
09.	Collapse	and	GRW	
Recall:	There	are	two	ways	a	quantum	state	can	change:

|𝜓(𝑡1)⟩ ¾¾¾® |𝜓(𝑡2)⟩
Schrödinger
evolution

1. In	absence	of	measurement,	states	change	via Schrödinger	dynamics:

2. In	presence	of	measurement,	states	change	via the	Projection	Postulate:

|𝜓⟩ ¾¾¾® |𝑏𝑖⟩collapse

When	a	measurement	of	property	𝐵 is	made	on	a	state	|𝜓⟩	=	𝑎1|𝑏1⟩	+	⋯	+	𝑎𝑁|𝑏𝑁⟩
expanded	in	the	eigenvector	basis	of	𝐵with	result	bi,	then	|𝜓⟩ collapses	to	|𝑏𝑖⟩:

Problems:
- What	is	a	measurement?
- When is	the	Projection	Postulate	supposed	to	
take	over	from	the	Schrödinger	dynamics?

1. Theories	of	Collapse
2. The	GRW	Interpretation
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2. When	a	macroscopic	system	interacts	with	a	microscopic	system.
Consequence:	Dualism--2	fundamental	types	of	physical	systems.
- Microscopic	systems:	Always	evolve	via Schrödinger	dynamics.
- Macroscopic	systems:	Interact	with	microscopic	systems	in	certain	
situations	to	cause	collapse	via Projection	Postulate.

Typical	Attempts	at	Responses

1. When	a	conscious	observer	looks	at	a	measuring	device.
Consequence:	Dualism--2	fundamental	types	of	physical	systems.
- Purely	physical	systems:	Always	evolve	via Schrödinger	dynamics.
- Conscious	systems:	Interact	with	physical	systems	in	certain	
situations	to	cause	collapse	via Projection	Postulate.

Eugene	Wigner
(1902-1995)

Mystery-mongering!
- What are conscious systems?
- How are they distinct from physical systems?

Mystery-mongering by another name!
- What are microscopic systems?
- How are they distinct from macroscopic systems?
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Can	experiments	determine	when	a	collapse	occurs? In principle, Yes!  
But in practice, No!

Theory	1:	Collapse	occurs	at	𝑡𝑓.
So:	At	𝑡𝑓,	state	will	be	|T1⟩	= either
|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 or	|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒,	
each	with	prob	=	½.

Let	initial	state	at	𝑡𝑖 be:
½ (|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+	|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

What	is	final	state	at	𝑡𝑓>	𝑡𝑖?

Theory	2:	Collapse	occurs	after 𝑡𝑓.
So:	At	𝑡𝑓,	state	will	be	|T2⟩	=
½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+	|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

• Suppose	the	𝑚-𝑒 system	in	state	|T2⟩ has	a	measureable	"2-particle"	property	
that	it	doesn't	have	in	either	of	the	forms	of	|T1⟩.
- This	would	let	us	distinguish	between	Theory	1	and	Theory	2.

• •
𝑏𝑙𝑎𝑐𝑘 electron

𝑟𝑒𝑎𝑑𝑦
×

"ℎ𝑎𝑟𝑑"
×

"𝑠𝑜𝑓𝑡"
×

1.	Theories	of	Collapse
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• Recall	Lecture	4's	Hardness 𝐻𝑒 and	Color 𝐶𝑒 operators	that	act	on	states	of	𝑒:
𝐻𝑒|ℎ𝑎𝑟𝑑⟩𝑒=	+1|ℎ𝑎𝑟𝑑⟩𝑒 𝐶𝑒|𝑏𝑙𝑎𝑐𝑘⟩𝑒=	+1|𝑏𝑙𝑎𝑐𝑘⟩𝑒
𝐻𝑒|𝑠𝑜𝑓𝑡⟩𝑒=	−1|𝑠𝑜𝑓𝑡⟩𝑒 𝐶𝑒|𝑤ℎ𝑖𝑡𝑒⟩𝑒=	−1|𝑤ℎ𝑖𝑡𝑒⟩𝑒

