
08.	The	KS	Theorem,	The	Measurement	Problem	
How	Should	Superpositions	be	Interpreted?	Part	2.

(A) Literally	(QM	description	is	complete):

(B) Non-literally	(QM	description	is	incomplete):

Bell says: No! Conflicts 
with experiment.

Why not (B2)? Non-locality isn't all that 
spooky...
But: The KS Theorem says "No" to VD.

B2. Non-local	Hidden	Variables	with	VD.

B1. Local	Hidden	Variables	with	VD.

Options:

Options:
A1. Standard	Claim:	Deny	VD.	The	properties	of	a	quantum	system	in	a	

superposed	state	are	indeterminate (do	not	possess	values).

EPR say: non-local!

1. The	Kochen-Specker	
Theorem

2. The	Measurement	
Problem

Value	Definiteness	(VD)
The	properties	of	a	quantum	system	are	
determinate	(possess	values)	at	all	times,	even	
when	the	system	is	in	a	superposed	state.

Isn't this how classical 
properties behave?
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Summary	of	KS	Theorem

• KS	Theorem	says:	If properties	are	represented	as	operators	
on	a	Hilbert	space	in	a	1-1	fashion	(i.e.,	each	property	is	
represented	by	a	unique	operator),	then	these	properties	
cannot	all	be	said	to	simultaneously	have	values.

• So:	KS Theorem	just	reconfirms that	our	original	choice	of	using	
Hilbert	spaces	to	represent	quantum	state	spaces	is	correct,	if	we	
want	to	be	able	to	represent	quantum	properties	that	are	
fundamentally	different	from	classical	properties.

More precisely...

• A	mathematical	claim about	the	nature	of	Hilbert	
spaces (the	special	type	of	vector	spaces	that	are	
the	most	general	representation	of	the	state	
space	for	a	quantum	system).

Due specifically to the 
structure of Hilbert spaces.

Not a problem for classical 
systems with state spaces 
represented by point sets.

1.	The	Kochen-Specker	Theorem
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• Compatibilitymeans	A,	B,	C all	have	a	set	of	eigenvectors	in	common.
• Value	Constraints is	a	consequence	(in	part)	of	requiring	a	1-1	
correspondence	between	properties	and	operators	("non-contexuality").

Kochen-Specker	Theorem
For	Hilbert	spaces	of	dimension	≥ 3,	(1)	and	(2)	are	contradictory:

(1) Value	Definiteness: Any	set	of	properties	represented	by	
operators	𝐴,	𝐵,	𝐶,	... on	ℋ simultaneously	have	values	𝑣(𝐴),	
𝑣(𝐵),	𝑣(𝐶),	...

(2) Value	Constraints:
(a) (Sum	Rule)	If	𝐴,	𝐵,	𝐶, are	compatible and	𝐶 =	𝐴 +	𝐵,	then	

𝑣(𝐶)	=	𝑣(𝐴)	+	𝑣(𝐵).
(b) (Product	Rule)	If	𝐴,	𝐵,	𝐶, are	compatible and	𝐶 =	𝐴𝐵,	then	

𝑣(𝐶)	=	𝑣(𝐴)𝑣(𝐵).

To prove the KS Theorem, we first need 
the notion of a projection operator...
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𝑃|𝜓⟩|𝜑⟩

• 𝑃|𝜓⟩ is	sometimes	written	as	|𝜓⟩⟨𝜓|.
• So: 𝑃|𝜓⟩|𝜑⟩ =	|𝜓⟩⟨𝜓|𝜑⟩ =	⟨𝜓|𝜑⟩|𝜓⟩.
• Note: ⟨𝜓|𝜑⟩ is	a	number and	|𝜓⟩ is	a	vector,	so	⟨𝜓|𝜑⟩|𝜓⟩ is	a	vector.

