1. Quantum Error Correction Codes (QECCs)

- Goal: To encode information in qubits in such a way that errors due to "noise" can be detected and corrected.
- But: Typical quantum algorithms encode information in entangled qubits.
- And: Attempts to detect and correct errors due to noise run the risk of decohering entangled qubits, thus destroying the information.

Task: To detect and correct errors without decohering the relevant entangled qubits.

Set-Up: Suppose information is encoded in a qubit $|Q\rangle=a|0\rangle+b|1\rangle$.
Step 1. Encode $|Q\rangle$ in a codeword.

- Do this by performing appropriate transformations on the single-qubit basis states $|0\rangle,|1\rangle$.
- The new basis states form a space called the code space \mathcal{C}.
- Complete the set of basis states to form a larger space
 called the coding space \mathcal{H}.

Example: We might transform the single-qubit basis states into threequbit basis states:

$$
\begin{aligned}
|0\rangle & \rightarrow|000\rangle \\
|1\rangle & \rightarrow|111\rangle
\end{aligned}
$$

- The codeword is then $a|000\rangle+b|111\rangle$.
- The code space \mathcal{C} is the space spanned by $\{|000\rangle,|111\rangle\}$, which is a 2-dim subspace of the larger 8-dim three-qubit coding space space \mathcal{H} spanned by $\{|000\rangle,|001\rangle,|010\rangle,|100\rangle,|110\rangle,|101\rangle,|011\rangle,|111\rangle\}$.

Step 2. Represent errors by multi-qubit operators constructed from the singlequbit operators I, X, Y, Z.

- Errors "corrupt" the basis states of \mathcal{C}, and hence the codeword, projecting it out of \mathcal{C}.

Example: We might transform the single-qubit basis states into threequbit basis states:

$$
\begin{aligned}
|0\rangle & \rightarrow|000\rangle \\
|1\rangle & \rightarrow|111\rangle
\end{aligned}
$$

- The codeword is then $a|000\rangle+b|111\rangle$.
- The code space \mathcal{C} is the space spanned by $\{|000\rangle,|111\rangle\}$, which is a 2-dim subspace of the larger 8-dim three-qubit coding space space \mathcal{H} spanned by $\{|000\rangle,|001\rangle,|010\rangle,|100\rangle,|110\rangle,|101\rangle,|011\rangle,|111\rangle\}$.
- An error might be represented by the operator $X \otimes I \otimes I$.
- This would produce a corrupted codeword $a|100\rangle+b|011\rangle$, which is an element of \mathcal{H} but not of \mathcal{C}.

Step 3. Devise an appropriate operation that acts on a corrupted codeword in \mathcal{H} and projects it back into \mathcal{C} (thereby "correcting" it).

Necessary and sufficient condition for error-correction

- Let $\mathcal{C}=\operatorname{span}\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{p}\right\rangle\right\}$, for some number p of basis states.

Let $\mathcal{E}=\left\{E_{1}, \ldots, E_{q}\right\}$ be a set of q error operators.
Knill-Laflamme (KL) Condition: A code space $\mathcal{C}=\operatorname{span}\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{p}\right\rangle\right\}$ corrects the error set $\mathcal{E}=\left\{E_{1}, \ldots, E_{q}\right\}$ if and only if
(i) $\left\langle\psi_{i}\right| E_{k}^{\dagger} E_{l}\left|\psi_{j}\right\rangle=0$
(ii) $\left\langle\psi_{i}\right| E_{k}^{\dagger} E_{l}\left|\psi_{i}\right\rangle=\left\langle\psi_{j}\right| E_{k}^{\dagger} E_{l}\left|\psi_{j}\right\rangle, \quad i \neq j$

- Condition (i) says: Corrupted basis states $E_{l}\left|\psi_{j}\right\rangle, E_{k}\left|\psi_{i}\right\rangle$ are orthogonal, and hence distinguishable from each other.
- Condition (ii) says: Measurements made to determine the error will not give any information about the codeword itself (and thereby possibly decohere it).
- Conditions (i) \& (ii) together say: The projection of the operator $E_{k}^{\dagger} E_{l}$ onto the code space is a multiple of the identity: $\left\langle\psi_{i}\right| E_{k}^{\dagger} E_{l}\left|\psi_{j}\right\rangle=c_{k l} \delta_{i j}$, for arbitrary constants $c_{k l}$.

