
07.	QIT,	Part	III.	
1.	Quantum	Error	Correction	Codes	(QECCs)
•	 Goal:	To	encode	information	in	qubits	in	such	a	way	that	errors	due	to	
"noise"	can	be	detected	and	corrected.
-	 But:	Typical	quantum	algorithms	encode	information	in	entangled	qubits.
-	 And:	Attempts	to	detect	and	correct	errors	due	to	noise	run	the	risk	of	decohering	
entangled	qubits,	thus	destroying	the	information.

Task:	To	detect	and	correct	errors	without	
decohering	the	relevant	entangled	qubits.
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1.	QECCs
2.	Topological	QECCs



Set-Up:	Suppose	information	is	encoded	in	a	qubit	|𝑄⟩	=	𝑎|0⟩	+	𝑏|1⟩.

Example:	We	might	transform	the	single-qubit	basis	states	into	three-
qubit	basis	states:
	 |0⟩	→	|000⟩
	 |1⟩	→	|111⟩

Step	1.	Encode	|𝑄⟩	in	a	codeword.

-	 The	codeword	is	then	𝑎|000⟩	+	𝑏|111⟩.
-	 The	code	space	𝒞	is	the	space	spanned	by	{|000⟩,	|111⟩},	which	is	a	
2-dim	subspace	of	the	larger	8-dim	three-qubit	coding	space	space	
ℋ	spanned	by	{|000⟩,	|001⟩,	|010⟩,	|100⟩,	|110⟩,	|101⟩,	|011⟩,	|111⟩}.

•	 The	new	basis	states	form	a	space	called	the	code	space	𝒞.

•	 Do	this	by	performing	appropriate	transformations	
on	the	single-qubit	basis	states	|0⟩,	|1⟩.

The type of transformations 
depends on the type of 
errors we expect to occur.

•	 Complete	the	set	of	basis	states	to	form	a	larger	space	
called	the	coding	space	ℋ.

𝒞 is a subspace of ℋ
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Step	2.	Represent	errors	by	multi-qubit	operators	constructed	from	the	single-
qubit	operators	𝐼,	𝑋,	𝑌,	𝑍.
•	 Errors	"corrupt"	the	basis	states	of	𝒞,	and	hence	the	codeword,	
projecting	it	out	of	𝒞.

Example:	We	might	transform	the	single-qubit	basis	states	into	three-
qubit	basis	states:
	 |0⟩	→	|000⟩
	 |1⟩	→	|111⟩
-	 The	codeword	is	then	𝑎|000⟩	+	𝑏|111⟩.
-	 The	code	space	𝒞	is	the	space	spanned	by	{|000⟩,	|111⟩},	which	is	a	
2-dim	subspace	of	the	larger	8-dim	three-qubit	coding	space	space	
ℋ	spanned	by	{|000⟩,	|001⟩,	|010⟩,	|100⟩,	|110⟩,	|101⟩,	|011⟩,	|111⟩}.

-	 An	error	might	be	represented	by	the	operator	𝑋⊗𝐼⊗𝐼.
-	 This	would	produce	a	corrupted	codeword	𝑎|100⟩	+	𝑏|011⟩,	which	
is	an	element	of	ℋ	but	not	of	𝒞.
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Step	3.	Devise	an	appropriate	operation	that	acts	on	a	corrupted	codeword	in	ℋ	
and	projects	it	back	into	𝒞	(thereby	"correcting"	it).



Necessary	and	sufficient	condition	for	error-correction
•	 Let	𝒞	=	span{|𝜓1⟩,	...,	|𝜓𝑝⟩},	for	some	number	𝑝	of	basis	states.
	 Let	ℰ	=	{𝐸1,	...,	𝐸𝑞}	be	a	set	of	𝑞	error	operators.
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Knill-Laflamme	(KL)	Condition:	A	code	space	𝒞	=	span{|𝜓1⟩,	...,	|𝜓𝑝⟩}	
corrects	the	error	set	ℰ	=	{𝐸1,	...,	𝐸𝑞}	if	and	only	if

(i)	 ⟨𝜓𝑖|𝐸
†
𝑘𝐸𝑙|𝜓𝑗⟩	=	0

(ii)	 ⟨𝜓𝑖|𝐸
†
𝑘𝐸𝑙|𝜓𝑖⟩	=	⟨𝜓𝑗|𝐸

†
𝑘𝐸𝑙|𝜓𝑗⟩,			𝑖	≠	𝑗

Corrupted basis states 𝐸𝑙|𝜓𝑗⟩,	𝐸𝑘|𝜓𝑖⟩ are orthogonal, 
and hence distinguishable from each other

Measurements made to determine the error 
will not give any information about the 
codeword (and thereby possibly decohere it).

•	 Constraints	(i)	&	(ii)	together	entail:

	 	 ⟨𝜓𝑖|𝐸
†
𝑘𝐸𝑙|𝜓𝑗⟩	=	𝑐𝑘𝑙𝛿𝑖𝑗

	 where	𝑐𝑘𝑙	are	arbitrary	constants	and	𝛿𝑖𝑗	is	the	identity

The projection of the operator 𝐸†𝑘𝐸𝑙 onto 
the code space is a multiple of the identity

Intuition: Errors can be corrected if we can reverse their damage; 
i.e., if for any error 𝐸𝑙, there is a reverse error 𝐸†𝑘.



