
09. Collapse and GRW 

Recall: There are two ways a quantum state can change:

|𝜓(𝑡1)⟩  ⎯⎯⎯→  |𝜓(𝑡2)⟩
Schrödinger

evolution

1. In absence of measurement, states change via Schrödinger dynamics:

2. In presence of measurement, states change via the Projection Postulate:

|𝜓⟩  ⎯⎯⎯→  |𝑏𝑖⟩
collapse

When a measurement of property 𝐵 is made on a state |𝜓⟩ = 𝑎1|𝑏1⟩ + ⋯ + 𝑎𝑁|𝑏𝑁⟩ 

expanded in the eigenvector basis of 𝐵 with result 𝑏𝑖, then |𝜓⟩ collapses to |𝑏𝑖⟩:

Problems:

- What is a measurement?

- When is the Projection Postulate supposed to 

take over from the Schrödinger dynamics?

1. Theories of Collapse
2. The GRW Interpretation
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2. When a macroscopic system interacts with a microscopic system.

 Consequence: Dualism--2 fundamental types of physical systems.

- Microscopic systems: Always evolve via Schrödinger dynamics.

- Macroscopic systems: Interact with microscopic systems in certain 

situations to cause collapse via Projection Postulate.

Typical Attempts at Responses

1. When a conscious observer looks at a measuring device.

 Consequence: Dualism--2 fundamental types of physical systems.

- Purely physical systems: Always evolve via Schrödinger dynamics.

- Conscious systems: Interact with physical systems in certain 

situations to cause collapse via Projection Postulate.
Eugene Wigner

(1902-1995)

Mystery-mongering!

- What are conscious systems?

- How are they distinct from physical systems?

Mystery-mongering by another name!

- What are microscopic systems?

- How are they distinct from macroscopic systems?
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Can experiments determine when a collapse occurs? In principle, Yes!  

But in practice, No!

Theory 1: Collapse occurs at 𝑡𝑓.

So: At 𝑡𝑓, state will be |T1⟩ = either 

|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 or |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒, 

each with prob = ½.

Let initial state at 𝑡𝑖 be:

½ (|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + |𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)
What is final state at 𝑡𝑓 > 𝑡𝑖?

Theory 2: Collapse occurs after 𝑡𝑓.

So: At 𝑡𝑓, state will be |T2⟩ =

½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

• Suppose the 𝑚-𝑒 system in state |T2⟩ has a measureable bipartite ("2-system") 

property that it doesn't have in either of the forms of |T1⟩.

- This would let us distinguish between Theory 1 and Theory 2.

• •
𝑏𝑙𝑎𝑐𝑘 electron

𝑟𝑒𝑎𝑑𝑦

×

"ℎ𝑎𝑟𝑑"

×

"𝑠𝑜𝑓𝑡"

×

1. Theories of Collapse
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A bipartite 

system 𝑚-𝑒



• Recall Lecture 4's Hardness 𝐻𝑒 and Color 𝐶𝑒 operators that act on states of 𝑒:

  𝐻𝑒|ℎ𝑎𝑟𝑑⟩𝑒 = +1|ℎ𝑎𝑟𝑑⟩𝑒 𝐶𝑒|𝑏𝑙𝑎𝑐𝑘⟩𝑒 = +1|𝑏𝑙𝑎𝑐𝑘⟩𝑒

  𝐻𝑒|𝑠𝑜𝑓𝑡⟩𝑒 = −1|𝑠𝑜𝑓𝑡⟩𝑒 𝐶𝑒|𝑤ℎ𝑖𝑡𝑒⟩𝑒 = −1|𝑤ℎ𝑖𝑡𝑒⟩𝑒

• Now define "Hardness" 𝐻𝑚 and "Color" 𝐶𝑚 operators that act on states of 𝑚 by:

  𝐻𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚 = 0|𝑟𝑒𝑎𝑑𝑦⟩𝑚 𝐶𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚 = 0|𝑟𝑒𝑎𝑑𝑦⟩𝑚

  𝐻𝑚|"ℎ𝑎𝑟𝑑"⟩𝑚 = +1|"ℎ𝑎𝑟𝑑"⟩𝑚 𝐶𝑚|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚 = +1|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚

  𝐻𝑚|"𝑠𝑜𝑓𝑡"⟩𝑚 = −1|"𝑠𝑜𝑓𝑡"⟩𝑚 𝐶𝑚|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚 = −1|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚

- 𝐻𝑚 represents the property of 𝑚 of pointing to either 𝑟𝑒𝑎𝑑𝑦, "ℎ𝑎𝑟𝑑", or "𝑠𝑜𝑓𝑡".