𝑃|𝜓⟩|𝜑⟩ ≡ ⟨𝜓|𝜑⟩|𝜓⟩

Def.	A	projection	operator 𝑃|𝜓⟩ associated	with	a	unit	vector |𝜓⟩
maps	any	vector	|𝜑⟩ to	another	one	𝑃|𝜓⟩|𝜑⟩ defined	by,

that	is	the	result	of	projecting |𝜑⟩ in	the	direction	of	|𝜓⟩.

|𝜓⟩

|𝜑⟩
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Proof	of	Resolution	of	the	Identity:

- Suppose:	|𝐵⟩ =	𝑏1|𝑎1⟩	+	⋯	+	𝑏𝑁|𝑎𝑁⟩ is	any	vector	in	ℋ.
- Then:	(𝑃|𝑎1⟩ +	𝑃|𝑎2⟩ +⋯	+	𝑃|𝑎𝑁⟩)|𝐵⟩

=	(𝑃|𝑎1⟩ +	𝑃|𝑎2⟩ +⋯	+	𝑃|𝑎𝑁⟩)(𝑏1|𝑎1⟩	+	⋯	+	𝑏𝑁|𝑎𝑁⟩)
=	𝑏1|𝑎1⟩⟨𝑎1|𝑎1⟩	+	⋯	+	𝑏𝑁|𝑎𝑁⟩⟨𝑎𝑁|𝑎𝑁⟩, since	⟨𝑎𝑖|𝑎𝑗⟩	=	0,	unless	𝑖 =	𝑗
=	𝑏1|𝑎1⟩	+	𝑏2|𝑎2⟩	+	⋯	+	𝑏𝑁|𝑎𝑁⟩
=	|𝐵⟩

Two	important	Characteristics	of	Projection	Operators
(𝑃|𝜓⟩)2=	𝑃|𝜓⟩ (idempotency)
𝑃|𝑎1⟩+	𝑃|𝑎2⟩+⋯	+	𝑃|𝑎𝑁⟩=	𝐼𝑁 (resolution	of	the	identity)
where	|𝑎1⟩,	|𝑎2⟩,	...	,	|𝑎𝑁⟩ form	an	orthonormal	basis	for	an	𝑁-
dimensional	Hilbert	space	ℋwith	identity	operator	𝐼𝑁.

Proof	of	Idempotency:
(𝑃|𝜓⟩)2|𝜑⟩=	𝑃|𝜓⟩(𝑃|𝜓⟩|𝜑⟩)=	𝑃|𝜓⟩(|𝜓⟩⟨𝜓|𝜑⟩)	=	|𝜓⟩⟨𝜓|𝜓⟩⟨𝜓|𝜑⟩ =	⟨𝜓|𝜑⟩|𝜓⟩
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(a)		𝐴|𝑎𝑖⟩	=	𝑎𝑖|𝑎𝑖⟩ |𝑎𝑖⟩ is	an	eigenvector	of	𝐴with	
eigenvalue 𝑎𝑖

(b)		𝑃|𝑎𝑖⟩|𝑎𝑖⟩	=	|𝑎𝑖⟩⟨𝑎𝑖|𝑎𝑖⟩ =	|𝑎𝑖⟩ |𝑎𝑖⟩ is	an	eigenvector	of	𝑃|𝑎𝑖⟩with	
eigenvalue	+1

|𝑎𝑗⟩ is	an	eigenvector	of	𝑃|𝑎𝑖⟩ with	
eigenvalue	0

(c)		𝑃|𝑎𝑖⟩|𝑎𝑗⟩	=	|𝑎𝑖⟩⟨𝑎𝑖|𝑎𝑗⟩ =	0
=	0|𝑎𝑗⟩,	for	𝑖 ≠	𝑗

What	property	does	a	projection	operator	represent?

- So:	Any	eigenvector	of	𝑃|𝑎𝑖⟩with	eigenvalue	+1 represents	a	state	that	
possesses	the	value	𝑎𝑖of	the	property	represented	by	𝐴.

