

1. Quantum Error Correction Codes (QECCs)

- Goal: To encode information in qubits in such a way that errors due to "noise" can be detected and corrected.
 - But: *Typical quantum algorithms encode information in entangled qubits.*
 - And: *Attempts to detect and correct errors due to noise run the risk of decohering entangled qubits, thus destroying the information.*

Task: To detect and correct errors *without* decohering the relevant entangled qubits.

Set-Up: Suppose information is encoded in a qubit $|Q\rangle = a|0\rangle + b|1\rangle$.

Step 1. Encode $|Q\rangle$ in a **codeword**.

- Do this by performing appropriate transformations on the single-qubit basis states $|0\rangle, |1\rangle$. *The type of transformations depends on the type of errors we expect to occur.*
- The new basis states form a space called the **code space** \mathcal{C} .
- Complete the set of basis states to form a larger space called the **coding space** \mathcal{H} . *\mathcal{C} is a subspace of \mathcal{H}*

Example: We might transform the single-qubit basis states into three-qubit basis states:

$$|0\rangle \rightarrow |000\rangle$$

$$|1\rangle \rightarrow |111\rangle$$

- The **codeword** is then $a|000\rangle + b|111\rangle$.
- The **code space** \mathcal{C} is the space spanned by $\{|000\rangle, |111\rangle\}$, which is a 2-dim subspace of the larger 8-dim three-qubit **coding space** space \mathcal{H} spanned by $\{|000\rangle, |001\rangle, |010\rangle, |100\rangle, |110\rangle, |101\rangle, |011\rangle, |111\rangle\}$.

Step 2. Represent **errors** by multi-qubit operators constructed from the single-qubit operators I, X, Y, Z .

- Errors "corrupt" the basis states of \mathcal{C} , and hence the codeword, projecting it out of \mathcal{C} .

Example: We might transform the single-qubit basis states into three-qubit basis states:

$$|0\rangle \rightarrow |000\rangle$$

$$|1\rangle \rightarrow |111\rangle$$

- The **codeword** is then $a|000\rangle + b|111\rangle$.
- The **code space** \mathcal{C} is the space spanned by $\{|000\rangle, |111\rangle\}$, which is a 2-dim subspace of the larger 8-dim three-qubit **coding space** space \mathcal{H} spanned by $\{|000\rangle, |001\rangle, |010\rangle, |100\rangle, |110\rangle, |101\rangle, |011\rangle, |111\rangle\}$.
- An **error** might be represented by the operator $X \otimes I \otimes I$.
- This would produce a corrupted codeword $a|100\rangle + b|011\rangle$, which is an element of \mathcal{H} but not of \mathcal{C} .

Step 3. Devise an appropriate operation that acts on a corrupted codeword in \mathcal{H} and projects it back into \mathcal{C} (thereby "correcting" it).

Necessary and sufficient condition for error-correction

- Let $\mathcal{C} = \text{span}\{|\psi_1\rangle, \dots, |\psi_p\rangle\}$, for some number p of basis states.
Let $\mathcal{E} = \{E_1, \dots, E_q\}$ be a set of q error operators.

Knill-Laflamme (KL) Condition: A code space $\mathcal{C} = \text{span}\{|\psi_1\rangle, \dots, |\psi_p\rangle\}$ corrects the error set $\mathcal{E} = \{E_1, \dots, E_q\}$ if and only if

(i) $\langle \psi_i | E_k^\dagger E_l | \psi_j \rangle = 0$ \leftarrow Corrupted basis states $E_l |\psi_j\rangle, E_k |\psi_i\rangle$ are orthogonal, and hence distinguishable from each other

(ii) $\langle \psi_i | E_k^\dagger E_l | \psi_i \rangle = \langle \psi_j | E_k^\dagger E_l | \psi_j \rangle, \quad i \neq j$ \leftarrow Measurements made to determine the error will not give any information about the codeword (and thereby possibly decohere it).

- Constraints (i) & (ii) together entail:

$$\langle \psi_i | E_k^\dagger E_l | \psi_j \rangle = c_{kl} \delta_{ij}$$

\leftarrow The projection of the operator $E_k^\dagger E_l$ onto the code space is a multiple of the identity

where c_{kl} are arbitrary constants and δ_{ij} is the identity

Intuition: Errors can be corrected if we can reverse their damage;
i.e., if for any error E_l , there is a reverse error E_k^\dagger .

Example: Single-qubit flip error correction code.

Task: To transmit a qubit $|Q\rangle = a|0\rangle + b|1\rangle$ in the presence of noise that flips single-qubit basis states.

