
08. The KS Theorem, The Measurement Problem 

How Should Superpositions be Interpreted? Part 2.

(A) Literally (QM description is complete):

(B) Non-literally (QM description is incomplete):

Bell says: No! Conflicts 
with experiment.

Why not (B2)? Non-locality isn't all that 

spooky...

But: The KS Theorem says "No" to VD.

B2.  Non-local Hidden Variables with VD.

B1.  Local Hidden Variables with VD.

Options:

Options:

A1. Standard Claim: Deny VD. The properties of a quantum system in a 

superposed state are indeterminate (do not possess values).

EPR say: non-local!

1. The Kochen-Specker 
Theorem

2. The Measurement 
Problem

Value Definiteness (VD)

The properties of a quantum system are 

determinate (possess values) at all times, even 

when the system is in a superposed state.

Isn't this how classical 
properties behave?
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Summary of KS Theorem

• KS Theorem says: If properties are represented as operators 

on a Hilbert space in a 1-1 fashion (i.e., each property is 

represented by a unique operator), then these properties 

cannot all be said to simultaneously have values.

• So: KS Theorem just reconfirms that our original choice of using 

Hilbert spaces to represent quantum state spaces is correct, if we 

want to be able to represent quantum properties that are 

fundamentally different from classical properties.

More precisely...

• A mathematical claim about the nature of Hilbert 

spaces (the special type of vector spaces that are 

the most general representation of the state 

space for a quantum system).

Due specifically to the 

structure of Hilbert spaces.

Not a problem for classical 

systems with state spaces 

represented by point sets.

1. The Kochen-Specker Theorem
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• Compatibility means A, B, C all have a set of eigenvectors in common.

• Value Constraints is a consequence (in part) of requiring a 1-1 

correspondence between properties and operators ("non-contexuality").

Kochen-Specker Theorem

For Hilbert spaces of dimension ≥ 3, (1) and (2) are contradictory:

(1) Value Definiteness: Any set of properties represented by 

operators 𝐴, 𝐵, 𝐶, ... on ℋ simultaneously have values 𝑣(𝐴), 

𝑣(𝐵), 𝑣(𝐶), ...

(2) Value Constraints:

(a) (Sum Rule) If 𝐴, 𝐵, 𝐶, are compatible and 𝐶 = 𝐴 + 𝐵, then 

𝑣(𝐶) = 𝑣(𝐴) + 𝑣(𝐵).

(b) (Product Rule) If 𝐴, 𝐵, 𝐶, are compatible and 𝐶 = 𝐴𝐵, then 

𝑣(𝐶) = 𝑣(𝐴)𝑣(𝐵).

To prove the KS Theorem, we first need 

the notion of a projection operator...
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𝑃|𝜓⟩|𝜑⟩

• 𝑃|𝜓⟩ is sometimes written as |𝜓⟩⟨𝜓|.

• So: 𝑃|𝜓⟩|𝜑⟩ = |𝜓⟩⟨𝜓|𝜑⟩ = ⟨𝜓|𝜑⟩|𝜓⟩.

• Note: ⟨𝜓|𝜑⟩ is a number and |𝜓⟩ is a vector, so ⟨𝜓|𝜑⟩|𝜓⟩ is a vector.

𝑃|𝜓⟩|𝜑⟩ ≡ ⟨𝜓|𝜑⟩|𝜓⟩

Def. A projection operator 𝑃|𝜓⟩ associated with a unit vector |𝜓⟩ 

maps any vector |𝜑⟩ to another one 𝑃|𝜓⟩|𝜑⟩ defined by,

that is the result of projecting |𝜑⟩ in the direction of |𝜓⟩.

|𝜓⟩

|𝜑⟩
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Proof of Resolution of the Identity:

- Suppose: |𝐵⟩ = 𝑏1|𝑎1⟩ + ⋯ + 𝑏𝑁|𝑎𝑁⟩ is any vector in ℋ.

