09. Collapse and GRW 7. The GRW Interpretation
Recall: There are two ways a quantum state can change:

1. In absence of measurement, states change via Schrodinger dynamics:

() > [(t2)

Schréodinger
evolution

2. In presence of measurement, states change via the Projection Postulate:

When a measurement of property B is made on a state |Y) = a;|b;) + -+ + ay|by)
expanded in the eigenvector basis of B with result b;, then |i) collapses to |b;):

V) > |by)

collapse

Problems:

- What is a measurement?

- When is the Projection Postulate supposed to
take over from the Schrodinger dynamics?




Typical Attempts at Responses

1. When a conscious observer looks at a measuring device.
Consequence: Dualism--2 fundamental types of physical systems.

- Purely physical systems: Always evolve via Schrodinger dynamics.

- Conscious systems: Interact with physical systems in certain Eugene Wigner
. . ] . . (1902-1995)
situations to cause collapse via Projection Postulate.

Mystery-mongering!
- What are conscious systems?
- How are they distinct from physical systems?

2. When a macroscopic system interacts with a microscopic system.

Consequence: Dualism--2 fundamental types of physical systems.

- Microscopic systems: Always evolve via Schrodinger dynamics.

- Macroscopic systems: Interact with microscopic systems in certain
situations to cause collapse via Projection Postulate.

Mpystery-mongering by another name!
- What are microscopic systems?
- How are they distinct from macroscopic systems?




1. Theories of Collapse
Can experiments determine when a collapse occurs?

In principle, Yes!

But in practice, No!
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Let initial state at t, be:

V% (|ready),,|hard), + |ready),,|soft),)

LN

each with prob = 2.

Theory 1: Collapse occurs at t.

So: At tg, state will be |T1) = either
|"hard"), |hard), or |"soft"),|soft),,

\\N

What is final state at t > t;?

Theory 2: Collapse occurs after t;.

\\N

So: At t, state will be [T2) =
V% (|"hard"),,|hard), + | "soft"),|soft),)

e Suppose the m-e system in state | T2) has a measureable bipartite ("2-system")
property that it doesn't have in either of the forms of [T1).

- This would let us distinguish between Theory 1 and Theory 2.



Task: Find a bipartite property of the m-e system in the state |T2)
that is not possessed by the m-e system in either of the forms of |T1).

e Recall Lecture 4's Hardness H¢ and Color C¢ operators that act on states of e:

Heé|hard), = +1|hard), C¢|black), = +1|black),
He|soft), = —1|soft), C¢|white), = —1|white),

e Now define "Hardness" H™ and "Color" C™ operators that act on states of m by:
H™|ready),, = O|ready),, C™"|ready),, = O|ready),,
H™|"hard"),, = +1|"hard"},, C™|"black™),, = +1|"black"},,
H™|"soft"),, = —1|"soft"),, C™| "white"),, = —1|"white"),,

e o o o e o e e e e e e mm e e mm e e e E e e Em e R e e mm e M Ee e e e e M e M mm e mm e e mm e M M e M e M mm e M e e e e e e e e mm e e e e e e = e =



0 0 0
|ready),, = (O), |"hard"),, = (1), |"soft"),, = (O),
0 0 1

0 0
I"black”., = V% |, |'white”),, =| V%
7 V7

0 0 O 0 0 O
H*={0 1 0 Cm={0 0 1
0 0 -1 0 1 0

This entails:
|"hard"),, = Vs (|"black™,, + | "white"),,) |"black"),, = i (|"hard™),, + |"soft"),,)
|"soft"),, = A (|"black™),, — |"white"),,) |"white"),,=vV% (|"hard"),, — |"soft"),,)

H™|ready),, = 0|ready),, C™|ready),, = 0|ready),,
H™|"hard"),, = +1|"hard"),, C™|"black”),,= +1|"black"),,
H™|"soft"),, = —1|"soft"),, C™|"white"),, = —1|"white"),,



Task: Find a bipartite property of the m-e system in the state |T2)
that is not possessed by the m-e system in either of the forms of |T1).

e The bipartite operator C" @ I¢ represents m's "Color” in the m-e system.
e The bipartite operator I ) C¢ represents e's Color in the m-e system.

e And: The bipartite operator (C™Q1¢) — (I Q) (C?) represents another bipartite
property of the m-e system, call it ("Color" — Color).

Claim: |T2) is an eigenstate of (C™Q1¢) — (IR C?)
with eigenvalue 0, but [T1) in either form is not!

e So: In principle, at time t; we can measure the bipartite property "Color” — Color.
- If Theory 2 is correct, the value should always be 0.

