11. Bohm's Theory (Bohmian Mechanics)

Motivation: Replace Hilbert state space of QM with one that is more classical and reproduces QM predictions.

1. Principles of Bohmian Mechanics

I. States: The state of a physical system is given by both a wave function ψ and particle positions.

- Recall: In QM, a state is given entirely by a wave function ψ.
- In classical mechanics, a state is given by positions x and momenta p :
- 1 particle needs 6 numbers: $\left(x, y, z ; p_{x}, p_{y}, p_{z}\right)=1$ point in 6 -dim phase space.
- N particles need $6 N$ numbers: $\left(x_{1}, y_{1}, z_{1} ; p_{x}^{1}, p_{y}^{1}, p_{z}^{1} ; \ldots ; x_{N}, y_{N}, z_{N} ; p_{x}^{N}, p_{y}^{N}, p_{z}^{N}\right)=1$ point in $6 N$-dim phase space.

Examples of configuration space (state space of positions):

Now add specification of ψ for each point in configuration space and get the state space of $B M$!
II. Wave Function Dynamics: The wave function associated with a state evolves according to the Schrödinger dynamics:

$$
\psi\left(Q_{i}, t_{i}\right) \xrightarrow[\substack{\text { Schrödinger } \\ \text { evolution }}]{t_{i} \rightarrow t_{f}} \psi\left(Q_{f}, t_{f}\right)
$$

III. Particle Dynamics: Particle velocities are determined by Bohm's Equation:

$$
\underset{V_{i}}{\overrightarrow{V_{i}}}[\psi(Q)]=\frac{\overrightarrow{d q}_{i}}{d t}=\left.\frac{\hbar}{m_{i}} \operatorname{Im}\left(\frac{\psi^{*} \vec{\partial}_{i} \psi}{\psi^{*} \psi}\right)\right|_{Q}=\frac{\vec{J}_{i}}{\rho}
$$


```
\(\ldots\) where \(\vec{J}_{i}=\left(\hbar / m_{i}\right) \operatorname{Im}\left(\psi^{*} \vec{\partial}_{i} \psi\right)\)
is the "probability current" and
\(\rho=\psi^{*} \psi=|\psi|^{2}\) is the
"probability density".
```

IV. The Distribution (or Statistical) Postulate: At some time t_{0}, particle positions are given by a probability defined by the wave function at t_{0} :

$$
\operatorname{Pr}\left(\text { particle positions are } Q \text { at time } t_{0}\right)=\left|\psi\left(Q, t_{0}\right)\right|^{2}
$$

This entails BM is empirically indistinguishable from QM in the sense that BM reproduces all the QM probability predictions!

```
Why?
    QM says: (Born Rule) The probabilities for particle positions at any
    time t are given by |\psi(Q,t)| |
    BM says exactly the same thing, because:
    - The probability density }\rho=|\psi\mp@subsup{|}{}{2}\mathrm{ is conserved by the Schrödinger
        equation ( }\rho\mathrm{ satisfies the equation of continuity: }\partial\rho/\partialt+\vec{\nabla}\cdot\vec{J}=0\mathrm{ ).
    - So: If at time }\mp@subsup{t}{0}{}\mathrm{ , the probabilities are given by | }\psi(Q,\mp@subsup{t}{0}{})\mp@subsup{|}{}{2}\mathrm{ (the BM
        Distribution Postulate), then at any future (or past) time t, the
        probabilities will be given by }|\psi(Q,t)\mp@subsup{|}{}{2}(\mathrm{ Born Rule).
```

What Principles II, III, and IV are saying:
The point Q (representing positions of all N particles at any given time) moves about configuration space by being "guided" by the wave function ψ !

$$
Q \xrightarrow[\substack{\text { particle } \\ \text { dynamics via } \psi}]{t_{i} \rightarrow t_{f}} Q^{\prime}
$$

- One interpretation: The particles are swept along by the probability current defined by ψ (just like charges that are swept along in an electrical current).
- Recall 2-slit experiment: Are the electrons really particles that are being guided by some force that makes them impact the screen in an interference pattern? (Bohm's Theory = "Pilot Wave" theory.)
- But: This analogy is not perfect: ψ is a function on configuration space (6 N -dim for N particles), not physical space (3-dim Euclidean space).
- So: ψ literally isn't a physical force (like an electric field).
- But: Maybe it encodes properties of a physical force.