- Then: (𝑃|𝑎1⟩ + 𝑃|𝑎2⟩ + ⋯ + 𝑃|𝑎𝑁⟩)|𝐵⟩

  = (𝑃|𝑎1⟩ + 𝑃|𝑎2⟩ + ⋯ + 𝑃|𝑎𝑁⟩)(𝑏1|𝑎1⟩ + ⋯ + 𝑏𝑁|𝑎𝑁⟩)

  = 𝑏1|𝑎1⟩⟨𝑎1|𝑎1⟩ + ⋯ + 𝑏𝑁|𝑎𝑁⟩⟨𝑎𝑁|𝑎𝑁⟩, since ⟨𝑎𝑖|𝑎𝑗⟩ = 0, unless 𝑖 = 𝑗

  = 𝑏1|𝑎1⟩ + 𝑏2|𝑎2⟩ + ⋯ + 𝑏𝑁|𝑎𝑁⟩

  = |𝐵⟩

Two important Characteristics of Projection Operators

(𝑃|𝜓⟩)
2

 = 𝑃|𝜓⟩ (idempotency)

𝑃|𝑎1⟩ + 𝑃|𝑎2⟩ + ⋯ + 𝑃|𝑎𝑁⟩ = 𝐼𝑁 (resolution of the identity)

where |𝑎1⟩, |𝑎2⟩, ... , |𝑎𝑁⟩ form an orthonormal basis for an 𝑁-

dimensional Hilbert space ℋ with identity operator 𝐼𝑁.

Proof of Idempotency:

(𝑃|𝜓⟩)
2|𝜑⟩ = 𝑃|𝜓⟩(𝑃|𝜓⟩|𝜑⟩) = 𝑃|𝜓⟩(|𝜓⟩⟨𝜓|𝜑⟩) = |𝜓⟩⟨𝜓|𝜓⟩⟨𝜓|𝜑⟩ = ⟨𝜓|𝜑⟩|𝜓⟩
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What property does a projection operator represent?

- So: Any eigenvector of 𝑃|𝑎𝑖⟩
 with eigenvalue +1 represents a state that 

possesses the value 𝑎𝑖 of the property represented by 𝐴.

- And: Any eigenvector of 𝑃|𝑎𝑖⟩
 with eigenvalue 0, represents a state that 

possesses some value, other than 𝑎𝑖, of the property represented by 𝐴.

Only two values of the property represented by 𝑃|𝑎𝑖⟩
:

(i) +1, which means the system has the value 𝑎𝑖 of 𝐴.

(ii) 0, which means the system has a value of 𝐴, but not 𝑎𝑖.

Def. Let 𝑃|𝑎𝑖⟩
 be a projection operator, where |𝑎𝑖⟩ is an eigenvector of the 

operator 𝐴. Then 𝑃|𝑎𝑖⟩
 represents the property "The value of 𝐴 is 𝑎𝑖".

(a)  𝐴|𝑎𝑖⟩ = 𝑎𝑖|𝑎𝑖⟩ |𝑎𝑖⟩ is an eigenvector of 𝐴 with eigenvalue 𝑎𝑖

(b)  𝑃|𝑎𝑖⟩
|𝑎𝑖⟩ = |𝑎𝑖⟩⟨𝑎𝑖|𝑎𝑖⟩ = |𝑎𝑖⟩ |𝑎𝑖⟩ is an eigenvector of 𝑃|𝑎𝑖⟩ with eigenvalue +1

(c)  𝑃|𝑎𝑖⟩|𝑎𝑗⟩ = |𝑎𝑖⟩⟨𝑎𝑖|𝑎𝑗⟩ = 0|𝑎𝑗⟩,   for 𝑖 ≠ 𝑗 |𝑎𝑗⟩ is an eigenvector of 𝑃|𝑎𝑖⟩
 with eigenvalue 0

Recall: Any orthonormal basis |𝑎1⟩, ... , |𝑎𝑁⟩ is a set of eigenvectors of some (complete) 

operator 𝐴. For these eigenvectors:
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The significance of projection operators to the KS Theorem

Value Constraints entails a particular constraint on projection operators:

Projection Operator Value Constraint (PVC)

Let |𝑎1⟩, ... , |𝑎𝑁⟩ be an orthonormal basis for an 𝑁-dim Hilbert space. Then,

 𝑣(𝑃|𝑎1⟩) + 𝑣(𝑃|𝑎2⟩) + ⋯ + 𝑣(𝑃|𝑎𝑁⟩) = 1, where 𝑣(𝑃|𝑎𝑖⟩
) = 1 or 0, for 𝑖 = 1...𝑁.

