• And to measure this is to disrupt the wave function again!

Suppose: Before measuring Hardness of e, we measure its position:

 |ready⟩𝑚|𝜓𝑎(𝑥)⟩e|black⟩e → ½ |+⟩𝑚|𝜓𝑎
+(𝑥)⟩e|soft⟩e + ½ |−⟩𝑚|𝜓𝑎

−(𝑥)⟩e|black⟩e

|𝜓𝑎(𝑥)⟩e|black⟩e

𝑚 +

−

|𝜓𝑎
+(𝑥)⟩e|black⟩e

|𝜓𝑎
−(𝑥)⟩e|black⟩e

H

h

s

• This will not allow us to predict how it will move through a Hardness device:
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