08. The KS Theorem, The Measurement Problem H heorm - pecker
2. The Measurement
How Should Superpositions be Interpreted? Part 2. Problem

Value Definiteness (VD) R

The properties of a quantum system are Isn't this how classical
determinate (possess values) at all times, even ?5- properties behave?

when the system is in a superposed state.

(A) Literally (QM description is complete): EPR say: non-local!

Options: f

Al. Standard Claim: Deny VD. The properties of a quantum system in a
superposed state are indeterminate (do not possess values).

(B) Non-literally (QM description is incomplete):

Options: S_ Bell says: No! Conflicts
with experiment.
B1. Local Hidden Variables with VD. < P
B2. Non-local Hidden Variables with VD.  Why not (B2)? Non-locality isn't all that
SPOOKY...
But: The KS Theorem says "No" to VD.




1. The Kochen-Specker Theorem
Summary of KS Theorem

Due specifically to the
e A mathematical claim about the nature of Hilbert ; structure of Hilbert spaces.

spaces (the special type of vector spaces that are
the most general representation of the state < Not a problem for classical

space for a quantum system). fg;izg;sntvgihbiifi;f j:tis

e So: KS Theorem just reconfirms that our original choice of using
Hilbert spaces to represent quantum state spaces is correct, if we
want to be able to represent quantum properties that are
fundamentally different from classical properties.

e KS Theorem says: If properties are represented as operators
on a Hilbert space in a 1-1 fashion (i.e., each property is
represented by a unique operator), then these properties
cannot all be said to simultaneously have values.

More precisely...



Kochen-Specker Theorem &

For Hilbert spaces of dimension = 3, (1) and (2) are contradictory:

(1) Value Definiteness: Any set of properties represented by
operators 4, B, C, ... on H simultaneously have values v(4),

v(B), v(C), ..
(2) Value Constraints:

(a) (Sum Rule) If A, B, C, are compatible and C = A + B, then
v(C) =v(4) + v(B).

(b) (Product Rule) If A, B, C, are compatible and C = AB, then
v(C) =v(4A)v(B).

e Compatibility means 4, B, C all have a set of eigenvectors in common.

e Value Constraints is a consequence (in part) of requiring a 1-1
correspondence between properties and operators ("'non-contexuality").

To prove the KS Theorem, we first need
the notion of a projection operator...



Def. A projection operator P, associated with a unit vector [i)
maps any vector |¢) to another one P,,,,|¢) defined by,

P.ylo) = (Wlo) W)
that is the result of projecting |@) in the direction of [y).
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e P, is sometimes written as [P )(Y|.

* S0: Piylo) = [)le) = (Plo) ).
e Note: (Y|@) is a number and |) is a vector, so (Y| @)|y) is a vector.



Two important Characteristics of Projection Operators
(Pyyy)?= Py (idempotency)
Poy+ Pyt +Pgy=1Iy (resolution of the identity)

where |a,), |a,), ..., |ay) form an orthonormal basis for an N-
dimensional Hilbert space H with identity operator I.

Proof of Idempotency:

(P ?9) = Py (Piyyle)) = Py (1)1 9)) = [D){WlY)le) = le) )

Proof of Resolution of the Identity:
- Suppose: |B) = b4|ay) + -+ + by|ay) is any vector in H..
- Then: (P\qy+ Pg,, + =+ + P)g,))|B)
= (Pig,y t Piay + -+ Plgy) (b1]ay) + -+ + bylay))
= by|a){a |ay) + - + by|ay){ay|ay), since (a;|a;) = 0, unlessi = j
= by|ay) + bylaz) + -+ + bylay)
= |B)




What property does a projection operator represent?

Recall: Any orthonormal basis |a,), ..., |ay) is a set of eigenvectors of some (complete)
operator A. For these eigenvectors:

(a) Al|a;)) = a;|a;) |a;) is an eigenvector of A with eigenvalue q; i
(b) Pgyla) = |a)a;|a;) = |a;) |a;) is an eigenvector of P,,, with eigenvalue +1 i
(©) Pylaj) =la)aa;) =0|a;), fori#j |a)isan eigenvector of P,, with eigenvalue 0

- So: Any eigenvector of P|,, with eigenvalue +1 represents a state that
possesses the value q; of the property represented by A.

- And: Any eigenvector of P|,, with eigenvalue 0, represents a state that
possesses some value, other than a;, of the property represented by A.

Def. Let P ,, be a projection operator, where |a;) is an eigenvector of the

operator A. Then P, , represents the property "The value of A is a,".

i Only two values of the property represented by P, :
' (i) +1, which means the system has the value a; of A.
1 . (i) 0, which means the system has a value of 4, but not a,.