Proof: Let |𝑎1⟩, ... , |𝑎𝑁⟩ be an orthonormal basis for an 𝑁-dim Hilbert 

space with identity operator 𝐼𝑁.

- Then: 𝑃|𝑎1⟩ + 𝑃|𝑎2⟩ + ⋯ + 𝑃|𝑎𝑁⟩ = 𝐼𝑁 (resolution of identity)

- And: 𝑣(𝑃|𝑎1⟩) + ⋯ + 𝑣(𝑃|𝑎𝑁⟩) = 𝑣(𝐼𝑁) (sum rule)

- Note: For any operator 𝒪,

  𝑣(𝒪) = 𝑣(𝐼𝑁𝒪)

   = 𝑣(𝐼𝑁)𝑣(𝒪) (product rule)

- So: 𝑣(𝐼𝑁) = 1

- So: 𝑣(𝑃|𝑎1⟩) + ⋯ + 𝑣(𝑃|𝑎𝑁⟩) = 1

- Now: 𝑣(𝑃|𝑎𝑖⟩)𝑣(𝑃|𝑎𝑖⟩) = 𝑣(𝑃|𝑎𝑖⟩
2) (product rule)

   = 𝑣(𝑃|𝑎𝑖⟩
) (idempotency)

- Thus: 𝑣(𝑃|𝑎𝑖⟩) = 1 or 0
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So: The KS Theorem simply says that (VD) and (PVC) are contradictory.

• (PVC) says: The operator 𝐴 with eigenvectors |𝑎𝑖⟩ has a definite value (i.e., 

just the value 𝑎𝑖 for which 𝑣(𝑃|𝑎𝑖⟩
) = 1).

• (VD) says: All operators have definite values; not just 𝐴, but even those that 

are incompatible (i.e., don't have the same eigenvectors) with 𝐴.

• Thus: (VD) requires that (PVC) holds, not only for the |𝑎𝑖⟩ orthonormal 

basis, but for all orthonormal bases.

The KS Theorem is a consequence of the claim:

(PVC) cannot hold for all orthonormal bases of Hilbert spaces with dim ≥ 3.

Proof Sketch: First implement (PVC) by the following:

- Label each 𝑃|𝑎𝑖⟩
 either black or red, depending on whether 𝑣(𝑃|𝑎𝑖⟩

) = 1 or 0.

- (PVC) says: For the set of basis vectors corresponding to 𝑃|𝑎𝑖⟩
, one is labeled 

red and all the others are labeled black.

- (VD) now requires us to do this for all sets of bases.
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Proof Sketch (cont.): Now demonstrate that you can't color all sets of 

basis vectors of a Hilbert space of dim ≥ 3 such that one member of each 

set is red and all the other members of the set are black. Let's see how 

this works for dimension 2, but doesn't work for dimension 3.

dim = 2

𝑃|𝑎1⟩

𝑃|𝑎2⟩

𝑃|𝑏1⟩

𝑃|𝑏2⟩ - There are an infinite number of pairs of 

orthogonal rays {𝑃|𝑎1⟩, 𝑃|𝑎2⟩}, {𝑃|𝑏1⟩, 𝑃|𝑏2⟩}, 

..., etc, obtained by rotating {𝑃|𝑎1⟩, 𝑃|𝑎2⟩} 

by some angle 𝜃, 0 < 𝜃 ≤ 90.

- For each set, can consistently color one 

red and the other black. If we continue 

coloring, we'll color the entire circle 

such that each alternating quadrant is 

black or red.

• Note: 𝑃|𝑎𝑖⟩
 corresponds to the ray through |𝑎𝑖⟩. So we'll color basis rays.
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dim = 2

𝑃|𝑎1⟩

𝑃|𝑎2⟩

𝑃|𝑏1⟩

𝑃|𝑏2⟩

• Note: 𝑃|𝑎𝑖⟩
 corresponds to the ray through |𝑎𝑖⟩. So we'll color basis rays.