- |𝑟𝑒𝑎𝑑𝑦⟩𝑚, |"ℎ𝑎𝑟𝑑"⟩𝑚, |"𝑠𝑜𝑓𝑡"⟩𝑚 are states of 𝑚 that are eigenvectors of 𝐻𝑚.

- 𝐶𝑚 represents the property of 𝑚 of pointing to either 𝑟𝑒𝑎𝑑𝑦, "𝑏𝑙𝑎𝑐𝑘", or "𝑤ℎ𝑖𝑡𝑒".

- |𝑟𝑒𝑎𝑑𝑦⟩𝑚, |"𝑏𝑙𝑎𝑐𝑘"⟩𝑚, |"𝑤ℎ𝑖𝑡𝑒"⟩𝑚 are states of 𝑚 that are eigenvectors of 𝐶𝑚.

Task: Find a bipartite property of the 𝑚-𝑒 system in the state |T2⟩ 

that is not possessed by the 𝑚-𝑒 system in either of the forms of |T1⟩.
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Aside: How to represent properties and states of 𝑚 using column vectors and matrices

 |𝑟𝑒𝑎𝑑𝑦⟩𝑚 = 
0
0
0

,     |"ℎ𝑎𝑟𝑑"⟩𝑚 = 
0
1
0

,    |"𝑠𝑜𝑓𝑡"⟩𝑚 = 
0
0
1

,

 |"𝑏𝑙𝑎𝑐𝑘"⟩𝑚 = 

0
½

½ 

,     |"𝑤ℎ𝑖𝑡𝑒"⟩𝑚 = 

0
½ 

− ½ 

 𝐻𝑚 = 
0 0 0
0 1 0
0 0 −1

          𝐶𝑚 = 
0 0 0
0 0 1
0 1 0

This entails:

   |"ℎ𝑎𝑟𝑑"⟩𝑚 = ½ (|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚 + |"𝑤ℎ𝑖𝑡𝑒"⟩𝑚) |"𝑏𝑙𝑎𝑐𝑘"⟩𝑚 = ½ (|"ℎ𝑎𝑟𝑑"⟩𝑚 + |"𝑠𝑜𝑓𝑡"⟩𝑚)

   |"𝑠𝑜𝑓𝑡"⟩𝑚 = ½ (|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚 − |"𝑤ℎ𝑖𝑡𝑒"⟩𝑚) |"𝑤ℎ𝑖𝑡𝑒"⟩𝑚 = ½ (|"ℎ𝑎𝑟𝑑"⟩𝑚 − |"𝑠𝑜𝑓𝑡"⟩𝑚)

And:

   𝐻𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚 = 0|𝑟𝑒𝑎𝑑𝑦⟩𝑚 𝐶𝑚|𝑟𝑒𝑎𝑑𝑦⟩𝑚 = 0|𝑟𝑒𝑎𝑑𝑦⟩𝑚

   𝐻𝑚|"ℎ𝑎𝑟𝑑"⟩𝑚 = +1|"ℎ𝑎𝑟𝑑"⟩𝑚 𝐶𝑚|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚 = +1|"𝑏𝑙𝑎𝑐𝑘"⟩𝑚

   𝐻𝑚|"𝑠𝑜𝑓𝑡"⟩𝑚 = −1|"𝑠𝑜𝑓𝑡"⟩𝑚 𝐶𝑚|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚 = −1|"𝑤ℎ𝑖𝑡𝑒"⟩𝑚
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• The bipartite operator 𝐶𝑚⊗𝐼𝑒 represents 𝑚's "Color" in the 𝑚-𝑒 system.

• The bipartite operator 𝐼𝑚⊗𝐶𝑒 represents 𝑒's Color in the 𝑚-𝑒 system.

• And: The bipartite operator (𝐶𝑚⊗𝐼𝑒) − (𝐼𝑚⊗𝐶𝑒) represents another bipartite 

property of the 𝑚-𝑒 system, call it ("Color" − Color).

Claim: |T2⟩ is an eigenstate of (𝐶𝑚⊗𝐼𝑒) − (𝐼𝑚⊗𝐶𝑒) 

with eigenvalue 0, but |T1⟩ in either form is not!

• So: In principle, at time 𝑡1 we can measure the bipartite property "Color" − Color.