- And:	Any	eigenvector	of	𝑃|𝑎𝑖⟩with	eigenvalue	0,	represents	a	state	that	
possesses	some	value,	other	than	𝑎𝑖,	of	the	property	represented	by	𝐴.

Only	two	values	of	this	property	in	a	given	state:
(i) +1,	which	means	the	state	has	the	value	𝑎𝑖of	𝐴.
(ii) 0,	which	means	the	state	does	not	have	the	value	𝑎𝑖of	𝐴.

Def.	Let	𝑃|𝑎𝑖⟩ be	a	projection	operator,	where	|𝑎𝑖⟩ is	an	eigenvector	of	the	
operator	𝐴.	Then	𝑃|𝑎𝑖⟩ represents	the	property	"The	value	of	𝐴 is	𝑎𝑖".

Recall:	Any	orthonormal	basis	|𝑎1⟩,	...	,	|𝑎𝑁⟩ is	a	set	of	eigenvectors	of	some	(complete)	
operator	𝐴.	For	these	eigenvectors:
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The	significance	of	projection	operators	to	the	KS	Theorem
Value	Constraints entails	a	particular	constraint	on	projection	operators:

Projection	Operator	Value	Constraint (PVC)
Let	|𝑎1⟩,	...	,	|𝑎𝑁⟩ be	an	orthonormal	basis	for	an	𝑁-dim	Hilbert	space.	Then,
𝑣(𝑃|𝑎1⟩)	+	𝑣(𝑃|𝑎2⟩)	+	⋯	+	𝑣(𝑃|𝑎𝑁⟩)	=	1,	where	𝑣(𝑃|𝑎𝑖⟩)	=	1 or	0,	for	𝑖 =	1...𝑁.

Proof:	Let	|𝑎1⟩,	...	,	|𝑎𝑁⟩ be	an	orthonormal	basis	for	an	𝑁-dim	Hilbert	
space	with	identity	operator	𝐼𝑁.
- Then: 𝑃|𝑎1⟩+	𝑃|𝑎2⟩+⋯	+	𝑃|𝑎𝑁⟩=	𝐼𝑁 (resolution	of	identity)
- And: 𝑣(𝑃|𝑎1⟩)	+	⋯	+	𝑣(𝑃|𝑎𝑁⟩)	=	𝑣(𝐼𝑁) (sum	rule)
- Note: For	any	operator	𝒪,

𝑣(𝒪)=	𝑣(𝐼𝑁𝒪)
=	𝑣(𝐼𝑁)𝑣(𝒪) (product	rule)

- So: 𝑣(𝐼𝑁)	=	1
- So: 𝑣(𝑃|𝑎1⟩)	+	⋯	+	𝑣(𝑃|𝑎𝑁⟩)	=	1
- Now: 𝑣(𝑃|𝑎𝑖⟩)𝑣(𝑃|𝑎𝑖⟩) =	𝑣(𝑃|𝑎𝑖⟩2) (product	rule)

=	𝑣(𝑃|𝑎𝑖⟩) (idempotency)
- Thus: 𝑣(𝑃|𝑎𝑖⟩)	=	1	or	0

7



So:	The	KS Theorem	simply	says	that	(VD)	and	(PVC)	are	contradictory.

• (PVC)	says:	The	operator	𝐴with	eigenvectors	|𝑎𝑖⟩ has	a	definite	value	(i.e.,	
just	the	value	𝑎𝑖 for	which	𝑣(𝑃|𝑎𝑖⟩)	=	1).

• (VD)	says:	All operators	have	definite	values;	not	just	𝐴,	but	even	those	that	
are	incompatible	(i.e.,	don't	have	the	same	eigenvectors)	with	𝐴.

• Thus:	(VD)	requires	that	(PVC)	holds,	not	only	for	the	|𝑎𝑖⟩ orthonormal	
basis,	but	for	all orthonormal	bases.