The significance of projection operators to the KS Theorem

Value Constraints entails a particular constraint on projection operators:

Projection Operator Value Constraint (PVC)
Let |a,), ..., |ay) be an orthonormal basis for an N-dim Hilbert space. Then,
v(P|gy) + V(P),y) + -+ V(P,,) =1, where v(P,,) = 1or0, fori=1..N.

LN
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Proof: Let |a,), ..., |ay) be an orthonormal basis for an N-dim Hilbert
space with identity operator I.

- Then: Pgy+ Pigy+ -+ Py =1y (resolution of identity)
- And:  v(Pqy) + -+ v(Pg,) = V() (sum rule)
- Note: For any operator O,
v(0) =v(,0)
= v(Ily)v(0) (product rule)
- So: v(ly) =1
- So: V(Pigy) + -+ V(Pgy) =1
Now: v(Pq))V(P|qy) = V(Pgy?) (product rule)
= v(Pqy) (idempotency)
- Thus: v(Pg) =1or0



So: The KS Theorem simply says that (VD) and (PVC) are contradictory.

e (PVC) says: The operator A with eigenvectors |a;) has a definite value (i.e.,
just the value a; for which v(P,,) = 1).

e (VD) says: All operators have definite values; not just 4, but even those that
are incompatible (i.e., don't have the same eigenvectors) with A.

e Thus: (VD) requires that (PVC) holds, not only for the |a;) orthonormal
basis, but for all orthonormal bases.

The KS Theorem is a consequence of the claim:

(PVC) cannot hold for all orthonormal bases of Hilbert spaces with dim > 3.

- Label each P, either black or red, depending on whether v(P,,,) =1 or 0.

i - (PVC) says: For the set of basis vectors corresponding to P, ,, one is labeled E
' red and all the others are labeled black. ;

________________________________________________________________



| . Proof Sketch (cont.): Now demonstrate that you can't color all sets of

: basis vectors of a Hilbert space of dim = 3 such that one member of each
 setis red and all the other members of the set are black. Let's see how

i this works for dimension 2, but doesn't work for dimension 3.

e Note: P|,, corresponds to the ray through |a;). So we'll color basis rays.

dim = 2

- There are an infinite number of pairs of
orthogonal rays {Pq y, Pioy} {P b,y Plpy)s
., etc, obtained by rotating {P,, , P4}
by some angle 6, 0 < 8 < 90°.

- For each set, can consistently color one

red and the other black. If we continue
coloring, we'll color the entire circle

such that each alternating quadrantis
black or red.




| . Proof Sketch (cont.): Now demonstrate that you can't color all sets of

: basis vectors of a Hilbert space of dim = 3 such that one member of each
 setis red and all the other members of the set are black. Let's see how

E this works for dimension 2, but doesn't work for dimension 3.

e Note: P|,, corresponds to the ray through |a;). So we'll color basis rays.

dim = 2

- There are an infinite number of pairs of
orthogonal rays {Pq y, Pioy} {P b,y Plpy)s
., etc, obtained by rotating {P,, , P4}
by some angle 6, 0 < 8 < 90°.

- For each set, can consistently color one

red and the other black. If we continue
coloring, we'll color the entire circle

such that each alternating quadrantis
black or red.
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| . Proof Sketch (cont.): Now demonstrate that you can't color all sets of

: basis vectors of a Hilbert space of dim = 3 such that one member of each
 setis red and all the other members of the set are black. Let's see how

i this works for dimension 2, but doesn't work for dimension 3.

e Note: P|,, corresponds to the ray through |a;). So we'll color basis rays.

dim = 3

P|a3>
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| . Proof Sketch (cont.): Now demonstrate that you can't color all sets of

: basis vectors of a Hilbert space of dim = 3 such that one member of each
 setis red and all the other members of the set are black. Let's see how

E this works for dimension 2, but doesn't work for dimension 3.

e Note: P|,, corresponds to the ray through |a;). So we'll color basis rays.

dim =
im=23 P|a |
3

- Rotating about P, , colors the circle g.
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| . Proof Sketch (cont.): Now demonstrate that you can't color all sets of

: basis vectors of a Hilbert space of dim = 3 such that one member of each
 setis red and all the other members of the set are black. Let's see how

E this works for dimension 2, but doesn't work for dimension 3.

e Note: P|,, corresponds to the ray through |a;). So we'll color basis rays.

dim =
im=23 P|a |
3

- Rotating about P, , colors the circle g.