Step 1. Encode $|Q\rangle$ in codeword $|\Phi\rangle = a|000\rangle + b|111\rangle$. Encoding one qubit in a three-qubit state

- $|\Phi\rangle$ is an element of the 2-dim code space $\mathcal{C} = \text{span}\{|000\rangle, |111\rangle\}$.
- $|\Phi_{\text{corrupt}}\rangle = a|__\rangle_1|__\rangle_2|__\rangle_3 + b|__\rangle_1|__\rangle_2|__\rangle_3$ can take one of four forms:

$$\begin{aligned} & a|000\rangle + b|111\rangle \\ & a|100\rangle + b|011\rangle \\ & a|010\rangle + b|101\rangle \\ & a|001\rangle + b|110\rangle \end{aligned}$$

$|\Phi_{\text{corrupt}}\rangle$ is an element of the 8-dim three-qubit space
 $\mathcal{H} = \text{span}\{|000\rangle, |001\rangle, |010\rangle, |100\rangle, |110\rangle, |101\rangle, |011\rangle, |111\rangle\}$

Step 2. Represent single-qubit flip errors by 4 three-qubit operators:

$$\mathcal{E} = \{I \otimes I \otimes I, X \otimes I \otimes I, I \otimes X \otimes I, I \otimes I \otimes X\}$$

does nothing

flips 1st qubit

flips 2nd qubit

flips 3rd qubit

Step 3. Error detection/correction protocol:

(a) Attach two "empty register" qubits $|00\rangle$ to $|\Phi_{corrupt}\rangle$:

$$|\Phi_{corrupt}\rangle|00\rangle = \{a|0\rangle_1|0\rangle_2|0\rangle_3 + b|0\rangle_1|0\rangle_2|1\rangle_3\}|0\rangle_4|0\rangle_5$$

(b) Error detection:

- Perform XOR on qubits 1 and 2 and store result in qubit 4.
- Perform XOR on qubits 1 and 3 and store result in qubit 5.

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

(b) Error correction: Measure qubits 4 and 5 to determine form of $|\Phi_{corrupt}\rangle$ and what three-qubit operator to use to correct it.

<u>Corrupted codeword/register</u>	<u>Error detection</u>	<u>Error correction</u>
$\{a 000\rangle + b 111\rangle\} 00\rangle$	$\{a 000\rangle + b 111\rangle\} 00\rangle$	$I \otimes I \otimes I$
$\{a 100\rangle + b 011\rangle\} 00\rangle$	$\{a 100\rangle + b 011\rangle\} 11\rangle$	$X \otimes I \otimes I$
$\{a 010\rangle + b 101\rangle\} 00\rangle$	$\{a 010\rangle + b 101\rangle\} 10\rangle$	$I \otimes X \otimes I$
$\{a 001\rangle + b 110\rangle\} 00\rangle$	$\{a 001\rangle + b 110\rangle\} 01\rangle$	$I \otimes I \otimes X$

Both detection and correction protocols do not decohere $|\Phi_{corrupt}\rangle$!

- Now: Check to see if the KL Condition holds for our single-qubit flip error correction code:

Does $\mathcal{C} = \text{span}\{|000\rangle, |111\rangle\}$ correct the error set $\mathcal{E} = \{III, XII, IXI, IIX\}$?

- Do the following constraints hold, for any $E_k, E_l \in \mathcal{E}$:
 - (i) $\langle 000 | E_k^\dagger E_l | 111 \rangle = 0$
 - (ii) $\langle 000 | E_k^\dagger E_l | 000 \rangle = \langle 111 | E_k^\dagger E_l | 111 \rangle$
- Note: $I^\dagger = I$, $II = I$, $X^\dagger = X$, $XX = I$.
- Also: $(A \otimes B \otimes C)(D \otimes E \otimes F) = (AD) \otimes (BE) \otimes (CF)$
 - So, e.g., $(XII)^\dagger(IIX) = (XI) \otimes (II) \otimes (IX) = XIX$
- In general: In all combinations of $E_k^\dagger E_l$, there will be at most two X 's.
- So: Any combination of $E_k^\dagger E_l$ will fail to convert $|111\rangle$ into $|000\rangle$ or vice-versa.
- Thus: In all cases of both (i) and (ii), the inner products will vanish.

2. Topological Quantum Error Correction Codes

- Is there a way to guarantee the KL Condition for a QECC based on the *topology* of the physical system we use to encode information in qubits?
- Immediate goal: To construct a QECC from a physical system with a non-trivial topology.
- Ultimate goal: To build a "topological" quantum computer.

Yes!

A *topological property* of a surface is a property that remains invariant under continuous deformations of the surface.