• Now	define	"Hardness"𝐻𝑚 and	"Color" 𝐶𝑚 operators	that	act	on	states	of	𝑚 by:
𝐻𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚=	0|𝑟𝑒𝑎𝑑𝑦⟩𝑚 𝐶𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚=	0|𝑟𝑒𝑎𝑑𝑦⟩𝑚
𝐻𝑚|"ℎ𝑎𝑟𝑑"⟩𝑚=	+1|"ℎ𝑎𝑟𝑑"⟩𝑚 𝐶𝑚|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚=	+1|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚
𝐻𝑚|"𝑠𝑜𝑓𝑡"⟩𝑚=	−1|"𝑠𝑜𝑓𝑡"⟩𝑚 𝐶𝑚|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚=	−1|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚

- 𝐻𝑚 represents	the	property	of	𝑚 of	pointing	to	either	𝑟𝑒𝑎𝑑𝑦,	"ℎ𝑎𝑟𝑑",	or	"𝑠𝑜𝑓𝑡".
- |𝑟𝑒𝑎𝑑𝑦⟩𝑚,	|"ℎ𝑎𝑟𝑑"⟩𝑚,	|"𝑠𝑜𝑓𝑡"⟩𝑚 are	states	of	𝑚 that	are	eigenvectors	of	𝐻𝑚.

- 𝐶𝑚 represents	the	property	of	𝑚 of	pointing	to	either	𝑟𝑒𝑎𝑑𝑦,	"𝑏𝑙𝑎𝑐𝑘",	or	"𝑤ℎ𝑖𝑡𝑒".
- |𝑟𝑒𝑎𝑑𝑦⟩𝑚,	|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚,	|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚 are	states	of	𝑚 that	are	eigenvectors	of	𝐶𝑚.

Task: Find	a	"2-particle"	property	of	the	𝑚-𝑒 system	in	the	state	|T2⟩
that	is	not	possessed	by	the	𝑚-𝑒 system	in	either	of	the	forms	of	|T1⟩.
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Aside:	How	to	represent	properties	and	states	of	𝑚 using	column	vectors	and	matrices

|𝑟𝑒𝑎𝑑𝑦⟩𝑚=	
0
0
0
,					|"ℎ𝑎𝑟𝑑"⟩𝑚=	

0
1
0
,				|"𝑠𝑜𝑓𝑡"⟩𝑚=	

0
0
1
,

|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚=	
0
½
½

,					|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚=	
0
½

− ½

𝐻𝑚=	
0 0 0
0 1 0
0 0 −1

𝐶𝑚=	
0 0 0
0 0 1
0 1 0

This	entails:

|"ℎ𝑎𝑟𝑑"⟩𝑚=	 ½ (|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚+	|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚) |"𝑏𝑙𝑎𝑐𝑘"⟩𝑚=	 ½ (|"ℎ𝑎𝑟𝑑"⟩𝑚+	|"𝑠𝑜𝑓𝑡"⟩𝑚)

|"𝑠𝑜𝑓𝑡"⟩𝑚=	 ½ (|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚− |"𝑤ℎ𝑖𝑡𝑒"⟩𝑚) |"𝑤ℎ𝑖𝑡𝑒"⟩𝑚=	 ½ (|"ℎ𝑎𝑟𝑑"⟩𝑚− |"𝑠𝑜𝑓𝑡"⟩𝑚)
And:
𝐻𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚=	0|𝑟𝑒𝑎𝑑𝑦⟩𝑚 𝐶𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚=	0|𝑟𝑒𝑎𝑑𝑦⟩𝑚
𝐻𝑚|"ℎ𝑎𝑟𝑑"⟩𝑚=	+1|"ℎ𝑎𝑟𝑑"⟩𝑚 𝐶𝑚|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚=	+1|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚
𝐻𝑚|"𝑠𝑜𝑓𝑡"⟩𝑚=	−1|"𝑠𝑜𝑓𝑡"⟩𝑚 𝐶𝑚|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚=	−1|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚
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• The	2-particle	operator	𝐶𝑚⊗𝐼𝑒 represents	𝑚's	"Color" in	the	𝑚-𝑒 system.
• The	2-particle	operator	𝐼𝑚⊗𝐶𝑒 represents	𝑒's	Color in	the	𝑚-𝑒 system.
• And:	The	2-particle	operator	(𝐶𝑚⊗𝐼𝑒)− (𝐼𝑚⊗𝐶𝑒) represents	another	2-particle	
property	of	the	𝑚-𝑒 system,	call	it	("Color"−Color).