- If Theory 2 is correct, the value should always be 0.

- If Theory 1 is correct, measurements should yield values other than 0.

Task: Find a bipartite property of the 𝑚-𝑒 system in the state |T2⟩ 

that is not possessed by the 𝑚-𝑒 system in either of the forms of |T1⟩.

But this method fails in practice...
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• These predictions are not eigenstates of ("Color" − Color)!

• To tell them apart, we need a more complicated, tripartite property of the 𝑚-𝑒-𝑎 system.

• If there are other microscopic subsystems in 𝑚, we will need more complicated multi-

partite properties.

What happens if there is a single air molecule in the measuring device?

• Let |𝑐𝑒𝑛𝑡𝑒𝑟⟩𝑎 represent state of air molecule located under "ℎ𝑎𝑟𝑑" pointer-reading.

• Let |𝑟𝑖𝑔ℎ𝑡⟩𝑎 represent state of air molecule located under "𝑠𝑜𝑓𝑡" pointer-reading.

A tripartite 

system 𝑚-𝑒-𝑎!

Theory 1: Collapse occurs at 𝑡𝑓.

So: At 𝑡𝑓, state will be either 

|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒|𝑐𝑒𝑛𝑡𝑒𝑟⟩𝑎 or        

|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒|𝑟𝑖𝑔ℎ𝑡⟩𝑎, each with prob = ½.

Theory 2: Collapse occurs after 𝑡𝑓.

So: At 𝑡𝑓, state will be 

½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒|𝑐𝑒𝑛𝑡𝑒𝑟⟩𝑎 + 

|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒|𝑟𝑖𝑔ℎ𝑡⟩𝑎).

In practice there will be trillions of microscopic subsystems...

𝑟𝑒𝑎𝑑𝑦

×

"ℎ𝑎𝑟𝑑"

×

"𝑠𝑜𝑓𝑡"

×

• •
black 
electron

air molecule
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2. The GRW Interpretation 

• Motivation: Most (all?) properties can be correlated with the position 

of a pointer in an appropriate measuring device.

• We can maintain Option A1 if we stipulate that (for whatever reason) 

superpositions of position eigenstates collapse with high probability.

Ghirardi, Rimini, Weber (1986)

GRW Dynamical Law

During any time interval, there is a non-zero probability that the 

state of an elementary particle will collapse to a position eigenstate.

- Suppose |𝜓⟩ represents the state of an elementary particle.

- Expand |𝜓⟩ in a basis of eigenvectors of position: |𝜓⟩ = 𝑎1|𝑥1⟩ + ⋯ + 𝑎𝑁|𝑥𝑁⟩.

- The GRW Collapse Theory says:

- |𝜓⟩ generally evolves via the Schrödinger dynamics.

- But there is a non-zero chance that |𝜓⟩ will collapse to a position eigenstate.

- If this occurs, the probability of it ending up in the specific position 

eigenstate |𝑥𝑖⟩ is given by the Born Rule:

 𝑃𝑟(particle is located at position 𝑥𝑖 in state |𝜓⟩) = |⟨𝜓|𝑥𝑖⟩|2 = |𝜓(𝑥𝑖)|2
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- Particle 1 is in a superposition of being located at 𝑥𝑎 and 𝑥𝑏, particle 2 is is a 

superposition of being located at 𝑥𝑎 and 𝑥𝑏, etc.

Consider the entangled composite state of pointer particles and electron:

½ (|𝑥𝑎⟩1|𝑥𝑎⟩2|𝑥𝑎⟩3⋯)|ℎ𝑎𝑟𝑑⟩𝑒 + ½ (|𝑥𝑏⟩1|𝑥𝑏⟩2|𝑥𝑏⟩3⋯)|𝑠𝑜𝑓𝑡⟩𝑒

Position states of pointer particles 

when pointer is located at the position, 

call it 𝑥𝑎, that registers "hard".

Position states of pointer particles 

when pointer is located at the 

position, call it 𝑥𝑏, that registers "soft".

Upshot: By modifying the Schrödinger dynamics with the GRW Law we guarantee that 

pointers in measuring devices will always have well-defined post-measurement positions.

Why this helps:

9

- If just one of all of these (trillions of) pointer particles has a definite location, 

then according to the Projection Postulate, the composite state will collapse 

to the term containing that position eigenstate.