Example: Consider 2-dim surface of a torus.

Three types of closed paths:

- Loops c which can be continuously deformed into a point.
- Loops c_1 which cannot be continuously deformed into a point.
- Loops c_2 which cannot be continuously deformed into a point.

- c_1 and c_2 are called "non-contractible" loops.
 - *Neither c , c_1 , nor c_2 can be continuously deformed into the others.*
- The surface of a torus is characterized by these three families of loops.
 - *They describe features of the torus that are invariant under continuous deformations of its surface (i.e., they are topological properties).*

Slightly more abstract way to represent a torus: unwind it into a flat surface with periodic boundary conditions.

Periodic boundary conditions:

- Identify top and bottom edges.
- Identify left and right edges.

Let's add some (abstract) physics...

The Toric Code

- Put an $L \times L$ lattice on the torus with L^2 vertices.
- On each lattice edge, place a qubit.

$2L^2$ -qubit Hilbert space $\mathcal{H} = V_1 \otimes \cdots \otimes V_{2L^2}$, where each V is a single-qubit Hilbert space.

- For each vertex v define a vertex operator A_v :

$$A_v = I_1 \otimes \cdots \otimes I_{(i-1)} \otimes (X_{(i)} \otimes X_{(i+1)} \otimes X_{(i+2)} \otimes X_{(i+3)}) \otimes I_{(i+4)} \otimes \cdots \otimes I_{(2L^2)}$$

Acts as I on all qubits except those on edges leading to v , on which it acts as X .

- For each plaquette p define a plaquette operator B_p :

$$B_p = I_1 \otimes \cdots \otimes I_{(j-1)} \otimes (Z_{(j)} \otimes Z_{(j+1)} \otimes Z_{(j+2)} \otimes Z_{(j+3)}) \otimes I_{(j+4)} \otimes \cdots \otimes I_{(2L^2)}$$

Acts as I on all qubits except those on edges around p , on which it acts as Z .

Exercise: Find the space \mathcal{C} of eigenvectors of all A_v and B_p operators with eigenvalue +1.

$$\mathcal{C} = \{|\xi\rangle \in \mathcal{H}, \text{ such that } A_v|\xi\rangle = |\xi\rangle, B_p|\xi\rangle = |\xi\rangle, \text{ for all } v, p\}$$

Claim: \mathcal{C} is a 4-dim (i.e., two-qubit) subspace of \mathcal{H} with "topologically distinct" basis states $\{|\xi\rangle_{ee}, |\xi\rangle_{eo}, |\xi\rangle_{oe}, |\xi\rangle_{oo}\}$ that are entangled with respect to the decomposition $\mathcal{H} = V_1 \otimes \cdots \otimes V_{2L^2}$.

Story to come:

- \mathcal{C} will be our **code space**: use its two entangled qubits to encode information in a topologically non-local way.
- Operators that act like the identity on \mathcal{C} will be "local" operators associated with contractible loops.
- Operators that transform codewords to other codewords (that are not the identity) will be "non-local" operators associated with non-contractible loops on the torus. They preserve the non-local aspects of \mathcal{C} .
- **Error** operators will be "local" operators associated with contractible open paths.

Exercise: Find the space \mathcal{C} of eigenvectors of all A_v and B_p operators with eigenvalue +1.

$$\mathcal{C} = \{|\xi\rangle \in \mathcal{H}, \text{ such that } A_v|\xi\rangle = |\xi\rangle, B_p|\xi\rangle = |\xi\rangle, \text{ for all } v, p\}$$

Constraints:

(a) $B_p|\xi\rangle = |\xi\rangle$ requires that any $|\xi\rangle$ must either be the $|0\rangle$ $2L^2$ -qubit state, or have an *even number* of $|1\rangle$ qubits per plaquette, since $Z|1\rangle = -|1\rangle$.

Claim: Constraint (a) entails $|\xi\rangle$ is either the $|0\rangle$ $2L^2$ -qubit state or a *loop state*.

Def: A *loop state* is a $2L^2$ -qubit state that has $|1\rangle$'s along one or more closed loops that do not intersect vertices, and $|0\rangle$'s everywhere else.

← A loop state consisting of three closed loops of $|1\rangle$'s. (The "empty" qubits are $|0\rangle$'s.)

Exercise: Find the space \mathcal{C} of eigenvectors of all A_v and B_p operators with eigenvalue +1.

$$\mathcal{C} = \{|\xi\rangle \in \mathcal{H}, \text{ such that } A_v|\xi\rangle = |\xi\rangle, B_p|\xi\rangle = |\xi\rangle, \text{ for all } v, p\}$$

Constraints:

(b) $A_v|\xi\rangle = |\xi\rangle$ requires that any $|\xi\rangle$ must be a superposition of a vector in \mathcal{H} and its A_v -flipped counterpart, since X flips qubits.