Example: Single-qubit flip error correction code.

Task: To transmit a qubit $|Q\rangle=a|0\rangle+b|1\rangle$ in the presence of noise that flips single-qubit basis states.
Step 1. Encode $|Q\rangle$ in codeword $|\Phi\rangle=a|000\rangle+b|111\rangle . \leftarrow^{\text {A three-qubit state }}$

- $|\Phi\rangle$ is an element of the 2 -dim code space $\mathcal{C}=\operatorname{span}\{|000\rangle,|111\rangle\}$.
- $\left.\left.\left.\left.\left|\Phi_{\text {corrupt }}\right\rangle=\left.a\left|_\right\rangle_{1}\left|_\right\rangle_{2}\right|_{-}\right\rangle_{3}+\left.b\right|_{-}\right\rangle\left._{1}\right|_{-}\right\rangle\left._{2}\right|_{-}\right\rangle_{3}$ can take one of four forms:

$$
\begin{aligned}
& a|000\rangle+b|111\rangle \\
& a|100\rangle+b|011\rangle \\
& a|010\rangle+b|101\rangle \\
& a|001\rangle+b|110\rangle
\end{aligned}
$$

$\mid \Phi_{\text {corrupt }}$) is an element of the 8-dim three-qubit space

$$
\mathcal{H}=\operatorname{span}\{|000\rangle,|001\rangle,|010\rangle,|100\rangle,|110\rangle,|101\rangle,|011\rangle,|111\rangle\}
$$

Step 2. Represent single-qubit flip errors by 4 three-qubit operators:

$$
\mathcal{E}=\{I \otimes I \otimes I, X \otimes I \otimes I, I \otimes X \otimes I, I \otimes I \otimes X\}
$$

Step 3. Error detection/correction protocol:
(a) Attach two "empty register" qubits $|00\rangle$ to $\left|\Phi_{\text {corrupt }}\right\rangle$:

$$
\left.\left.\left.\left.\left.\left.\left.\left|\Phi_{\text {corrupt }}\right\rangle|00\rangle=\left.\left\{\left.a\right|_{_}\right\rangle_{1}\right|_{-}\right\rangle\left._{2}\right|_{-}\right\rangle_{3}+\left.b\right|_{-}\right\rangle\left._{1}\right|_{-}\right\rangle\left._{2}\right|_{-}\right\rangle_{3}\right\}|0\rangle_{4} 0\right\rangle_{5}
$$

(b) Error detection:

- Perform $X O R$ on qubits 1 and 2 and store result in qubit 4.
- Perform $X O R$ on qubits 1 and 3 and store result in qubit 5.
(b) Error correction: Measure qubits 4 and 5 to determine form of $\left|\Phi_{\text {corrupt }}\right\rangle$ and what three-qubit operator to use to correct it.

Corrupted codeword/register	Error detection	Error correction
$\{a\|000\rangle+b\|111\rangle\}\|00\rangle$	$\{a\|000\rangle+b\|111\rangle\}\|00\rangle$	$I \otimes I \otimes I$
$\{a\|100\rangle+b\|011\rangle\}\|00\rangle$	$\{a\|100\rangle+b\|011\rangle\}\|11\rangle$	$X \otimes I \otimes I$
$\{a\|010\rangle+b\|101\rangle\}\|00\rangle$	$\{a\|010\rangle+b\|101\rangle\}\|10\rangle$	$I \otimes X \otimes I$
$\{a\|001\rangle+b\|110\rangle\}\|00\rangle$	$\{a\|001\rangle+b\|110\rangle\}\|01\rangle$	$I \otimes I \otimes X$

Both detection and correction protocols do not decohere $\left|\Phi_{\text {corrupt }}\right\rangle$!