The	KS	Theorem	is	a	consequence	of	the	claim:
(PVC)	cannot	hold	for	all orthonormal	bases	of	Hilbert	spaces	with	dim	≥	3.

Proof	Sketch:	First	implement	(PVC)	by	the	following:
- Label	each	𝑃|𝑎𝑖⟩ either	black	or	red,	depending	on	whether	𝑣(𝑃|𝑎𝑖⟩)	=	1 or	0.
- (PVC)	says:	For	the	set	of	basis	vectors	corresponding	to	𝑃|𝑎𝑖⟩,	one	is	labeled	
red	and	all	the	others	are	labeled	black.

- (VD)	now	requires	us	to	do	this	for	all sets	of	bases.
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Proof	Sketch	(cont.):	Now	demonstrate	that	you	can't	color	all	sets	of	
basis	vectors	of	a	Hilbert	space	of	dim	≥	3 such	that	one	member	of	each	
set	is	red	and	all	the	other	members	of	the	set	are	black.	Let's	see	how	
this	works	for	dimension	2,	but	doesn't	work	for	dimension	3.

dim=	2

𝑃|𝑎1⟩

𝑃|𝑎2⟩

𝑃|𝑏1⟩

𝑃|𝑏2⟩ - There	are	an	infinite	number	of	pairs	of	
orthogonal	rays	{𝑃|𝑎1⟩,	𝑃|𝑎2⟩},	{𝑃|𝑏1⟩,	𝑃|𝑏2⟩},	
...,	etc,	obtained	by	rotating	{𝑃|𝑎1⟩,	𝑃|𝑎2⟩}
by	some	angle	𝜃,	0	<	𝜃 ≤ 90°.

- For	each	set,	can	consistently	color	one	
red	and	the	other	black.	If	we	continue	
coloring,	we'll	color	the	entire	circle	
such	that	each	alternating	quadrant	is	
black	or	red.

• Note:	𝑃|𝑎𝑖⟩ corresponds	to	the	ray through	|𝑎𝑖⟩.	So	we'll	color	basis	rays.
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dim=	2

𝑃|𝑎1⟩

𝑃|𝑎2⟩

𝑃|𝑏1⟩

𝑃|𝑏2⟩

• Note:	𝑃|𝑎𝑖⟩ corresponds	to	the	ray through	|𝑎𝑖⟩.	So	we'll	color	basis	rays.

Proof	Sketch	(cont.):	Now	demonstrate	that	you	can't	color	all	sets	of	
basis	vectors	of	a	Hilbert	space	of	dim	≥	3 such	that	one	member	of	each	
set	is	red	and	all	the	other	members	of	the	set	are	black.	Let's	see	how	
this	works	for	dimension	2,	but	doesn't	work	for	dimension	3.

10

- There	are	an	infinite	number	of	pairs	of	
orthogonal	rays	{𝑃|𝑎1⟩,	𝑃|𝑎2⟩},	{𝑃|𝑏1⟩,	𝑃|𝑏2⟩},	
...,	etc,	obtained	by	rotating	{𝑃|𝑎1⟩,	𝑃|𝑎2⟩}
by	some	angle	𝜃,	0	<	𝜃 ≤ 90°.

- For	each	set,	can	consistently	color	one	
red	and	the	other	black.	If	we	continue	
coloring,	we'll	color	the	entire	circle	
such	that	each	alternating	quadrant	is	
black	or	red.



𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠

dim=	3

• Note:	𝑃|𝑎𝑖⟩ corresponds	to	the	ray through	|𝑎𝑖⟩.	So	we'll	color	basis	rays.