Claim:	|T2⟩ is	an	eigenstate	of	(𝐶𝑚⊗𝐼𝑒)− (𝐼𝑚⊗𝐶𝑒)
with	eigenvalue	0,	but	|T1⟩ in	either form	is	not!

• So:	In	principle,	at	time	𝑡1we	can	measure	the	property	("Color"−Color).
- If	Theory	2	is	correct,	the	value	should	always be	0.
- If	Theory	1	is	correct,	measurements	should	yield	values	other	than	0.

Task: Find	a	"2-particle"	property	of	the	𝑚-𝑒 system	in	the	state	|T2⟩
that	is	not	possessed	by	the	𝑚-𝑒 system	in	either	of	the	forms	of	|T1⟩.

But this method fails in practice...
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• These	predictions	are	not	eigenstates	of	("Color"− Color)!
• To	tell	them	apart,	we	need	a	more	complicated,	3-particle property	of	the	𝑚-𝑒-𝑎 system.
• If	there	are	other	microscopic	subsystems	in	𝑚,	we	will	need	more	complicated	multi-
particle	properties.

What	happens	if	there	is	a	single air	molecule in	the	measuring	device?

• Let	|𝑐𝑒𝑛𝑡𝑒𝑟⟩𝑎 represent	state	of	air	molecule	located	under	"ℎ𝑎𝑟𝑑" pointer-reading.
• Let	|𝑟𝑖𝑔ℎ𝑡⟩𝑎 represent	state	of	air	molecule	located	under	"𝑠𝑜𝑓𝑡" pointer-reading.

A	"3-particle"	
system	𝑚-𝑒-𝑎!

Theory	1:	Collapse	occurs	at	𝑡𝑓.
So:	At	𝑡𝑓,	state	will	be	either
|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒|𝑐𝑒𝑛𝑡𝑒𝑟⟩𝑎or
|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒|𝑟𝑖𝑔ℎ𝑡⟩𝑎,	each	with	prob	=	½.

Theory	2:	Collapse	occurs	after 𝑡𝑓.
So:	At	𝑡𝑓,	state	will	be	
½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒|𝑐𝑒𝑛𝑡𝑒𝑟⟩𝑎+	
|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒|𝑟𝑖𝑔ℎ𝑡⟩𝑎).

In practice there will be trillions of microscopic subsystems...

𝑟𝑒𝑎𝑑𝑦
×

"ℎ𝑎𝑟𝑑"
×

"𝑠𝑜𝑓𝑡"
×

• •
black	
electron

air	molecule
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2.	The	GRW	Interpretation	
• Motivation:	Most	(all?)	properties	can	be	correlated	with	the	position
of	a	pointer	in	an	appropriate	measuring	device.

• We	can	maintain	Option	A1	if	we	stipulate that	(for	whatever	reason)	
superpositions	of	position	eigenstates collapse	with	high	probability.

Ghirardi,	Rimini,	Weber	(1986)

GRW	Dynamical	Law
During	any	time	interval,	there	is	a	non-zero	probability	that	the	
state	of	an	elementary	particle	will	collapse	to	a	position	eigenstate.

- Suppose	|𝜓⟩ represents	the	state	of	an	elementary	particle.
- Expand	|𝜓⟩ in	a	basis	of	eigenvectors	of	position:	|𝜓⟩	=	𝑎1|𝑥1⟩ +	⋯ +	𝑎𝑁|𝑥𝑁⟩.
- The	GRW	Collapse	Theory	says:
- |𝜓⟩ generally	evolves	via the	Schrödinger	dynamics.
- But	there	is	a	non-zero	chance	that	|𝜓⟩will	collapse	to	a	position	eigenstate.
- If	this	occurs,	the	probability	of	it	ending	up	in	the	specific	position	
eigenstate	|𝑥𝑖⟩ is	given	by	the	Born	Rule:

𝑃𝑟(particle	is	located	at	position 𝑥𝑖 in	state |𝜓⟩)	= |⟨𝜓|𝑥𝑖⟩|2=	|𝜓(𝑥𝑖)|2
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- Particle	1	is	in	a	superposition	of	being	located	at	𝑥𝑎 and	𝑥𝑏,	particle	2	is	is	a	
superposition	of	being	located	at	𝑥𝑎 and	𝑥𝑏,	etc.