- Now: Check to see if the KL Condition holds for our single-qubit flip error correction code.
- Does $\mathcal{C}=\operatorname{span}\{|000\rangle,|111\rangle\}$ correct the error set $\mathcal{E}=\{I I I, X I I, I X I, I I X\}$?
- Do the following conditions hold, for any $E_{k}, E_{l} \in \mathcal{E}$:
(i) $\langle 000| E_{k}^{\dagger} E_{l}|111\rangle=0$
(ii) $\langle 000| E_{k}^{\dagger} E_{l}|000\rangle=\langle 111| E_{k}^{\dagger} E_{l}|111\rangle$
- Note: $I^{\dagger}=I, I I=I, X^{\dagger}=X, X X=I$.
- Also: $(A \otimes B \otimes C)(D \otimes E \otimes F)=(A D) \otimes(B E) \otimes(C F)$
- So, e.g., $(X I I)^{\dagger}(I I X)=(X I) \otimes(I I) \otimes(I X)=X I X$
- In general: In all combinations of $E_{k}^{\dagger} E_{l}$, there will be at most two X 's.
- So: Any combination of $E_{k}^{\dagger} E_{l}$ will fail to convert $|111\rangle$ into $|000\rangle$ or vice-versa.
- Thus: In all cases of both (i) and (ii), the inner products will vanish.

2. Topological Quantum Error Correction Codes

- Is there a way to guarantee the KL Condition for a QECC based on the topology of the physical

Yes!

 system we use to encode information in qubits?- Immediate goal: To construct a QECC from a physical system with a non-trivial topology.
- Ultimate goal: To build a "topological" quantum computer.

A topological property of a surface is a property that remains invariant under continuous deformations of the surface.

Example: Consider 2-dim surface of a torus.

- c_{1} and c_{2} are called "non-contractible" closed loops.
- Neither c, c_{1}, nor c_{2} can be continuously deformed into the others.
- The surface of a torus is characterized by these three families of closed loops.
- They describe features of the torus that are invariant under continuous deformations of its surface (i.e., they are topological properties).

Slightly more abstract way to represent a torus: unwind it into a flat surface with periodic boundary conditions.

Periodic boundary conditions:

- Identify top and bottom edges.
-Identify left and right edges.

Let's add some (abstract) physics...

- For each vertex v define a vertex operator A_{v} :

$$
\begin{aligned}
A_{v}= & I_{1} \otimes \cdots \otimes I_{(i-1)} \otimes\left(X_{(i)} \otimes X_{(i+1)} \otimes X_{(i+2)} \otimes X_{(i+3)}\right) \\
& \otimes I_{(i+4)} \otimes \cdots I_{(n)}
\end{aligned}
$$

- For each plaquette p define a plaquette operator B_{p} :

$$
\begin{gathered}
B_{p}=I_{1} \otimes \cdots \otimes I_{(j-1)} \otimes\left(Z_{(j)} \otimes Z_{(j+1)} \otimes Z_{(j+2)} \otimes Z_{(j+3)}\right) \\
\quad \otimes I_{(j+4)} \otimes \cdots I_{(n)}
\end{gathered}
$$

- Put a square $L \times L$ lattice on the torus with L^{2} vertices.
- On each lattice edge, place a qubit. ' qubits except those on the 4 edges around p. On each of these, it acts as the Z operator.

Exercise in linear algebra: Find the space \mathcal{C} of eigenvectors of A_{v} and B_{p} with eigenvalue +1 , for all vertices v and plaquettes p.

$$
\mathcal{C}=\left\{|\xi\rangle \in \mathcal{H}, \text { such that } A_{v}|\xi\rangle=|\xi\rangle, B_{p}|\xi\rangle=|\xi\rangle, \text { for all } v, p\right\}
$$

- Result: \mathcal{C} is a 4-dim (i.e., two-qubit) subspace of \mathcal{H} whose elements are entangled with respect to the decomposition $\mathcal{H}=V_{1} \otimes \cdots \otimes V_{2 L^{2}}$.