Characteristics of Bohmian Mechanics
(A) Positions of particles are always determinate. (Particles always have definite positions.)
(B) Positions evolve completely deterministically. (Any initial position state Q evolves to a unique final position state Q^{\prime}.)
(C) BM reproduces the same probability predictions as QM. But: In BM, probabilities are epistemic! Particles always have definite positions, and BM probabilities just reflect our ignorance as to what they are.

2. Example: Measuring the Hardness of a black electron

- Inside Hardness box, black wave function "splits" into soft and hard wave functions.
- Depending on where electron is initially located, it will either be carried up with the hard wave function, or down with the soft wave function.
- An initial position in upper half of the black wave function entails it gets carried up.
- \mid black $\rangle\left|\psi_{a}(x)\right\rangle \longrightarrow \sqrt{1 / 2} \mid$ hard $\rangle\left|\psi_{b}(x)\right\rangle+\sqrt{1 / 2}|s o f t\rangle\left|\psi_{c}(x)\right\rangle$

Now: Start with black electron. First measure Hardness, then Color.

- QM: $\operatorname{Pr}($ black $)=\operatorname{Pr}($ white $)=1 / 2$.
- BM: Electron's initial location determines what its final Color value will be:

- If a black electron is initially located in the top half of the black wave function, it has a 50/50 chance of being either in the upper top half or the lower top half.
- So: It has a $50 / 50$ chance of emerging as a black electron out of the Color box.

Now: Start with black electron. First measure Hardness, then Color.

- QM: $\operatorname{Pr}($ black $)=\operatorname{Pr}($ white $)=1 / 2$.
- BM: Electron's initial location determines what its final Color value will be:

- If a black electron is initially located in the bottom half of the black wave function, it has a 50/50 chance of being either in the upper bottom half or the lower bottom half.
- So: It has a $50 / 50$ chance of emerging as a black electron out of the Color box.
- Thus: There is a 50/50 chance of the black electron being black after the Color measurement, if all we know is that it is initially located somewhere in the black wave function.

Now: Send black electrons through a 2-path device, without barrier.

- QM: 100\% will emerge black.
- BM: 100% will emerge black.

Now: Send black electrons through a 2-path device, with barrier.

- QM: Of those that get through, 50% will be black, 50% will be white.
- 브: Of those that get through, 50% will be black, 50% will be white.
 lower half of black wave function.

3. Contextual Properties

- A property is intrinsic just when, whether or not a physical system possesses it does not depend on how it is measured.
- A property is contextual just when, whether or not a physical system possesses it depends on how it is measured.
- In BM, position is an intrinsic property; all others are contextual.
- Ex: In BM, Hardness is a contextual property.

- Electron starts out in same initial location.

Depending on how it is measured, it's Hardness value will be either hard or soft.

4. Locality

- Consider: 2 electrons in an entangled state (e_{1} at point a, e_{2} at point f):

$$
\left.\left.\left.\sqrt{1 / 2} \mid \text { hard }\rangle_{1}\left|\psi_{a}(x)\right\rangle_{1} \mid \text { soft }\right\rangle_{2}\left|\psi_{f}(x)\right\rangle_{2}-\sqrt{1 / 2} \mid \text { soft }\right\rangle_{1}\left|\psi_{a}(x)\right\rangle_{1} \mid \text { hard }\right\rangle_{2}\left|\psi_{f}(x)\right\rangle_{2}
$$

- Now measure Hardness of e_{1}, with result:
"effectively" zero

$$
\left.\left.\sqrt{1 / 2} \mid \text { hard }\rangle_{1}\left|\psi_{b}(x)\right\rangle_{1} \mid \text { soft }_{2}\left|\psi_{f}(x)\right\rangle_{2}-\sqrt{1 / 2} \mid \text { soft }\right\rangle_{1}\left|\psi_{c}(x)\right\rangle_{1} \mid \text { hard }\right\rangle_{2}\left|\psi_{f}(x)\right\rangle_{2}
$$

- Now measure Hardness of e_{2} :
e_{2} is carried down through soft exit (only soft wave function acts on it)!
If e_{1} had not been measured, then e_{2} would have come out hard!