- If	just	one of	all	of	these	(trillions	of)	pointer	particles	has	a	definite	location,	
then	according	to	the	Projection	Postulate,	the	composite	state	will	collapse	
to	the	term	containing	that	position	eigenstate.

- So:	Even	if	the	probability	of	collapse	in	the	GRW	Law	is	extremely	small,	
since	any	measuring	device	has	trillions	of	particles,	any	superposition	
containing	them	will	have	an	extremely	likely	chance	of	collapsing.

Consider	the	entangled	composite	state	of	pointer	particles	and	electron:

½ (|𝑥𝑎⟩1|𝑥𝑎⟩2|𝑥𝑎⟩3⋯)|ℎ𝑎𝑟𝑑⟩𝑒+	 ½ (|𝑥𝑏⟩1|𝑥𝑏⟩2|𝑥𝑏⟩3⋯)|𝑠𝑜𝑓𝑡⟩𝑒

Position states of pointer particles 
when pointer is located at the position, 
call it 𝑥𝑎, that registers "hard".

Position states of pointer particles 
when pointer is located at the 
position, call it 𝑥𝑏, that registers "soft".

Upshot: By modifying the Schrödinger dynamics with the GRW Law we guarantee that 
pointers in measuring devices will always have well-defined post-measurement positions.

Why	this	helps:
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general form of wavefunction 
for all position eigenstates

specific form of wave-
function for state |𝑥𝑖⟩

The	GRW	Law	in	terms	of	Wavefunctions:
• Let	|𝜓⟩	=	𝑎1|𝑥1⟩ +	⋯ +	𝑎𝑁|𝑥𝑁⟩ represent	the	state	of	an	elementary	particle	
expanded	in	a	basis	of	eigenvectors	of	position.

• The	corresponding	position	wavefunction is	defined	by	𝜓(𝑥)	=	⟨𝜓|𝑥⟩.
• 𝜓(𝑥) encodes	all	the	values	of	the	expansion	coefficients.	Ex:		𝜓(𝑥𝑖)	=	𝑎𝑖.

• Mathematically,	wavefunction	collapse	is	accomplished	by	multiplying	
the	general	wavefunction	𝜓(𝑥) by	a	Dirac	delta	function 𝛿(𝑥−𝑥𝑖):

"𝜓(𝑥𝑖)	=	𝛿(𝑥−𝑥𝑖)𝜓(𝑥)"

• Now: Represent	state	vector collapse: |𝜓⟩¾¾¾® |𝑥𝑖⟩

as	wavefunction collapse: 𝜓(𝑥)¾¾¾® 𝜓(𝑥𝑖)

collapse

collapse
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The	Dirac	Delta	Function

Initial	Problem:
• If	our	state	is	represented	by	an	eigenvector	of	position,	then	according	to	
the	EE	Rule,	this	means	that	it	has	a	definite	value of	position	(namely,	𝑥𝑖).

• When	a	GRW	collapse	occurs	(and	we	get	an	exact	value	of	position),	we	could	
potentially	have	violations	of	conservation	of	momentum	and	energy!

• Think	of	𝛿(𝑥−𝑥𝑖) as	a	position	eigenfunction.

Uncertainty	in	
position	=	0

Uncertainty	in	
momentum	=	∞!⇒

• So:	Properties	incompatiblewith	position	will	be	maximally indeterminate.