Proof	Sketch	(cont.):	Now	demonstrate	that	you	can't	color	all	sets	of	
basis	vectors	of	a	Hilbert	space	of	dim	≥	3 such	that	one	member	of	each	
set	is	red	and	all	the	other	members	of	the	set	are	black.	Let's	see	how	
this	works	for	dimension	2,	but	doesn't	work	for	dimension	3.
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dim=	3

- Rotating	about	𝑃|𝑎3⟩ colors	the	circle	𝑞.

• Note:	𝑃|𝑎𝑖⟩ corresponds	to	the	ray through	|𝑎𝑖⟩.	So	we'll	color	basis	rays.

Proof	Sketch	(cont.):	Now	demonstrate	that	you	can't	color	all	sets	of	
basis	vectors	of	a	Hilbert	space	of	dim	≥	3 such	that	one	member	of	each	
set	is	red	and	all	the	other	members	of	the	set	are	black.	Let's	see	how	
this	works	for	dimension	2,	but	doesn't	work	for	dimension	3.

𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠
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dim=	3

- Rotating	about	𝑃|𝑎3⟩ colors	the	circle	𝑞.
- Rotating	about	𝑃|𝑎2⟩ colors	the	circle	𝑟.

• Note:	𝑃|𝑎𝑖⟩ corresponds	to	the	ray through	|𝑎𝑖⟩.	So	we'll	color	basis	rays.

Proof	Sketch	(cont.):	Now	demonstrate	that	you	can't	color	all	sets	of	
basis	vectors	of	a	Hilbert	space	of	dim	≥	3 such	that	one	member	of	each	
set	is	red	and	all	the	other	members	of	the	set	are	black.	Let's	see	how	
this	works	for	dimension	2,	but	doesn't	work	for	dimension	3.

𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠
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dim=	3

- Rotating	about	𝑃|𝑎3⟩ colors	the	circle	𝑞.
- Rotating	about	𝑃|𝑎2⟩ colors	the	circle	𝑟.
- Rotating	about	𝑃|𝑎1⟩ colors	the	circle	𝑠.

- Can	also	rotate	about	any	other	ray	
through	the	origin.

- Claim:	Can't	consistently	color	the	
entire	surface	of	the	sphere	in	this	
manner.	At	some	point,	you'll	run	over	
a	previously	colored	portion!

• Note:	𝑃|𝑎𝑖⟩ corresponds	to	the	ray through	|𝑎𝑖⟩.	So	we'll	color	basis	rays.

Proof	Sketch	(cont.):	Now	demonstrate	that	you	can't	color	all	sets	of	
basis	vectors	of	a	Hilbert	space	of	dim	≥	3 such	that	one	member	of	each	
set	is	red	and	all	the	other	members	of	the	set	are	black.	Let's	see	how	
this	works	for	dimension	2,	but	doesn't	work	for	dimension	3.

𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠
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How	Should	Superpositions	be	Interpreted?	Part	3

(A) Literally	(QM	description	is	complete):

(B) Non-literally	(QM	description	is	incomplete):

Bell says: 
No!

Is Option (A1) feasible?
Major Difficulty: The Measurement Problem...

Value	Definiteness	(VD)
The	properties	of	a	quantum	system	are	determinate	(possess	
values)	at	all	times,	even	when	the	system	is	in	a	superposed	state.

Options:
B1. Local	Hidden	Variables	with	VD.
B2. Non-local	Hidden	Variables	with	VD.

KS Theorem 
says: No!

Options:
A1. Standard	Claim:	Deny	VD.	The	properties	of	a	quantum	system	in	a	

superposed	state	are	indeterminate (do	not	possess	values).

EPR say: non-local!
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2.	The	Measurement	Problem	

There	are	two	ways	the	state	of	a	quantum	system	can	change:

- Suppose	the	state	of	our	system	is	given	by	|𝑄⟩	=	 ½ (|𝑤ℎ𝑖𝑡𝑒⟩ +	|𝑏𝑙𝑎𝑐𝑘⟩).
- Suppose	we	measure	our	system	for	Color	and	get	the	value	𝑤ℎ𝑖𝑡𝑒.
- Then	the	state	collpases	to	|𝑤ℎ𝑖𝑡𝑒⟩.