Example:

- *This loop state is not a +1 eigenvector of any A_v , since they flip $|0\rangle$'s to $|1\rangle$'s and $|1\rangle$'s to $|0\rangle$'s.*

Exercise: Find the space \mathcal{C} of eigenvectors of all A_v and B_p operators with eigenvalue +1.

$$\mathcal{C} = \{|\xi\rangle \in \mathcal{H}, \text{ such that } A_v|\xi\rangle = |\xi\rangle, B_p|\xi\rangle = |\xi\rangle, \text{ for all } v, p\}$$

Constraints:

(b) $A_v|\xi\rangle = |\xi\rangle$ requires that any $|\xi\rangle$ must be a superposition of a vector in \mathcal{H} and its A_v -flipped counterpart, since X flips qubits.

Example:

- *But: The sum of the loop state and any of its A_v -flipped counterparts is a +1 eigenvector of that vertex operator!*
- $A_{v_a}\{|loop\rangle + A_{v_a}|loop\rangle\} = \{A_{v_a}|loop\rangle + |loop\rangle\}$
- *Also note: Any A_v that acts on all $|0\rangle$'s creates a loop. And any A_v that "touches" a loop deforms it into another loop.*
- *So: If $|\xi\rangle$ is a loop state, then so is $A_v|\xi\rangle$ for all v .*

Exercise: Find the space \mathcal{C} of eigenvectors of all A_v and B_p operators with eigenvalue +1.

$$\mathcal{C} = \{|\xi\rangle \in \mathcal{H}, \text{ such that } A_v|\xi\rangle = |\xi\rangle, B_p|\xi\rangle = |\xi\rangle, \text{ for all } v, p\}$$

Constraints:

- (a) $B_p|\xi\rangle = |\xi\rangle$ requires that any $|\xi\rangle$ must either be the $|0\rangle$ 2L²-qubit state or a loop state.
- (b) $A_v|\xi\rangle = |\xi\rangle$ requires that any $|\xi\rangle$ must be a superposition of a vector in \mathcal{H} and its A_v -flipped counterpart.

Claim: A vector that satisfies (a) and (b) is given by:

$$|\xi\rangle_{ee} = \prod_{i=1}^{L^2} 2^{-1/2} (I + A_{v_i}) |0\rangle_1 \cdots |0\rangle_{2L^2}$$

- Start with $|0\rangle$ 2L²-qubit state.
- Then add all other states that can be obtained via A_v -flips, and their unflipped counterparts.

Proof: Let $j = 1, \dots, L^2$. Then

$$\begin{aligned}
 B_{p_j}|\xi\rangle_{ee} &= 2^{-L^2/2} B_{p_j} (I + A_{v_1}) \cdots (I + A_{v_{L^2}}) |0 \cdots 0\rangle \\
 &= 2^{-L^2/2} (I + A_{v_1}) \cdots (I + A_{v_{L^2}}) B_{p_j} |0 \cdots 0\rangle \quad B_{p_j} \text{ commutes with } (I + A_{v_i}) \text{ for all } i, j \\
 &= 2^{-L^2/2} (I + A_{v_1}) \cdots (I + A_{v_{L^2}}) |0 \cdots 0\rangle \quad B_{p_j} |0 \cdots 0\rangle = |0 \cdots 0\rangle, \text{ for all } j \\
 &= |\xi\rangle_{ee}
 \end{aligned}$$

Exercise: Find the space \mathcal{C} of eigenvectors of all A_v and B_p operators with eigenvalue +1.

$$\mathcal{C} = \{|\xi\rangle \in \mathcal{H}, \text{ such that } A_v|\xi\rangle = |\xi\rangle, B_p|\xi\rangle = |\xi\rangle, \text{ for all } v, p\}$$

Constraints:

- (a) $B_p|\xi\rangle = |\xi\rangle$ requires that any $|\xi\rangle$ must either be the $|0\rangle$ $2L^2$ -qubit state or a loop state.
- (b) $A_v|\xi\rangle = |\xi\rangle$ requires that any $|\xi\rangle$ must be a superposition of a vector in \mathcal{H} and its A_v -flipped counterpart.

Claim: A vector that satisfies (a) and (b) is given by:

$$|\xi\rangle_{ee} = \prod_{i=1}^{L^2} 2^{-1/2} (I + A_{v_i}) |0\rangle_1 \cdots |0\rangle_{2L^2}$$

- Start with $|0\rangle$ $2L^2$ -qubit state.
- Then add all other states that can be obtained via A_v -flips, and their unflipped counterparts.