Paul	Dirac
(1902-1984)

𝑥𝑖 𝑥

𝛿(𝑥−𝑥𝑖)
𝛿(𝑥−𝑥′) is	defined	by	the	following:
1. 𝛿(𝑥−𝑥′)	=	0,	when	𝑥 ≠ 𝑥′.
2. 𝛿(𝑥−𝑥′)	=	∞,	when	𝑥 =	𝑥′.

3. ∫𝛿(𝑥−𝑥′)𝑑𝑥′ = 1.

4. ∫𝛿(𝑥−𝑥′)𝑓(𝑥)𝑑𝑥′ = 𝑓(𝑥′),	for	any	𝑓(𝑥).

• It	is	an	infinite	spike	exactly	at	𝑥𝑖,	and	zero	everywhere	else:

So	instead	of	"𝜓(𝑥𝑖)	=	𝛿(𝑥−𝑥𝑖)𝜓(𝑥)",	we	
should	write	𝜓(𝑥𝑖)	=	∫ 𝛿(𝑥−𝑥𝑖)𝜓(𝑥)𝑑𝑥.

Not a legitimate 
function! 
(Rather, a 
"distribution".)
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Technical	Solution
• For	GRW	collapses,	instead	of	multiplying	the	wavefunction	by	a	Dirac	delta	
function	𝛿(𝑥−𝑥𝑖),	use	a	Gaussian (i.e.,	Bell-shaped)	function	𝑔𝐿(𝑥−𝑥𝑖) spread	
out	a	finite	width	𝐿 about	𝑥𝑖.

• Can	choose	𝐿 so	that	the	uncertainty	in	momentum	is	effectively	cut-off.
• The	price:	We've	had	to	smear	the	position	about	𝑥𝑖.

𝑥𝑖 𝑥

𝐿 The	Gaussian	function	is a	
legitimate	function.
- Centered	at	𝑥′.
- Width	= 𝐿.
- Maximum	height	= !

"#!

- Unit	area.
- lim
#→%

𝑔#(𝑥−𝑥′)	=	𝛿(𝑥−𝑥′)

𝑔. 𝑥 − 𝑥′ =
1
𝜋𝐿/

𝑒0(101!)/."
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Essential	Characteristics	of	GRW	Collapse	Theory:
1. Modifies	Schrödinger	dynamics	with	GRW	Law.
2. Keeps	Projection	Postulate.
3. Introduces	two	new	constants	of	nature:

(a) Probability	per	time	per	particle	of	collapse.
(b) Width	𝐿 of	Gaussian	position	eigenfunctions.

Why	#2?
- Recall:	The	Projection	Postulate	says,	when	a	system	aquires	
a	definite	value	of	a	property,	then	the	state	of	the	system	
collapses	to	the	corresponding	value-state.

- The	GRW	Law	guarantees	that	a	macroscopic	pointer	device	
will	always	have	a	definite	value	of	position;	the	Projection	
Postulate	then	entails	that	the	entangled	state	of	the	pointer	
device	and	the	physical	system	it	is	measuring	will	collapse	
to	that	term	that	contains	this	pointer	device	value-state.
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• So:	Even	after	a	GRW	collapse,	an	elementary	particle	is	still in	a	superposition	
of	position	eigenvectors.
- There	is	still	a	non-zero	probability	of	finding	it	at	some	location	𝑥 ≠ 𝑥𝑖.

1.	Wavefunction	Tails
• We	just	saw	that	GRW	needs	Gaussian	position	functions	𝑔𝐿(𝑥−𝑥𝑖) in	order	to	
avoid	violations	of	energy/momentum	conservation.

• But:	𝑔𝐿(𝑥−𝑥𝑖) is	never zero.	It	has	non-vanishing	tails.

Problems

• Thus:	According	to	the	EE	Rule,	it	still has	no	definite	value	of	position.
- When	GRW	agreed	to	use	Gaussians	instead	of	Dirac	delta	functions,	they	gave	up	
exact	position	collapses.

- The	tails	asymptotically	approach	the	𝑥-
axis,	but	never	reach	it,	no	matter	how	
far	away	from	𝑥𝑖 you	get.

- 𝑔𝐿(𝑥−𝑥𝑖)	≠ 0 for	all	finite	values	of	𝑥.