Story to come:

- \mathcal{C} will be our code space: use its two entangled qubits to encode our information.
- Given \mathcal{C}, we now need to identify error operators. These will be "local" operators that act on codewords in \mathcal{C} and transform them out of \mathcal{C}.
- The only operators that transform codewords to other codewords, and that are not the identity, are "non-local" in the sense of being associated with the non-contractible closed loops c_{1}, c_{2} on the torus.

Aside: Find the space \mathcal{C} of eigenvectors of A_{v} and B_{p} with eigenvalue +1 , for all vertices v and plaquettes p.

$$
\mathcal{C}=\left\{|\xi\rangle \in \mathcal{H}: A_{v}|\xi\rangle=|\xi\rangle, B_{p}|\xi\rangle=|\xi\rangle, \forall v, p\right\}
$$

Constraints:

(a) $B_{p}|\xi\rangle=|\xi\rangle$ requires that there must be an even number of $|1\rangle$ qubits per plaquette, since $Z|1\rangle=-|1\rangle$.
(b) $A_{v}|\xi\rangle=|\xi\rangle$ requires that $|\xi\rangle$ must be a superposition of an element of \mathcal{H} and its single-qubit-flipped counterpart.

Claim: A vector $|\xi\rangle$ that satisfies (a) and (b) is given by:

$$
|\xi\rangle=\prod_{i=1}^{L^{2}} 2^{-1 / 2}\left(I+A_{v_{i}}\right)|0\rangle_{1} \cdots|0\rangle_{2 L^{2}} \longleftarrow \text { entangled state! }
$$

Proof: Let $j=1, \ldots, L^{2}$. Then

$$
\begin{aligned}
B_{p_{j}}|\xi\rangle & =2^{-L^{2} / 2} B_{p_{j}}\left(I+A_{v_{1}}\right) \cdots\left(I+A_{v_{L^{2}}}\right)|0 \ldots 0\rangle & & \\
& =2^{-L^{2} / 2}\left(I+A_{v_{1}}\right) \cdots\left(I+A_{\left.v_{L_{l}}\right)} B_{p_{j}}|0 \ldots 0\rangle\right. & & B_{p_{j}} \text { commutes with }\left(I+A_{v_{i}}\right) \text { for all } i, j \\
& =2^{-L^{2} / 2}\left(I+A_{v_{1}}\right) \cdots\left(I+A_{v_{L_{l}}}\right)|0 \ldots 0\rangle & & B_{p_{j}}|0 \ldots 0\rangle=|0 \ldots 0\rangle, \text { for all } j \\
& =|\xi\rangle & &
\end{aligned}
$$

Aside: Find the space \mathcal{C} of eigenvectors of A_{v} and B_{p} with eigenvalue +1 , for all vertices v and plaquettes p.

$$
\mathcal{C}=\left\{|\xi\rangle \in \mathcal{H}: A_{\nu}|\xi\rangle=|\xi\rangle, B_{p}|\xi\rangle=|\xi\rangle, \forall v, p\right\}
$$

Constraints:

(a) $B_{p}|\xi\rangle=|\xi\rangle$ requires that there must be an even number of $|1\rangle$ qubits per plaquette, since $Z|1\rangle=-|1\rangle$.
(b) $A_{v}|\xi\rangle=|\xi\rangle$ requires that $|\xi\rangle$ must be a superposition of an element of \mathcal{H} and its single-qubit-flipped counterpart.