Proof Sketch (cont.): Now demonstrate that you can't color all sets of 

basis vectors of a Hilbert space of dim ≥ 3 such that one member of each 

set is red and all the other members of the set are black. Let's see how 

this works for dimension 2, but doesn't work for dimension 3.

10

- There are an infinite number of pairs of 

orthogonal rays {𝑃|𝑎1⟩, 𝑃|𝑎2⟩}, {𝑃|𝑏1⟩, 𝑃|𝑏2⟩}, 

..., etc, obtained by rotating {𝑃|𝑎1⟩, 𝑃|𝑎2⟩} 

by some angle 𝜃, 0 < 𝜃 ≤ 90.

- For each set, can consistently color one 

red and the other black. If we continue 

coloring, we'll color the entire circle 

such that each alternating quadrant is 

black or red.



𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠

dim = 3

• Note: 𝑃|𝑎𝑖⟩
 corresponds to the ray through |𝑎𝑖⟩. So we'll color basis rays.

Proof Sketch (cont.): Now demonstrate that you can't color all sets of 

basis vectors of a Hilbert space of dim ≥ 3 such that one member of each 

set is red and all the other members of the set are black. Let's see how 

this works for dimension 2, but doesn't work for dimension 3.
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dim = 3

- Rotating about 𝑃|𝑎3⟩ colors the circle 𝑞.

• Note: 𝑃|𝑎𝑖⟩
 corresponds to the ray through |𝑎𝑖⟩. So we'll color basis rays.

Proof Sketch (cont.): Now demonstrate that you can't color all sets of 

basis vectors of a Hilbert space of dim ≥ 3 such that one member of each 

set is red and all the other members of the set are black. Let's see how 

this works for dimension 2, but doesn't work for dimension 3.

𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠
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dim = 3

- Rotating about 𝑃|𝑎3⟩ colors the circle 𝑞.

- Rotating about 𝑃|𝑎2⟩ colors the circle 𝑟.

• Note: 𝑃|𝑎𝑖⟩
 corresponds to the ray through |𝑎𝑖⟩. So we'll color basis rays.

Proof Sketch (cont.): Now demonstrate that you can't color all sets of 

basis vectors of a Hilbert space of dim ≥ 3 such that one member of each 

set is red and all the other members of the set are black. Let's see how 

this works for dimension 2, but doesn't work for dimension 3.

𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠
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dim = 3

- Rotating about 𝑃|𝑎3⟩ colors the circle 𝑞.

- Rotating about 𝑃|𝑎2⟩ colors the circle 𝑟.

- Rotating about 𝑃|𝑎1⟩ colors the circle 𝑠.

- Can also rotate about any other ray 

through the origin.

- Claim: Can't consistently color the 

entire surface of the sphere in this 

manner. At some point, you'll run over 

a previously colored portion!

• Note: 𝑃|𝑎𝑖⟩
 corresponds to the ray through |𝑎𝑖⟩. So we'll color basis rays.

Proof Sketch (cont.): Now demonstrate that you can't color all sets of 

basis vectors of a Hilbert space of dim ≥ 3 such that one member of each 

set is red and all the other members of the set are black. Let's see how 

this works for dimension 2, but doesn't work for dimension 3.

𝑃|𝑎1⟩

𝑃|𝑎3⟩

𝑃|𝑎2⟩
𝑞

𝑟
𝑠
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How Should Superpositions be Interpreted? Part 3

(A) Literally (QM description is complete):

(B) Non-literally (QM description is incomplete):

Bell says: 
No!

Is Option (A1) feasible?

Major Difficulty: The Measurement Problem...

Value Definiteness (VD)

The properties of a quantum system are determinate (possess 

values) at all times, even when the system is in a superposed state.

Options:

B1.  Local Hidden Variables with VD.

B2.  Non-local Hidden Variables with VD.

KS Theorem 
says: No!

Options:

A1. Standard Claim: Deny VD. The properties of a quantum system in a 

superposed state are indeterminate (do not possess values).