- So: Even if the probability of collapse in the GRW Law is extremely small, 

since any measuring device has trillions of particles, any superposition 

containing them will have an extremely likely chance of collapsing.



general form of wavefunction 

for all position eigenstates

specific form of wave-

function for state |𝑥𝑖⟩

The GRW Law in terms of Wavefunctions:

• Let |𝜓⟩ = 𝑎1|𝑥1⟩ + ⋯ + 𝑎𝑁|𝑥𝑁⟩ represent the state of an elementary particle 

expanded in a basis of eigenvectors of position.

• The corresponding position wavefunction is defined by 𝜓(𝑥) = ⟨𝜓|𝑥⟩.

• 𝜓(𝑥) encodes all the values of the expansion coefficients. Ex:  𝜓(𝑥𝑖) = 𝑎𝑖.

• Mathematically, wavefunction collapse is accomplished by multiplying 

the general wavefunction 𝜓(𝑥) by a Dirac delta function 𝛿(𝑥−𝑥𝑖):

"𝜓(𝑥𝑖) = 𝛿(𝑥−𝑥𝑖)𝜓(𝑥)"

• Now: Represent state vector collapse: |𝜓⟩ ⎯⎯⎯→ |𝑥𝑖⟩

  as wavefunction collapse: 𝜓(𝑥) ⎯⎯⎯→ 𝜓(𝑥𝑖)

collapse

collapse
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The Dirac Delta Function

Initial Problem:

• If our state is represented by an eigenvector of position, then according to 

the EE Rule, this means that it has a definite value of position (namely, 𝑥𝑖).

• When a GRW collapse occurs (and we get an exact value of position), we could 

potentially have violations of conservation of momentum and energy!

• Think of 𝛿(𝑥−𝑥𝑖) as a position eigenfunction.

Uncertainty in 

position = 0

Uncertainty in 

momentum = ∞!⇒

• So: Properties incompatible with position will be maximally indeterminate.

Paul Dirac
(1902-1984)

𝑥𝑖 𝑥

𝛿(𝑥−𝑥𝑖)
𝛿(𝑥−𝑥′) is defined by the following:

1. 𝛿(𝑥−𝑥′) = 0, when 𝑥  ≠ 𝑥′.

2. 𝛿(𝑥−𝑥′) = ∞, when 𝑥  = 𝑥′.

׬ .3 𝛿(𝑥−𝑥′)𝑑𝑥′ = 1.

׬ .4 𝛿(𝑥−𝑥′)𝑓(𝑥)𝑑𝑥′ = 𝑓(𝑥′), for any 𝑓(𝑥).

• It is an infinite spike exactly at 𝑥𝑖, and zero everywhere else:

So instead of "𝜓(𝑥𝑖) = 𝛿(𝑥−𝑥𝑖)𝜓(𝑥)", we 

should write 𝜓(𝑥𝑖) = ׬ 𝛿(𝑥−𝑥𝑖)𝜓(𝑥)𝑑𝑥.

Not a legitimate 

function! 
(Rather, a 
"distribution".)
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Technical Solution

• For GRW collapses, instead of multiplying the wavefunction by a Dirac delta 

function 𝛿(𝑥−𝑥𝑖), use a Gaussian (i.e., Bell-shaped) function 𝑔𝐿(𝑥−𝑥𝑖) spread 

out a finite width 𝐿 about 𝑥𝑖.

• Can choose 𝐿 so that the uncertainty in momentum is effectively cut-off.

• The price: We've had to smear the position about 𝑥𝑖.

𝑥𝑖 𝑥

𝐿 The Gaussian function is a 

legitimate function.

- Centered at 𝑥′.

- Width = 𝐿.

- Maximum height =
1

𝜋𝐿2

- Unit area.

- lim
𝐿→0

𝑔𝐿(𝑥−𝑥′) = 𝛿(𝑥−𝑥′)

𝑔𝐿 𝑥 − 𝑥′ =
1

𝜋𝐿2
𝑒−(𝑥−𝑥′)/𝐿2
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Essential Characteristics of GRW Collapse Theory:

1. Modifies Schrödinger dynamics with GRW Law.

2. Keeps Projection Postulate.

3. Introduces two new constants of nature:

(a) Probability per time per particle of collapse.

(b) Width 𝐿 of Gaussian position eigenfunctions.

Why #2?

- Recall: The Projection Postulate says, when a system aquires 

a definite value of a property, then the state of the system 

collapses to the corresponding value-state.