𝑥𝑖 𝑥

𝑔𝐿(𝑥−𝑥𝑖)

tailtail
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• Ex:	Measuring	a	particle's	Hardness by	means	of	a	fluorescent	screen.

Hardness

- To	measure	Hardness of	𝑃,	insert	it	into	Hardness box.

•

ℎ

𝑠
𝑃 Human	

Observer

fluorescent	screen

• GRW	assume	that	the	position	property	is	fundamental,	in-so-far	as	all	other	
properties	must	be	correlated	with	the	positions	of	pointers	in	measuring	
devices	in	order	to	measure	them.

Is	this	correct?

2.	Positionless	Measurements

𝐴

- If	it's	ℎ𝑎𝑟𝑑,	it	will	exit	at	ℎ and	impact	screen	at	𝐴.
- If	it's	𝑠𝑜𝑓𝑡,	it	will	exit	at	𝑠 and	impact	screen	at	𝐵.

𝐵

15



Hardness

•

ℎ

𝑠
𝑃

𝐴

𝐵

Claim:	At	no	point	in	this	process	is	the	Hardness of	the	particle	correlated	with	the	
position of	a	pointer	(or	any	sort	of	measuring	device).
• The	impact	of	𝑃 at	𝐴 or	𝐵 correlates	its	Hardnesswith	the	energies (and	
not	positions)	of	the	electrons	in	the	atoms	of	the	fluorescent	screen.

• Suppose:	𝑃 is	initially	𝑏𝑙𝑎𝑐𝑘.

energy states of excited screen 
electrons in the vicinity of 𝐵

energy states of unexcited screen 
electrons in the vicinity of 𝐴

energy states of excited screen 
electrons in the vicinity of 𝐴

energy states of unexcited screen 
electrons in the vicinity of 𝐵

A GRW collapse of any of the 
energy states of the electrons 
onto a position eigenstate will 
not cause the state of 𝑃 to 
collapse into one or the other 
of these terms.
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½ |ℎ𝑎𝑟𝑑,	𝑥 =	𝐴⟩𝑃|𝑒𝑥⟩𝑒1⋯|𝑒𝑥⟩𝑒𝑁|𝑢𝑛𝑒𝑥⟩𝑒𝑁+1⋯|𝑢𝑛𝑒𝑥⟩𝑒2𝑁
+	 ½ |𝑠𝑜𝑓𝑡,	𝑥 =	𝐵⟩𝑃|𝑢𝑛𝑒𝑥⟩𝑒1⋯|𝑢𝑛𝑒𝑥⟩𝑒𝑁|𝑒𝑥⟩𝑒𝑁+1⋯|𝑒𝑥⟩𝑒2𝑁

• Then:	Just	after	impact,	its	state	can	be	represented	by:



What	about	the	photons	that	the	electrons	emit?
- Don't	they	experience	GRW	collapses?

• So:	To	address	this	problem,	GRW	advocates	will	have	to	push	back	the	
process	of	measurement,	perhaps	to	brain	states	in	the	human	observer,	
to	a	point	at	which	they	can	say	the	positions	of	something (brain	neuron	
states?)	get	correlated	with	the	Hardness property	of	𝑃.

• No!

- The	GRW	Collapse	Law	doesn't	apply	to	relativistic	objects	(like	photons).
- Moreover:	There	can	be	just	a	few	photons	released	on	impact	to	record	
the	Hardnessmeasurement	(the	human	eye	can	discern	photons	at	very	
low	intensities).		

- The	GRW	Collapse	Law	only	guarantees	that	one	of	a	large	number
(trillions!)	of	elementary	particles	will	collapse	for	real	times.
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3.	Microscopic	Measurements

• Due	to	the	randomness of	the	GRW	collapse,	collapses	will	only	occur	in	real	
times	for	macrosopicmeasuring	devices	(with	trillions	of	elementary	particles).

• But:	What	about	the	possibility	of	microsopicmeasuring	devices?
- These	would	not	be	expected	to	have	GRW	collapses	in	real	times.
- If	they	could	be	correlated	with	macroscopic	measuring	devices,	we	would	
have	the	measurement	problem	all	over	again!

18