EPR say: non-local!
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2. The Measurement Problem 

There are two ways the state of a quantum system can change:

- Suppose the state of our system is given by |𝑄⟩ = ½ (|𝑤ℎ𝑖𝑡𝑒⟩ + |𝑏𝑙𝑎𝑐𝑘⟩).

- Suppose we measure our system for Color and get the value 𝑤ℎ𝑖𝑡𝑒.

- Then the state collpases to |𝑤ℎ𝑖𝑡𝑒⟩.

(a) In the presence of a measurement: Indeterministic, instantaneous collapse 

(Projection Postulate).

(b) In the absence of a measurement: Deterministic, temporal evolution 

via the Schrödinger equation.

- Suppose the state of our system at 𝑡𝑖 is given by |𝑄⟩.

- Then the state of our system at 𝑡𝑓 > 𝑡𝑖 is given by 𝑆|𝑄⟩, where 𝑆 = 𝑒−𝑖𝐻(𝑡𝑓−𝑡𝑖)/ℏ 

is the linear Schrödinger operator.

• Is (a) inconsistent with (b)?

If we adopt Option (A1), then (a) and (b) make different predictions!
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initial state

|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

pointer set 
to ready

How to Model a Measurement Process

• •
electron enters electron exits

|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒

• Consider composite system of measuring device 𝑚 and electron 𝑒.

• The Schrödinger equation tells us how the state of the 𝑚-𝑒 system 

evolves in time.

pointer set 
to "ℎ𝑎𝑟𝑑"

final state

Schrödinger
evolution

⎯⎯⎯⎯→   |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

Schrödinger
evolution

⎯⎯⎯⎯→    |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒

In other words:

𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 = |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒
𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒 = |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒 

𝑟𝑒𝑎𝑑𝑦

×

"ℎ𝑎𝑟𝑑"

×

"𝑠𝑜𝑓𝑡"

×
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initial state

|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑏𝑙𝑎𝑐𝑘⟩𝑒

= ½ (|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + |𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

• Now: Suppose a 𝑏𝑙𝑎𝑐𝑘 electron is measured for Hardness.

• According to the Schrödinger equation,

final state

½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒

 + |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

⎯⎯⎯⎯→
Schrödinger

evolution

How to Model a Measurement Process

• •
electron enters electron exits

- We know that:

 𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 = |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒
 𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒 = |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒 

- So:

 𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑏𝑙𝑎𝑐𝑘⟩𝑒 = ½ (𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + 𝑆|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

  = ½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

The Schrödinger 

operator 𝑆 is linear!

𝑟𝑒𝑎𝑑𝑦

×

"ℎ𝑎𝑟𝑑"

×

"𝑠𝑜𝑓𝑡"

×
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• Now: Suppose a 𝑏𝑙𝑎𝑐𝑘 electron is measured for Hardness.

• But: According to the Projection Postulate,

⎯⎯⎯⎯→
collapse

final state

either |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒, prob = ½

or |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒, prob = ½

How to Model a Measurement Process

• •
electron enters electron exits

initial state

|𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑏𝑙𝑎𝑐𝑘⟩𝑒

= ½ (|𝑟𝑒𝑎𝑑𝑦⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + |𝑟𝑒𝑎𝑑𝑦⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒)

𝑟𝑒𝑎𝑑𝑦

×

"ℎ𝑎𝑟𝑑"

×

"𝑠𝑜𝑓𝑡"

×
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Anyone who adopts Option (A1), must answer this question.

Initial response:

According the standard formulation, the Projection Postulate is 

supposed to take over during a measurement. So just ignore what 

the Schrödinger dynamics predicts when measurements occur.

• But: What exactly is a measurement? When is the Projection Postulate 

supposed to take over from the Schrödinger dynamics?

• According to the Eigenvalue/Eigenvector Rule, these represent different states!

final state

½ (|"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒 + |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒) according to Schrödinger evolution

according to Projection Postulate
either |"ℎ𝑎𝑟𝑑"⟩𝑚|ℎ𝑎𝑟𝑑⟩𝑒  with prob = ½

or |"𝑠𝑜𝑓𝑡"⟩𝑚|𝑠𝑜𝑓𝑡⟩𝑒  with prob = ½
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