Claim: A vector $|\xi\rangle$ that satisfies (a) and (b) is given by:

$$
|\xi\rangle=\prod_{i=1}^{L^{2}} 2^{-1 / 2}\left(I+A_{v_{i}}\right)|0\rangle_{1} \cdots|0\rangle_{2 L^{2}} \longleftarrow \text { entangled state! }
$$

Proof: Let $j=1, \ldots, L^{2}$. Then

$$
\begin{aligned}
A_{v_{j}}|\xi\rangle & =2^{-L^{2} / 2} A_{v_{j}}\left(I+A_{v_{1}}\right) \cdots\left(I+A_{v_{L^{2}}}\right)|0 \ldots 0\rangle & \\
& =2^{-L^{2} / 2}\left(I+A_{v_{1}}\right) \cdots A_{v_{j}}\left(I+A_{v_{j}}\right) \cdots\left(I+A_{v_{L^{2}}}\right)|0 \ldots 0\rangle & A_{v_{j}} \text { commutes with }\left(I+A_{v_{i}}\right) \\
& =2^{-L^{2} / 2}\left(I+A_{v_{1}}\right) \cdots\left(A_{v_{j}}+A_{v_{j}} A_{v_{j}}\right) \cdots\left(I+A_{v_{L}}\right)|0 \ldots 0\rangle & \\
& =2^{-L^{2} / 2}\left(I+A_{v_{1}}\right) \cdots\left(I+A_{v_{j}}\right) \cdots\left(I+A_{v_{L^{2}}}\right)|0 \ldots 0\rangle & A_{v_{j}} A_{v_{j}}=I \\
& =|\xi\rangle &
\end{aligned}
$$

Example: Let $L=2$.

- p_{1} - $v_{2}{ }^{2}$	8 qubits (so \mathcal{H} has $2^{8}=256$ dimensions!)
(3) p_{1} (4) p_{2}	, 4 plaquettes: $p_{1}=\{1,3,4,5\} \quad p_{2}=\{2,3,4,6\}$
(5) v_{4} (6)	$p_{3}=\{1,5,7,8\} \quad p_{4}=\{2,6,7,8\}$
	4 vertices: $\quad v_{1}=\{1,2,3,7\} \quad v_{2}=\{1,2,4,8\}$
	$v_{3}=\{3,5,6,7\} \quad v_{4}=\{4,5,6,8\}$

$$
\begin{aligned}
|\xi\rangle & =\prod_{i=1}^{4} 2^{-1 / 2}\left(I+A_{v_{i}}\right)|00000000\rangle \\
& =1 / 4\left(I+A_{v_{1}}\right)\left(I+A_{v_{2}}\right)\left(I+A_{v_{3}}\right)\left(I+A_{v_{4}}\right)|00000000\rangle \\
& =1 / 4\left(I+A_{v_{1}}\right)\left(I+A_{v_{2}}\right)\left(I+A_{v_{3}}\right)\{|00000000\rangle+|00011101\rangle\} \\
& =1 / 4\left(I+A_{v_{1}}\right)\left(I+A_{v_{2}}\right)\{|00000000\rangle+|00011101\rangle+|00101110\rangle+|00110011\rangle\}
\end{aligned}
$$

$$
=1 / 4\left(I+A_{v_{1}}\right)\{|00000000\rangle+|00011101\rangle+|00101110\rangle+|00110011\rangle+|11010001\rangle
$$

$$
+|11001100\rangle+|11111111\rangle+|11100010\rangle\}
$$

$$
=1 / 4\{|00000000\rangle+|00011101\rangle+|00101110\rangle+|00110011\rangle+|11010001\rangle+|11001100\rangle
$$

$$
+|11111111\rangle+|11100010\rangle+|11100010\rangle+|111111111\rangle+|11001100\rangle+|11010001\rangle
$$

$$
+|00110011\rangle+|00101110\rangle+|00011101\rangle+|00000000\rangle\}
$$

$=1 / 2\{|00000000\rangle+|00011101\rangle+|00101110\rangle+|00110011\rangle \longleftarrow$ entangled state $!$

$$
+|11010001\rangle+|11001100\rangle+|11111111\rangle+|11100010\rangle\}
$$

Three types of operators that act on \mathcal{C}

First type: "Stabilizer" operators.