(a) In	the	presence	of	a	measurement:	Indeterministic,	instantaneous	collapse	
(Projection	Postulate).

(b) In	the	absence	of	a	measurement:	Deterministic,	temporal	evolution	
via the	Schrödinger	equation.

- Suppose	the	state	of	our	system	at	𝑡𝑖 is	given	by	|𝑄⟩.
- Then	the	state	of	our	system	at	𝑡𝑓>	𝑡𝑖 is	given	by	𝑆|𝑄⟩,	where	𝑆 = 𝑒)*+(-))-*)/ℏ

is	the	linear	Schrödinger	operator.

• Is	(a)	inconsistent	with	(b)?

If we adopt Option (A1), then (a) and (b) make different predictions!
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initial	state
|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

pointer	set	
to	ready

How	to	Model	a	Measurement	Process:

• •
electron	enters electron	exits

|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒

• Consider	composite	system	of	measuring	device	𝑚 and	electron	𝑒.
• The	Schrödinger	equation	tells	us	how	the	state	of	the	𝑚-𝑒 system	
evolves	in	time.

pointer	set	
to	"ℎ𝑎𝑟𝑑"

final	state

Schrödinger
evolution

¾¾¾¾® |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

Schrödinger
evolution

¾¾¾¾® |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒

In	other	words:
𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒=	|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒
𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒=	|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒

𝑟𝑒𝑎𝑑𝑦
×

"ℎ𝑎𝑟𝑑"
×

"𝑠𝑜𝑓𝑡"
×
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initial	state
|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑏𝑙𝑎𝑐𝑘⟩𝑒

=	 ½ (|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 +	|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

• Now:	Suppose	a	𝑏𝑙𝑎𝑐𝑘 electron	is	measured	for	Hardness.
• According	to	the	Schrödinger	equation,

final	state
½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

+	|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

¾¾¾¾®
Schrödinger
evolution

How	to	Model	a	Measurement	Process:

• •
electron	enters electron	exits

- We	know	that:
𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒=	|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒
𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒=	|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒

- So:
𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑏𝑙𝑎𝑐𝑘⟩𝑒 =	 ½ (𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+	𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

=	 ½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒+	|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

The Schrödinger 
operator 𝑆 is linear!

𝑟𝑒𝑎𝑑𝑦
×

"ℎ𝑎𝑟𝑑"
×

"𝑠𝑜𝑓𝑡"
×
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• Now:	Suppose	a	𝑏𝑙𝑎𝑐𝑘 electron	is	measured	for	Hardness.
• But:	According	to	the	Projection	Postulate,

¾¾¾¾®collapse final	state

either |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒,	prob	=	½

or |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒,	prob	=	½

How	to	Model	a	Measurement	Process:

• •
electron	enters electron	exits

initial	state
|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑏𝑙𝑎𝑐𝑘⟩𝑒

=	 ½ (|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 +	|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

𝑟𝑒𝑎𝑑𝑦
×

"ℎ𝑎𝑟𝑑"
×

"𝑠𝑜𝑓𝑡"
×
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Anyone who adopts Option (A1), must answer this question.

Initial	response:
According	the	standard	formulation,	the	Projection	Postulate	is	
supposed	to	take	over	during	a	measurement.	So	just	ignore	what	
the	Schrödinger	dynamics	predicts	when	measurements	occur.

• But:	What	exactly	is	a	measurement?	When is	the	Projection	Postulate	
supposed	to	take	over	from	the	Schrödinger	dynamics?

• According	to	the	Eigenvalue/Eigenvector	Rule,	these	represent	different states!

final	state
½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 +	|"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒) according	to	Schrödinger	evolution

according	to	Projection	Postulate
either |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 with	prob	=	½

or |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒 with	prob	=	½
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