- The GRW Law guarantees that a macroscopic pointer device 

will always have a definite value of position; the Projection 

Postulate then entails that the entangled state of the pointer 

device and the physical system it is measuring will collapse 

to that term that contains this pointer device value-state.
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• So: Even after a GRW collapse, an elementary particle is still in a superposition 

of position eigenvectors.

- There is still a non-zero probability of finding it at some location 𝑥 ≠ 𝑥𝑖.

1. Wavefunction Tails

• We just saw that GRW needs Gaussian position functions 𝑔𝐿(𝑥−𝑥𝑖) in order to 

avoid violations of energy/momentum conservation.

• But: 𝑔𝐿(𝑥−𝑥𝑖) is never zero. It has non-vanishing tails.

Problems

• Thus: According to the EE Rule, it still has no definite value of position.

- When GRW agreed to use Gaussians instead of Dirac delta functions, they gave up 

exact position collapses.

- The tails asymptotically approach the 𝑥-

axis, but never reach it, no matter how 

far away from 𝑥𝑖 you get.

- 𝑔𝐿(𝑥−𝑥𝑖) ≠ 0 for all finite values of 𝑥.

𝑥𝑖 𝑥

𝑔𝐿(𝑥−𝑥𝑖)

tailtail
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• Ex: Measuring a particle's Hardness by means of a fluorescent screen.

Hardness

- To measure Hardness of 𝑃, insert it into Hardness box.

•

ℎ

𝑠
𝑃 Human 

Observer

fluorescent screen

• GRW assume that the position property is fundamental, in-so-far as all other 

properties must be correlated with the positions of pointers in measuring 

devices in order to measure them.

Is this correct?

2. Positionless Measurements

𝐴

- If it's ℎ𝑎𝑟𝑑, it will exit at ℎ and impact screen at 𝐴.

- If it's 𝑠𝑜𝑓𝑡, it will exit at 𝑠 and impact screen at 𝐵.

𝐵
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Hardness

•

ℎ

𝑠
𝑃

𝐴

𝐵

Claim: At no point in this process is the Hardness of the particle correlated with the 

position of a pointer (or any sort of measuring device).

• The impact of 𝑃 at 𝐴 or 𝐵 correlates its Hardness with the energies (and 

not positions) of the electrons in the atoms of the fluorescent screen.

• Suppose: 𝑃 is initially 𝑏𝑙𝑎𝑐𝑘.

energy states of excited screen 

electrons in the vicinity of 𝐵
energy states of unexcited screen 

electrons in the vicinity of 𝐴

energy states of excited screen 

electrons in the vicinity of 𝐴
energy states of unexcited screen 

electrons in the vicinity of 𝐵

A GRW collapse of any of the 

energy states of the electrons 

onto a position eigenstate will 

not cause the state of 𝑃 to 

collapse into one or the other 

of these terms.
16

½ |ℎ𝑎𝑟𝑑, 𝑥 = 𝐴⟩𝑃|𝑒𝑥⟩𝑒1
⋯|𝑒𝑥⟩𝑒𝑁|𝑢𝑛𝑒𝑥⟩𝑒𝑁+1

⋯|𝑢𝑛𝑒𝑥⟩𝑒2𝑁

+ ½ |𝑠𝑜𝑓𝑡, 𝑥 = 𝐵⟩𝑃|𝑢𝑛𝑒𝑥⟩𝑒1
⋯|𝑢𝑛𝑒𝑥⟩𝑒𝑁|𝑒𝑥⟩𝑒𝑁+1

⋯|𝑒𝑥⟩𝑒2𝑁

• Then: Just after impact, its state can be represented by:



What about the photons that the electrons emit?

- Don't they experience GRW collapses?

• So: To address this problem, GRW advocates will have to push back the 

process of measurement, perhaps to brain states in the human observer, 

to a point at which they can say the positions of something (brain neuron 

states?) get correlated with the Hardness property of 𝑃.

• No!

- The GRW Collapse Law doesn't apply to relativistic objects (like photons).

- Moreover: There can be just a few photons released on impact to record 

the Hardness measurement (the human eye can discern photons at very 

low intensities).  

- The GRW Collapse Law only guarantees that one of a large number 

(trillions!) of elementary particles will collapse for real times.
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3. Microscopic Measurements

• Due to the randomness of the GRW collapse, collapses will only occur in real 

times for macrosopic measuring devices (with trillions of elementary particles).

• But: What about the possibility of microsopic measuring devices?

- These would not be expected to have GRW collapses in real times.

- If they could be correlated with macroscopic measuring devices, we would 

have the measurement problem all over again!
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