Proof: Let $j = 1, \dots, L^2$. Then

$$\begin{aligned}
 A_{v_j}|\xi\rangle_{ee} &= 2^{-L^2/2} A_{v_j} (I + A_{v_1}) \cdots (I + A_{v_{L^2}}) |0 \dots 0\rangle \\
 &= 2^{-L^2/2} (I + A_{v_1}) \cdots A_{v_j} (I + A_{v_j}) \cdots (I + A_{v_{L^2}}) |0 \dots 0\rangle \quad A_{v_j} \text{ commutes with } (I + A_{v_i}) \\
 &= 2^{-L^2/2} (I + A_{v_1}) \cdots (A_{v_j} + A_{v_j} A_{v_j}) \cdots (I + A_{v_{L^2}}) |0 \dots 0\rangle \\
 &= 2^{-L^2/2} (I + A_{v_1}) \cdots (I + A_{v_j}) \cdots (I + A_{v_{L^2}}) |0 \dots 0\rangle \quad A_{v_j} A_{v_j} = I \\
 &= |\xi\rangle_{ee}
 \end{aligned}$$

Exercise: Find the space \mathcal{C} of eigenvectors of all A_ν and B_p operators with eigenvalue +1.

$$\mathcal{C} = \{|\xi\rangle \in \mathcal{H}, \text{ such that } A_\nu|\xi\rangle = |\xi\rangle, B_p|\xi\rangle = |\xi\rangle, \text{ for all } \nu, p\}$$

$$|\xi\rangle_{ee} = \prod_{i=1}^{L^2} 2^{-\frac{1}{2}} (I + A_{\nu_i}) |0\rangle_1 \cdots |0\rangle_{2L^2}$$

 - Start with $|0\rangle$ 2L²-qubit state.
 - Then add all other states that can be obtained via A_ν -flips, and their unflipped counterparts.

- Note: The $|0\rangle$ 2L²-qubit state has an even number (zero!) of c_1 and c_2 loops.
- And: The $(I + A_{\nu_i})$ operators do not change the parity of the number of c_1 and c_2 loops (so $|\xi\rangle_{ee}$ also has an even number of c_1 and c_2 loops).
- Which means: There are four *topologically distinct* types of elements of \mathcal{C} :
 - $|\xi\rangle_{ee}$: loop state with even # c_1 loops and even # c_2 loops.
 - $|\xi\rangle_{eo}$: loop state with even # c_1 loops and odd # c_2 loops.
 - $|\xi\rangle_{oe}$: loop state with odd # c_1 loops and even # c_2 loops.
 - $|\xi\rangle_{oo}$: loop state with odd # c_1 loops and odd # c_2 loops.
- So: $\mathcal{C} = \text{span}\{|\xi\rangle_{ee}, |\xi\rangle_{eo}, |\xi\rangle_{oe}, |\xi\rangle_{oo}\}$

 - Topologically distinct bases vectors.
 - Entangled with respect to $\mathcal{H} = V_1 \otimes \cdots \otimes V_{2L^2}$.

Example: $L = 2$ $|\xi\rangle_{ee}$ state.

8 qubits (so \mathcal{H} has $2^8 = 256$ dimensions!)