In Bohm's Theory, electrons always have a definite position, and the final position of e_{2} is determined by the final position of e_{1}.

- Suppose: Alice and e_{1} are very far from Bob and e_{2}.
- Suppose: Bob knows the initial positions of e_{1} and e_{2}, and he gets the strange result that e_{2} came out soft (when it should have come out hard, given it's initial location).
- Then: Bob knows that Alice way over there must have used a hard-side up Hardness box to measure e_{1} !

This allows Bob and Alice to send instantaneous signals to each other!

- Suppose: Alice desires to send Bob a message instructing him to push either Button A or Button B at some future time t.
- They share initial positions of their e_{1} and e_{2} and agree to the following:
- If Alice wants Bob to push Button A, then before t she orients her Hardness box so that a Hardness measurement will yield the value hard.
- If Alice wants Bob to push Button B, then before t she orients her Hardness box so that a Hardness measurement will yield the value soft.
- At t, Bob measures his electron: This will tell him what the outcome of Alice's measurement was, and hence which Button she wants him to push!

- Under a literal interpretation of QM:
- The outcome of an e_{2} measurement depends non-locally on the outcome of an e_{1} measurement.
- But: The outcome of an e_{2} measurement does not depend on whether or not an e_{1} measurement was done.
- In BM:
- The outcome of an e_{2} measurement does depend on whether or not an e_{1} measurement was done.

Does BM violate Special Relativity?

- In Special Relativity, the simultaneity of distant events in the same inertial reference frame is relative: there is no absolute fact of the matter which occurs before the other.
- In BM, there is a fact of the matter (a "privileged" reference frame that determines the simultaneity of distant events).

Why? Because, if they can instantaneous message, Alice and Bob will always agree on the order of their measurements.

- So: BM will violate special relativity, unless it can explain why the privileged reference frame is in principle unobservable.

> Claim: For any given measurement set-up, the initial positions of particles can never be known in BM. All that can be known is the wave function.

- Thus: In practice, instantaneous signaling is not possible in BM.
- So: In practice, the privileged simultaneity frame cannot be determined.
- And so: In practice, BM does not violate Special Relativity.
- Consider measuring the Hardness of a black electron e :

- If we could determine e 's initial position, then we could predict with certainty which exit it will take:
- Initially in upper half, then hard exit.
- Initially in lower half, then soft exit.
- So: How could we determine initial position?
- Problem: According to BM, any attempt will change the pre-Hardness measurement wave function, and so affect all subsequent measurements!

Suppose: Before measuring Hardness of e, we measure its position:

$$
\left.\left.\left.\mid \text { ready }\rangle_{m}\left|\psi_{a}(x)\right\rangle_{e} \mid \text { black }\right\rangle_{e} \rightarrow \sqrt{1 / 2}|+\rangle_{m}\left|\psi_{a}^{+}(x)\right\rangle_{e} \mid \text { soft }\right\rangle_{e}+\sqrt{1 / 2}|-\rangle_{m}\left|\psi_{a}^{-}(x)\right\rangle_{e} \mid \text { black }\right\rangle_{e}
$$

- If e is measured to be in the upper-half of $\psi_{a}(x)$, then it's (effective) wave function is now $\psi_{a}^{+}(x)$.
- This will not allow us to predict how it will move through a Hardness device:

- If e is initially in upper-half of $\psi_{a}(x)$, then it will emerge from m as $\psi_{a}^{+}(x)$.
- But: To predict where it will emerge from H, we need to know if it's in the upper-half or lower-half of $\psi_{a}{ }^{+}(x)$!
- And to measure this is to disrupt the wave function again!