- If Theory 1 is correct, measurements should yield values other than O.

But this method fails in practice...



What happens if there is a single air molecule in the measuring device?

LA tripartite :
ready "hard”  "soft" I /1
I System m-e-a’
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black
electron

O air molecule

e Let|center), represent state of air molecule located under "hard" pointer-reading.

e Let|right), represent state of air molecule located under "soft” pointer-reading.

Theory 1: Collapse occurs at ty. - Theory 2: Collapse occurs after t.
So: At t, state will be either So: At t, state will be

|"hard"),, |hard),|center),or V% (|"hard"),,|hard),|center), +
|"soft"),,|soft).|right), each with prob = 1. |"soft")..|soft),|right),). y

e These predictions are not eigenstates of ("Color" — Color)!
e To tell them apart, we need a more complicated, tripartite property of the m-e-a system.

e If there are other microscopic subsystems in m, we will need more complicated multi-
partite properties.

In practice there will be trillions of microscopic subsystems...



2 The GRW Interpretation Ghirardi, Rimini, Weber (1986)

e Motivation: Most (all?) properties can be correlated with the position
of a pointer in an appropriate measuring device.

e We can maintain Option A1 if we stipulate that (for whatever reason)
superpositions of position eigenstates collapse with high probability.

GRW Dynamical Law R
During any time interval, there is a non-zero probability that the
state of an elementary particle will collapse to a position eigenstate.

- Suppose |Y) represents the state of an elementary particle.

- Expand |¢) in a basis of eigenvectors of position: |Y) = a{|x{) + -+ + ay|xy).
- The GRW Collapse Theory says:

- |Y) generally evolves via the Schrodinger dynamics.

- But there is a non-zero chance that |y) will collapse to a position eigenstate.
- If this occurs, the probability of it ending up in the specific position
eigenstate |x;) is given by the Born Rule:
Pr(particle is located at position x; in state |)) = |[(P|x;)|? = |W¥(x,)|?



Why this helps:

Consider the entangled composite state of pointer particles and electron:

V% (Ixo)1[Xa)alxa)s ) hard), + Ve (1x,)1]x,)21%,)5 ) Isof t),

J/ A J/

Y Y
Position states of pointer particles Position states of pointer particles
when pointer is located at the position, when pointer is located at the
call it x,, that registers "hard". position, call it x,, that registers "soft".

- Particle 1 is in a superposition of being located at x, and x,, particle 2 is is a
superposition of being located at x, and x,, etc.

- If just one of all of these (trillions of) pointer particles has a definite location,
then according to the Projection Postulate, the composite state will collapse
to the term containing that position eigenstate.

- So: Even if the probability of collapse in the GRW Law is extremely small,
since any measuring device has trillions of particles, any superposition

containing them will have an extremely likely chance of collapsing.

Upshot: By modifying the Schrbdinger dynamics with the GRW Law we guarantee that
pointers in measuring devices will always have well-defined post-measurement positions.



The GRW Law in terms of Wavefunctions:

e Let |Y) =a,|x,) + -+ + ay|xy) represent the state of an elementary particle
expanded in a basis of eigenvectors of position.

The corresponding position wavefunction is defined by ¥ (x) = (Y|x).

Y (x) encodes all the values of the expansion coefficients. Ex: Y(x;) = a..

e Now: Represent state vector collapse: |¢) > |x;)
collapse
as wavefunction collapse: Y(x) collanse Y(x,)
general form of wavefunction specific form of wave-
for all position eigenstates function for state |x;)

Mathematically, wavefunction collapse is accomplished by multiplying
the general wavefunction ¥ (x) by a Dirac delta function §(x—x;):

P(x) = 0(x—x)Pp(x)"
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The Dirac Delta Function

e Think of 6(x—x;) as a position eigenfunction.

e [tis an infinite spike exactly at x;, and zero everywhere else: Paul Dirac
(1902-1984)
P AN . . . k
A 5(x—x,) 6(x—x") is defined by the following:
1. 6(x—x")=0,whenx # x'.
2. 8(x—x")=oo,when x = x'. Not a legitimate
N function!
; 3. [6(x—x"dx' = 1. (Rather.
xl X / / / T . . "
4. [8(x—x")f(x)dx' = f(x"), forany f(x).| "distribution”)

So instead of "Y(x;) = 6 (x—x)YP(x)", we

hould write 1(x) = [ §(x—x)(x)dx.
Initial Problem: should write (x;) = [ §(x—x)y(x)dx

 If our state is represented by an eigenvector of position, then according to
the EE Rule, this means that it has a definite value of position (namely, x;).

e So: Properties incompatible with position will be maximally indeterminate.