- Composing adjacent plaquette operators $B_{p_{1}}, B_{p_{2}}$ to form $B_{p_{1}} B_{p_{2}}$ results in a closed loop of Z operators:

- $B_{p_{1}}$ and $B_{p_{2}}$ share an edge.
- $B_{p_{1}} B_{p_{2}}$ includes the square of the Z operator of the shared edge, and $Z^{2}=I$.
- So: The Z 's that appear in $B_{p_{1}} B_{p_{2}}$ will act on the qubits that form the boundary of the two plaquettes!
- The same holds for any number of adjacent plaquette operators.
- The same holds for vertex operators A_{v}.
- Note: These closed loops are of type c on the torus.

Type c closed loop operators are called "stabilizer" operators:

- They act like the identity on \mathcal{C} (since they are compositions of A_{v} and B_{p} operators).
- They are "local" (in the sense that they are associated with contractible closed loops).

Three types of operators that act on \mathcal{C}

Second type: "Encoded logical" operators.

- There are two other types of closed loops on a torus: non-contractible closed loops c_{1} and c_{2}.

- Let \bar{Z}_{1} and \bar{Z}_{2} refer to the two types of products of Z operators along closed loops of type c_{1} and c_{2}.
- Let \bar{X}_{1} and \bar{X}_{2} refer to the two types of products of X operators along closed loops of type c_{1} and c_{2}.

Types c_{1} and c_{2} closed loop operators are called "encoded logical" operators:

- They act on codewords in \mathcal{C} and transform them into other codewords (they are not the identity on \mathcal{C}).
- They are not "local" operators (in the sense that they are associated with noncontractible closed loops).

Claim 1. Any operator D that maps \mathcal{C} to \mathcal{C} must commute with all A_{v} and B_{p} operators.

```
Proof: Recall \mathcal{C}={|\phi\rangle:\mathcal{O}|\phi\rangle=|\phi\rangle, for \mathcal{O}=\mp@subsup{A}{v}{}\mathrm{ or }\mp@subsup{B}{p}{}}.
```

- Let D be an operator such that $D|\psi\rangle \in \mathcal{C}$, for any $|\psi\rangle \in \mathcal{C}$.
- Suppose $D \mathcal{O}=-\mathcal{O} D(D$ anticommutes with $\mathcal{O})$.
- Then for any $|\psi\rangle \in \mathcal{C}, D|\psi\rangle=D \mathcal{O}|\psi\rangle=-\mathcal{O} D|\psi\rangle$.
- So: $\mathcal{O}(D|\psi\rangle)=-(D|\psi\rangle) \neq D|\psi\rangle$.
- So: $D|\psi\rangle \notin \mathcal{C}$ (contradiction!)
- Hence: D must commute with \mathcal{O}.

Claim 2. Any operator formed from an open path of X 's or Z 's will anticommute with some A_{v} or B_{p}.

- To avoid "hanging" Z's at endpoints, form an operator from a closed loop of Z's (or X 's). (Closed loop operators commute with all B_{p} 's and A_{v} 's.)
- But: A type-c closed loop operator is a stabilizer operator that acts like the identity on \mathcal{C}.
- Consider an operator formed from a product of I's on all qubits except for an open path of Z 's.
- This operator commutes with all B_{p} 's (since Z commutes with itself).
- It commutes with all A_{v} 's, except for the two that contain the endpoint Z 's.
- It anticommutes with these two A_{v} 's (since Z anticommutes with X).

Three types of operators that act on \mathcal{C}

Third type: Error operators.

- By definition, error operators act on codewords and corrupt them (transform them into states not in \mathcal{C}).

- Error operators can't be associated with products of Z 's or X's on closed loops: There are only three types, and each type transforms codewords to codewords.
- What about "open path" products of Z's or X's?