- Rotating about P, , colors the circle 7.
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| . Proof Sketch (cont.): Now demonstrate that you can't color all sets of

: basis vectors of a Hilbert space of dim = 3 such that one member of each
 setis red and all the other members of the set are black. Let's see how

E this works for dimension 2, but doesn't work for dimension 3.

e Note: P|,, corresponds to the ray through |a;). So we'll color basis rays.

dim =3 P,

- Rotating about P, , colors the circle g.
- Rotating about P, , colors the circle 7.
- Rotating about P, y colors the circle s.

- Can also rotate about any other ray
through the origin.

Pioy - Claim: Can't consistently color the
entire surface of the sphere in this
manner. At some point, you'll run over
a previously colored portion!
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How Should Superpositions be Interpreted? Part 3

Value Definiteness (VD)
The properties of a quantum system are determinate (possess
values) at all times, even when the system is in a superposed state.

(A) Literally (QM description is complete): EPR say: non-local!

Options: %

Al. Standard Claim: Deny VD. The properties of a quantum system in a
superposed state are indeterminate (do not possess values).

(B) Non-literally (QM description is incomplete):

Options: Bell says:
B1. Local Hidden Variables with VD. ; No! KS Theorem

- No!
B2. Non-local Hidden Variables with VD. says. No:

Is Option (A1) feasible?
Major Difficulty: The Measurement Problem...
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2. The Measurement Problem

There are two ways the state of a quantum system can change:

a) In the presence of a measurement: Indeterministic, instantaneous collapse
p p
(Projection Postulate).

- Suppose the state of our system is given by |Q) = v %2 (|white) + |black)).

- Suppose we measure our system for Color and get the value white.

- Then the state collpases to |white).

(b) In the absence of a measurement: Deterministic, temporal evolution
via the Schrodinger equation.

- Suppose the state of our system at t; is given by |Q).
- Then the state of our system at t; > t; is given by S|Q), where § = en et

is the linear Schrodinger operator. 7

e Is (a) inconsistent with (b)?

If we adopt Option (A1), then (a) and (b) make different predictions!
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How to Model a Measurement Process

o —>

electron enters

ready "hard" 'soft"

X X X

o —>

electron exits

e Consider composite system of measuring device m and electron e.

e The Schrodinger equation tells us how the state of the m-e system

evolves in time.

initial state

|ready),,|hard),

\

pointer set
to ready

[ready),|soft).

final state
> |"hard”),,|hard
Schrédinger | >m| >e
evolution §
pointer set
to "hard”
> |"soft"),,|soft
Schréodinger | f )ml f >e
evolution

4

In other words:
S|ready),,|hard), = |"hard"),,|hard),

S|ready)m|soft). = |"soft")n|soft).
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How to Model a Measurement Process

ready "hard" 'soft"
X X X

*— « —>

electron enters electron exits

e Now: Suppose a black electron is measured for Hardness.

e According to the Schrodinger equation,

initial state Schrédii:lgei} final state 8
Iready),, |black), U V% (|"hard"y, |hard),
= V1% (|ready),,|hard), + |ready),|soft),) t |"soft")ylsoft)e)

- We know that:
S|ready),,|hard), = |"hard"),,|hard),
S|lready)nlsoft). = |"soft"),|soft).
- So:
S|ready),,|black), = V% (S|ready),,|hard), + S|ready)|soft),)
=1 (|"hard"),,|hard), + | "soft")|S0ft).)

; The Schrédinger
operator S is linear!

18



How to Model a Measurement Process

o —>

electron enters

ready

"hard”
X

"Soft"
X

o —>

electron exits

e Now: Suppose a black electron is measured for Hardness.

e But: According to the Projection Postulate,

initial state

|ready),,|black),
=1 (|ready),|hard), + |ready), |soft),)

collapse

final state

|"soft"),,|soft),, prob = 1

N

either |"hard"),,|hard),, prob = %

19



final state
V% (|"hard”),,|hard), + |"soft"),,|sof t),) according to Schrédinger evolution

either |"hard"),,|hard), with prob =14
according to Projection Postulate

or |"soft"),,|soft), with prob =12

4

e According to the Eigenvalue/Eigenvector Rule, these represent different states!

| “, .
' Initial response:

: According the standard formulation, the Projection Postulate is

|

' supposed to take over during a measurement. So just ignore what
:  the Schrédinger dynamics predicts when measurements occur.

e But: What exactly is a measurement? When is the Projection Postulate
supposed to take over from the Schrodinger dynamics?

Anyone who adopts Option (A1), must answer this question.

20
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