Uncertainty in Uncertainty in
position =0 momentum = oo!
e When a GRW collapse occurs (and we get an exact value of position), we could

potentially have violations of conservation of momentum and energy!
11



Technical Solution

e For GRW collapses, instead of multiplying the wavefunction by a Dirac delta
function 6 (x—x;), use a Gaussian (i.e., Bell-shaped) function g, (x—x;) spread
out a finite width L about x;.

L The Gaussian function is a X
1 le—>] legitimate function.
- Centered at x'.
gLlx—x") = 1 o~ (x—x")/L? - Width = L.
mL? : .1

- Maximum height = T
- Unit area.

X X - lim g, (x—x") = §(x—x")

i L—-0

e Can choose L so that the uncertainty in momentum is effectively cut-off.

e The price: We've had to smear the position about x..
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Essential Characteristics of GRW Collapse Theory:
1. Modifies Schrodinger dynamics with GRW Law.

2. Keeps Projection Postulate.

3. Introduces two new constants of nature:

(a) Probability per time per particle of collapse.

(b) Width L of Gaussian position eigenfunctions.

- Recall: The Projection Postulate says, when a system aquires
a definite value of a property, then the state of the system
collapses to the corresponding value-state.

- The GRW Law guarantees that a macroscopic pointer device
will always have a definite value of position; the Projection
Postulate then entails that the entangled state of the pointer
device and the physical system it is measuring will collapse
to that term that contains this pointer device value-state.
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Problems

1. Wavefunction Tails

e We just saw that GRW needs Gaussian position functions g; (x—x;) in order to
avoid violations of energy/momentum conservation.

e But: g;(x—x;) is never zero. It has non-vanishing tails.

gi(x—x;)

tail tail

\7

Xi

v

- The tails asymptotically approach the x-
axis, but never reach it, no matter how
far away from x; you get.

- 9. (x—x;) # 0 for all finite values of x.

e So: Even after a GRW collapse, an elementary particle is still in a superposition

of position eigenvectors.

- There is still a non-zero probability of finding it at some location x #+ x;.

e Thus: According to the EE Rule, it still has no definite value of position.

- When GRW agreed to use Gaussians instead of Dirac delta functions, they gave up

exact position collapses.
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2. Positionless Measurements

e GRW assume that the position property is fundamental, in-so-far as all other

properties must be correlated with the positions of pointers in measuring
devices in order to measure them.

Is this correct?

e Ex: Measuring a particle's Hardness by means of a fluorescent screen.
- To measure Hardness of P, insert it into Hardness box.
- Ifit's hard, it will exit at h and impact screen at A.

- Ifit's soft, it will exit at s and impact screen at B.

h .-~
e s 0>
p .~ Human
Hardness s TS~. Observer
~o -~
B
fluorescent screen



Claim: At no point in this process is the Hardness of the particle correlated with the
position of a pointer (or any sort of measuring device).

e Theimpactof P at A or B correlates its Hardness with the energies (and
not positions) of the electrons in the atoms of the fluorescent screen.

e Suppose: P is initially black.

e Then: Just after impact, its state can be represented by:

energy states of excited screen
electrons in the vicinity of A

A

energy states of unexcited screen
electrons in the vicinity of B

A

~

V¥ |hard, x = A)plex), ---|ex),, |unex),, ---|unex),

+ V% |soft, x = B)plunex), --|lunex), |ex),, . ---|ex).,,

-

h'd

energy states of unexcited screen

electrons in the vicinity of A

A GRW collapse of any of the
energy states of the electrons
onto a position eigenstate will
not cause the state of P to
collapse into one or the other
of these terms.

) \ v J
energy states of excited screen

electrons in the vicinity of B

Hardness s >~
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What about the photons that the electrons emit?
- Don't they experience GRW collapses?

———————————————————————————————————————————————————————————————

- Moreover: There can be just a few photons released on impact to record
the Hardness measurement (the human eye can discern photons at very
low intensities).

- The GRW Collapse Law only guarantees that one of a large number
(trillions!) of elementary particles will collapse for real times.

e So: To address this problem, GRW advocates will have to push back the
process of measurement, perhaps to brain states in the human observer,
to a point at which they can say the positions of something (brain neuron
states?) get correlated with the Hardness property of P.

17



3. Microscopic Measurements

e Due to the randomness of the GRW collapse, collapses will only occur in real
times for macrosopic measuring devices (with trillions of elementary particles).

e But: What about the possibility of microsopic measuring devices?

- These would not be expected to have GRW collapses in real times.

- Ifthey could be correlated with macroscopic measuring devices, we would
have the measurement problem all over again!
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