Claim: Open path products of Z 's or X^{\prime} s transform codewords in \mathcal{C} out of \mathcal{C}.
§ Proof: We've just seen that open path products of Z 's or X 's anticommute with some A_{v} or B_{p}, and hence transform codewords out of \mathcal{C}.

- "Open path" operators are "local" (in the sense that they are associated with contractible line segments).

Summary: Three types of operators that act on \mathcal{C}

1. Stabilizer operators (local).

$$
\begin{aligned}
& S^{Z}(c)=\bigotimes_{j \in c} Z_{j} \\
& S^{X}\left(c^{\prime}\right)=\otimes_{j \in c^{\prime}} X_{j}
\end{aligned}
$$

2. Encoded logical operators (non-local).

$$
\begin{array}{ll}
\bar{Z}_{1}=\otimes_{j \in \gamma_{1}} Z_{j} & \bar{Z}_{2}=\otimes_{j \in \gamma_{2}} Z_{j} \\
\bar{X}_{1}=\bigotimes_{j \in \gamma_{1}^{\prime}} X_{j} & \bar{X}_{2}=\otimes_{j \in \gamma_{2}^{\prime}} X_{j}
\end{array}
$$

$c, c^{\prime}=$ contractible closed loops
$\gamma_{1}, \gamma_{1}^{\prime}=$ non-contractible closed loops of type c_{1}
$\gamma_{2}, \gamma_{2}^{\prime}=$ non-contractible closed loops of type c_{2}
3. Error operators (local).

$$
\begin{aligned}
& S^{Z}(t)=\bigotimes_{j \in t} Z_{j} \\
& S^{X}\left(t^{\prime}\right)=\bigotimes_{j \in t^{\prime}} X_{j}
\end{aligned}
$$

$t, t^{\prime}=$ contractible open paths

Now: Check to see if the KL Condition holds for the toric code.

- Does \mathcal{C} correct the error set $\mathcal{E}=\left\{S^{Z}(t), S^{X}\left(t^{\prime}\right)\right.$: for all $\left.t, t^{\prime}\right\}$?
- Is it the case that $\left\langle\psi_{i}\right| E_{k}^{\dagger} E_{l}\left|\psi_{j}\right\rangle=c_{k l} \delta_{i j}$ for any $E_{k}, E_{l} \in \mathcal{E}$, and $\psi_{i} \psi_{j} \in \mathcal{C}$?

Yes!

- For any open-path operator E_{l} between two endpoints...

Now: Check to see if the KL Condition holds for the toric code.

- Does \mathcal{C} correct the error set $\mathcal{E}=\left\{S^{Z}(t), S^{X}\left(t^{\prime}\right)\right.$: for all $\left.t, t^{\prime}\right\}$?
- Is it the case that $\left\langle\psi_{i}\right| E_{k}^{\dagger} E_{l}\left|\psi_{j}\right\rangle=c_{k l} \delta_{i j}$ for any $E_{k}, E_{l} \in \mathcal{E}$, and $\psi_{i} \psi_{j} \in \mathcal{C}$?

Yes!

- For any open-path operator E_{l} between two endpoints...
- ... there is always another E_{k} with the same endpoints such that $E_{k}^{\dagger} E_{l}$ is a "type- c " closed loop operator; i.e., a stabilizer operator.

Now: Check to see if the KL Condition holds for the toric code.

- Does \mathcal{C} correct the error set $\mathcal{E}=\left\{S^{Z}(t), S^{X}\left(t^{\prime}\right)\right.$: for all $\left.t, t^{\prime}\right\}$?
- Is it the case that $\left\langle\psi_{i}\right| E_{k}^{\dagger} E_{l}\left|\psi_{j}\right\rangle=c_{k l} \delta_{i j}$ for any $E_{k}, E_{l} \in \mathcal{E}$, and $\psi_{i} \psi_{j} \in \mathcal{C}$?

Yes!