4 plaquettes: $p_1 = \{1, 3, 4, 5\}$ $p_2 = \{2, 3, 4, 6\}$

$p_3 = \{1, 5, 7, 8\}$ $p_4 = \{2, 6, 7, 8\}$

4 vertices: $v_1 = \{1, 2, 3, 7\}$ $v_2 = \{1, 2, 4, 8\}$

$v_3 = \{3, 5, 6, 7\}$ $v_4 = \{4, 5, 6, 8\}$

$$\begin{aligned}
 |\xi\rangle_{ee} &= \prod_{i=1}^4 2^{-\frac{1}{2}} (I + A_{v_i}) |00000000\rangle \\
 &= \frac{1}{4} (I + A_{v_1})(I + A_{v_2})(I + A_{v_3})(I + A_{v_4}) |00000000\rangle \\
 &= \frac{1}{4} (I + A_{v_1})(I + A_{v_2})(I + A_{v_3}) \{ |00000000\rangle + |00011101\rangle \} \\
 &= \frac{1}{4} (I + A_{v_1})(I + A_{v_2}) \{ |00000000\rangle + |00011101\rangle + |00101110\rangle + |00110011\rangle \} \\
 &= \frac{1}{4} (I + A_{v_1}) \{ |00000000\rangle + |00011101\rangle + |00101110\rangle + |00110011\rangle + |11010001\rangle \\
 &\quad + |11001100\rangle + |11111111\rangle + |11100010\rangle \} \\
 &= \frac{1}{4} \{ |00000000\rangle + |00011101\rangle + |00101110\rangle + |00110011\rangle + |11010001\rangle + |11001100\rangle \\
 &\quad + |11111111\rangle + |11100010\rangle + |11100010\rangle + |11111111\rangle + |11001100\rangle + |11010001\rangle \\
 &\quad + |00110011\rangle + |00101110\rangle + |00011101\rangle + |00000000\rangle \} \\
 &= \frac{1}{2} \{ |00000000\rangle + |00011101\rangle + |00101110\rangle + |00110011\rangle \\
 &\quad + |11010001\rangle + |11001100\rangle + |11111111\rangle + |11100010\rangle \}
 \end{aligned}$$

- entangled state!
- each term has even # of 1's
- each term has an A_{v_i} - flipped counterpart

Three types of operators that act on \mathcal{C}

First type: "Stabilizer" operators.

- Composing adjacent plaquette operators B_{p_1}, B_{p_2} to form $B_{p_1}B_{p_2}$ results in a *loop* of Z operators:

- B_{p_1} and B_{p_2} share an edge.
- $B_{p_1}B_{p_2}$ includes the square of the Z operator of the shared edge, and $Z^2 = I$.
- So: The Z 's that appear in $B_{p_1}B_{p_2}$ will act on the qubits that form the *boundary* of the two plaquettes!
- The same holds for any number of adjacent plaquette operators.
- The same holds for vertex operators A_v .

- Note: These loops are of type *c* on the torus.

Type *c* loop operators are called "stabilizer" operators:

- *They act like the identity on \mathcal{C} (since they are compositions of A_v and B_p operators).*
- *They are "local" (in the sense that they are associated with contractible loops).*

Three types of operators that act on \mathcal{C}

Second type: "Encoded logical" operators.

- There are two other types of loops on a torus: *non-contractible* loops c_1 and c_2 .

- Let \bar{Z}_1 and \bar{Z}_2 refer to the two types of products of Z operators along loops of type c_1 and c_2 .
- Let \bar{X}_1 and \bar{X}_2 refer to the two types of products of X operators along loops of type c_1 and c_2 .

Types c_1 and c_2 loop operators are called "encoded logical" operators:

- *They act on codewords in \mathcal{C} and transform them into other codewords (they are not the identity on \mathcal{C}).*
- *They are not "local" operators (in the sense that they are associated with non-contractible loops).*

Aside: Why do the non-contractible loop operators map vectors in \mathcal{C} to other vectors in \mathcal{C} ?

Claim 1. Any operator D that maps \mathcal{C} to \mathcal{C} must commute with all A_v and B_p operators.

Proof. Recall $\mathcal{C} = \{|\phi\rangle : \mathcal{O}|\phi\rangle = |\phi\rangle, \text{ for } \mathcal{O} = A_v \text{ or } B_p\}$.

- Let D be an operator such that $D|\psi\rangle \in \mathcal{C}$, for any $|\psi\rangle \in \mathcal{C}$.
- Suppose $D\mathcal{O} = -\mathcal{O}D$ (D anticommutes with \mathcal{O}).
 - Then for any $|\psi\rangle \in \mathcal{C}$, $D|\psi\rangle = D\mathcal{O}|\psi\rangle = -\mathcal{O}D|\psi\rangle$.
 - Or: $\mathcal{O}D|\psi\rangle = -D\mathcal{O}|\psi\rangle = -D|\psi\rangle$.
 - So: $\mathcal{O}(D|\psi\rangle) = -(D|\psi\rangle) \neq D|\psi\rangle$.
 - But: \mathcal{O} is the identity on \mathcal{C} !
 - So: $D|\psi\rangle \notin \mathcal{C}$ (contradiction!)
- Hence: D must commute with \mathcal{O} .

Claim 1 (reworded).

$(\text{maps } \mathcal{C} \text{ to } \mathcal{C}) \Rightarrow (\text{commutes with all } A_v, B_p)$

Aside: Why do the non-contractible loop operators map vectors in \mathcal{C} to other vectors in \mathcal{C} ?

Claim 2. Any operator formed from an open path of X 's or Z 's will anticommute with two A_v 's or two B_p 's.

- Consider an operator $S^Z(t)$ which is the identity on all qubits except for an open path t of Z 's.
- $S^Z(t)$ commutes with all B_p 's.
 - *We only need to consider B_p 's with Z 's that overlap the Z 's in $S^Z(t)$.*
 - *Those B_p 's commute with $S^Z(t)$, since Z commutes with itself.*
- $S^Z(t)$ commutes with all A_v 's, except for the two at the endpoints of t .
 - *We only need to consider A_v 's with X 's that overlap the Z 's in $S^Z(t)$.*
 - *Those A_v 's that are not at the endpoints of t commute with $S^Z(t)$, since each one has 2 X 's that overlap 2 Z 's in $S^Z(t)$, and Z anticommutes with X .*
- $S^Z(t)$ anticommutes with the two A_v 's at the endpoints of t .
 - *Each of these A_v 's has 1 X that overlaps 1 Z in $S^Z(t)$, and Z anticommutes with X .*

Claim 2 (reworded).
(open path operator) \Rightarrow
 \neg (commutes with all A_v, B_p)

Aside: Why do the non-contractible loop operators map vectors in \mathcal{C} to other vectors in \mathcal{C} ?

Claim 1 (reworded).

$(\text{maps } \mathcal{C} \text{ to } \mathcal{C}) \Rightarrow (\text{commutes with all } A_v, B_p)$

Claim 2 (reworded).

$(\text{open path operator}) \Rightarrow \neg(\text{commutes with all } A_v, B_p)$

- Claims 1 & 2 entail:

$(\text{maps } \mathcal{C} \text{ to } \mathcal{C}) \Rightarrow \neg(\text{open path operator})$

- So: A code space operator is either an individual A_v or B_p , or a loop operator.
- And: The identity on \mathcal{C} is either an individual A_v or B_p , or a contractible loop operator.
 - Moreover: A non-contractible loop operator cannot be constructed by a product of A_v 's or B_p 's (such a product is the boundary of a set of adjacent plaquettes or vertices).

So: A non-contractible loop operator is a code space operator that is not the identity on \mathcal{C} .

Three types of operators that act on \mathcal{C}

Third type: Error operators.

- By definition, error operators act on codewords and corrupt them (transform them into states not in \mathcal{C}).

- Error operators can't be associated with products of Z 's or X 's on loops: There are only three types, and each type transforms codewords to codewords.
- What about "open path" products of Z 's or X 's?

Claim: Open path products of Z 's or X 's transform codewords in \mathcal{C} out of \mathcal{C} .

Proof: We've just seen that open path products of Z 's or X 's anticommute with two A_v 's or two B_p 's, and hence transform codewords out of \mathcal{C} .

- "Open path" operators are "local" (in the sense that they are associated with *contractible* line segments).

Summary: Three types of operators that act on \mathcal{C}

1. Stabilizer operators (*local*).

$$S^Z(c) = \bigotimes_{j \in c} Z_j$$

$$S^X(c') = \bigotimes_{j \in c'} X_j$$

c, c' = contractible loops

2. Encoded logical operators (*non-local*).

$$\bar{Z}_1 = \bigotimes_{j \in \gamma_1} Z_j \quad \bar{Z}_2 = \bigotimes_{j \in \gamma_2} Z_j$$

$$\bar{X}_1 = \bigotimes_{j \in \gamma'_1} X_j \quad \bar{X}_2 = \bigotimes_{j \in \gamma'_2} X_j$$

γ_1, γ'_1 = non-contractible loops of type c_1

γ_2, γ'_2 = non-contractible loops of type c_2

3. Error operators (*local*).

$$S^Z(t) = \bigotimes_{j \in t} Z_j$$

$$S^X(t') = \bigotimes_{j \in t'} X_j$$

t, t' = contractible open paths

Now: Check to see if the KL Condition holds for the toric code.

- Does \mathcal{C} correct the error set $\mathcal{E} = \{S^Z(t), S^X(t') : \text{for all } t, t'\}$?
 - Is it the case that $\langle \psi_i | E_k^\dagger E_l | \psi_j \rangle = c_{kl} \delta_{ij}$, for any $E_k, E_l \in \mathcal{E}$, and $\psi_i, \psi_j \in \mathcal{C}$?

Yes!

- For any open-path operator E_l between two endpoints...

Now: Check to see if the KL Condition holds for the toric code.

- Does \mathcal{C} correct the error set $\mathcal{E} = \{S^Z(t), S^X(t') : \text{for all } t, t'\}$?
 - Is it the case that $\langle \psi_i | E_k^\dagger E_l | \psi_j \rangle = c_{kl} \delta_{ij}$, for any $E_k, E_l \in \mathcal{E}$, and $\psi_i, \psi_j \in \mathcal{C}$?

Yes!