- For any open-path operator E_{l} between two endpoints...
- ... there is always another E_{k} with the same endpoints such that $E_{k}^{\dagger} E_{l}$ is a "type-c" closed loop operator; i.e., a stabilizer operator.
- And: Stabilizer operators act as the identity on \mathcal{C}.

Upshot: We've encoded information "non-locally" in \mathcal{C} in such a way that local errors can be detected and corrected.

Two senses of "non-locality" in the Toric Code

- Entanglement non-locality: The codewords (elements of \mathcal{C}) are entangled states.
- Entanglement non-locality $=$ Einstein non-locality + Bell non-locality

```
Recall:
    Einstein non-locality occurs when two systems are correlated
    and the correlation cannot be explained by a direct cause that
    travels from one system to the other.
    - Bell non-locality occurs when two systems are correlated and
    the correlation cannot be explained by a common cause
```

- Topological non-locality: The operators that act on codewords are noncontractible loop operators.

Open Question: Under what conditions does entanglement non-locality entail topological non-locality and/or vice-versa?

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $\left|\Psi_{\text {initial }}\right\rangle=S^{Z}(t) S^{X}\left(t^{\prime}\right)|q\rangle$

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $\left|\Psi_{\text {initial }}\right\rangle=S^{Z}(t) S^{X}\left(t^{\prime}\right)|q\rangle$

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $\left|\Psi_{\text {initial }}\right\rangle=S^{Z}(t) S^{X}\left(t^{\prime}\right)|q\rangle$

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $\left|\Psi_{\text {initial }}\right\rangle=S^{Z}(t) S^{X}\left(t^{\prime}\right)|q\rangle$
- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- $\left|\Psi_{\text {final }}\right\rangle=S^{X}\left(c^{\prime}\right) S^{Z}(t) S^{X}\left(t^{\prime}\right)|q\rangle$

$$
\begin{array}{ll}
=-S^{Z}(t) S^{X}\left(c^{\prime}\right) S^{X}\left(t^{\prime}\right)|q\rangle & \\
S^{Z}(t) \text { and } S^{X}\left(c^{\prime}\right) \text { anticommute } \\
=-S^{Z}(t) S^{X}\left(t^{\prime}\right) S^{X}\left(c^{\prime}\right)|q\rangle & \\
=-\left|S_{\text {initial }}\right\rangle & \\
S^{X}\left(c^{\prime}\right) \text { and } S^{X}\left(c^{\prime}\right) \text { acts like the identity on }
\end{array}
$$

- So: Moving an m quasiparticle completely around an e quasiparticle changes the phase of the initial 4-particle state by -1 .

In general: When two particles are exchanged in a multiparticle system, the multiparticle state $|\Psi\rangle$ picks up a phase $|\Psi\rangle \rightarrow e^{i \theta}|\Psi\rangle$.

- Taking one particle around another is equivalent to two exchanges; so $|\Psi\rangle \rightarrow e^{2 i \theta}|\Psi\rangle$.
- So: Taking an m quasiparticle around an e quasiparticle produces the phase $e^{2 i \theta}=-1$, or $\theta=\pi / 2$.
- So: One exchange of an m quasiparticle and an e quasiparticle produces the phase $|\Psi\rangle \rightarrow e^{i \pi / 2}|\Psi\rangle$.

> | Bosons: | Particle exchange phase $\theta=0$. |
| :--- | :--- |
| Fermions: | Particle exchange phase $\theta=\pi$. |
| Anyons: | Particle exchange phase $\theta \in(0, \pi)$. |

Upshot: m and e quasiparticles are anyons!
(They obey "fractional statistics".)

Physical significance: There are physical systems that exhibit characteristics of the toric code!

- Fractional quantum Hall system:
- 2-dim conductor in external magnetic field B.
- At low temps, longitudinal resistance vanishes, and transverse (Hall) resistance becomes quantized.
- Prediction: Low-energy anyonic excitations.

Open Question: Can we build a topological quantum