- For any open-path operator E_l between two endpoints...
- ... there is always another E_k with the same endpoints such that $E_k^\dagger E_l$ is a "type-c" loop operator; i.e., a stabilizer operator.

Now: Check to see if the KL Condition holds for the toric code.

- Does \mathcal{C} correct the error set $\mathcal{E} = \{S^Z(t), S^X(t') : \text{for all } t, t'\}$?
 - Is it the case that $\langle \psi_i | E_k^\dagger E_l | \psi_j \rangle = c_{kl} \delta_{ij}$, for any $E_k, E_l \in \mathcal{E}$, and $\psi_i, \psi_j \in \mathcal{C}$?

Yes!

- For any open-path operator E_l between two endpoints...
- ... there is always another E_k with the same endpoints such that $E_k^\dagger E_l$ is a "type-c" loop operator; *i.e.*, a stabilizer operator.
- And: Stabilizer operators act as the identity on \mathcal{C} .

Upshot: We've encoded information "non-locally" in \mathcal{C} in such a way that local errors can be detected and corrected.

Two senses of "non-locality" in the Toric Code

- Entanglement non-locality: The codewords (elements of \mathcal{C}) are entangled states.

- *Entanglement non-locality = Einstein non-locality + Bell non-locality*

Recall:

- Einstein non-locality occurs when two systems are correlated and the correlation cannot be explained by a direct cause that travels from one system to the other.
- Bell non-locality occurs when two systems are correlated and the correlation cannot be explained by a common cause

- Topological non-locality: The operators that act on codewords are non-contractible loop operators.

Suppose: Topological non-locality occurs when a quantity is not localized to a contractible region of space.

Open Question: Under what conditions does entanglement non-locality entail topological non-locality and/or vice-versa?

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $|\Psi_{initial}\rangle = S^Z(t)S^X(t')|q\rangle$

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $|\Psi_{initial}\rangle = S^Z(t)S^X(t')|q\rangle$

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $|\Psi_{initial}\rangle = S^Z(t)S^X(t')|q\rangle$

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $|\Psi_{initial}\rangle = S^Z(t)S^X(t')|q\rangle$

Let's add some (slightly more concrete) physics...

- Interpret the code space \mathcal{C} as the space of ground-states $|q\rangle$ (states of lowest energy) of a physical system.

- Interpret a Z (or X) error operator as acting on a ground-state to produce a pair of " e " (or " m ") "quasiparticle" excitations at the ends of the open path.
- What happens when we move an m around an e ?
- $|\Psi_{initial}\rangle = S^Z(t)S^X(t')|q\rangle$

- $|\Psi_{final}\rangle = S^X(c')S^Z(t)S^X(t')|q\rangle$
 $= -S^Z(t)S^X(c')S^X(t')|q\rangle$
 $= -S^Z(t)S^X(t')S^X(c')|q\rangle$
 $= -|\Psi_{initial}\rangle$

$S^Z(t)$ and $S^X(c')$ anticommute
 $S^X(c')$ and $S^X(t')$ commute
 $S^X(c')$ acts like the identity on \mathcal{C}

- So: Moving an m quasiparticle completely around an e quasiparticle changes the phase of the initial 4-particle state by -1 .

In general: When two particles are exchanged in a multiparticle system, the multiparticle state $|\Psi\rangle$ picks up a phase $|\Psi\rangle \rightarrow e^{i\theta}|\Psi\rangle$.

- Taking one particle around another is equivalent to two exchanges; so $|\Psi\rangle \rightarrow e^{2i\theta}|\Psi\rangle$.
- So: Taking an m quasiparticle around an e quasiparticle produces the phase $e^{2i\theta} = -1$, or $\theta = \pi/2$.
$$e^{2i\theta} = \cos 2\theta + i \sin 2\theta$$
- So: One exchange of an m quasiparticle and an e quasiparticle produces the phase $|\Psi\rangle \rightarrow e^{i\pi/2}|\Psi\rangle$.

Bosons: Particle exchange phase $\theta = 0$.

Fermions: Particle exchange phase $\theta = \pi$.

Anyons: Particle exchange phase $\theta \in (0, \pi)$.

Upshot: m and e quasiparticles are anyons!

(They obey "fractional statistics".)

Physical significance: There are physical systems that exhibit characteristics of the toric code!

- Fractional quantum Hall system:

- 2-dim conductor in external magnetic field B .
- At low temps, longitudinal resistance vanishes, and transverse (Hall) resistance becomes quantized.
- Prediction: Low-energy anyonic excitations.

1998 Nobel Prize in Physics

Open Question: Can we build a topological quantum computer out of a fractional quantum Hall system?