Example:	Single-qubit	flip	error	correction	code.

Task:	To	transmit	a	qubit	|𝑄⟩	=	𝑎|0⟩	+	𝑏|1⟩	in	the	presence	of	noise	that	flips	
single-qubit	basis	states.

•	 |Φ⟩	is	an	element	of	the	2-dim	code	space	𝒞	=	span{|000⟩,	|111⟩}.

|Φcorrupt⟩	is	an	element	of	the	8-dim	three-qubit	space
ℋ	=	span{|000⟩,	|001⟩,	|010⟩,	|100⟩,	|110⟩,	|101⟩,	|011⟩,	|111⟩}

𝑎|000⟩	+	𝑏|111⟩
𝑎|100⟩	+	𝑏|011⟩
𝑎|010⟩	+	𝑏|101⟩
𝑎|001⟩	+	𝑏|110⟩

•	 |Φcorrupt⟩	=	𝑎|__⟩1|__⟩2|__⟩3	+	𝑏|__⟩1|__⟩2|__⟩3	can	take	one	of	four	forms:

Step	2.	Represent	single-qubit	flip	errors	by	4	three-qubit	operators:
	 ℰ	=	{𝐼⊗𝐼⊗𝐼,	𝑋⊗𝐼⊗𝐼,	𝐼⊗𝑋⊗𝐼,	𝐼⊗𝐼⊗𝑋}

does nothing flips 1st qubit flips 2nd qubit flips 3rd qubit
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Step	1.	Encode	|𝑄⟩	in	codeword	|Φ⟩	=	𝑎|000⟩	+	𝑏|111⟩.
Encoding one qubit 
in a three-qubit state



Step	3.	Error	detection/correction	protocol:

(a)	 Attach	two	"empty	register"	qubits	|00⟩	to	|Φcorrupt⟩:

	 		|Φcorrupt⟩|00⟩	=	{𝑎|__⟩1|__⟩2|__⟩3	+	𝑏|__⟩1|__⟩2|__⟩3} |0⟩40⟩5

Corrupted	codeword/register
{𝑎|000⟩	+	𝑏|111⟩}|00⟩
{𝑎|100⟩	+	𝑏|011⟩}|00⟩
{𝑎|010⟩	+	𝑏|101⟩}|00⟩
{𝑎|001⟩	+	𝑏|110⟩}|00⟩

(b)	 Error	correction:	Measure	qubits	4	and	5	to	determine	form	
of	|Φcorrupt⟩	and	what	three-qubit	operator	to	use	to	correct	it.

Error	correction
𝐼⊗𝐼⊗𝐼
𝑋⊗𝐼⊗𝐼
𝐼⊗𝑋⊗𝐼
𝐼⊗𝐼⊗𝑋

Both detection and correction protocols do not decohere |Φcorrupt⟩!

(b)	 Error	detection:
-	 Perform	XOR	on	qubits	1	and	2	and	store	result	in	qubit	4.
-	 Perform	XOR	on	qubits	1	and	3	and	store	result	in	qubit	5.

Error	detection
{𝑎|000⟩	+	𝑏|111⟩}|00⟩
{𝑎|100⟩	+	𝑏|011⟩}|11⟩
{𝑎|010⟩	+	𝑏|101⟩}|10⟩
{𝑎|001⟩	+	𝑏|110⟩}|01⟩

0	XOR	0	=	0
0	XOR	1	=	1
1	XOR	0	=	1
1	XOR	1	=	0
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•	 Now:	Check	to	see	if	the	KL	Condition	holds	for	our	single-qubit	flip	error	
correction	code:

	 	 Does	𝒞	=	span{|000⟩,	|111⟩}	correct	the	error	set	ℰ	=	{𝐼𝐼𝐼,	𝑋𝐼𝐼,	𝐼𝑋𝐼,	𝐼𝐼𝑋}?

-	 Do	the	following	constraints	hold,	for	any	𝐸𝑘,	𝐸𝑙	∈	ℰ:
(i)	 ⟨000|𝐸†𝑘𝐸𝑙|111⟩	=	0
(ii)	 ⟨000|𝐸†𝑘𝐸𝑙|000⟩	=	⟨111|𝐸

†
𝑘𝐸𝑙|111⟩

-	 Note:	𝐼†	=	𝐼,	𝐼𝐼	=	𝐼,	𝑋†	=	𝑋,	𝑋𝑋	=	𝐼.

-	 Also:	(𝐴⊗𝐵⊗𝐶)(𝐷⊗𝐸⊗𝐹)	=	(𝐴𝐷)⊗(𝐵𝐸)⊗(𝐶𝐹)
-	 So,	e.g.,	(𝑋𝐼𝐼)†(𝐼𝐼𝑋)	=	(𝑋𝐼)⊗(𝐼𝐼)⊗(𝐼𝑋)	=	𝑋𝐼𝑋

-	 In	general:	In	all	combinations	of	𝐸†𝑘𝐸𝑙,	there	will	be	at	most	two	𝑋's.
-	 So:	Any	combination	of	𝐸†𝑘𝐸𝑙	will	fail	to	convert	|111⟩	into	|000⟩	or	
vice-versa.

-	 Thus:	In	all	cases	of	both	(i)	and	(ii),	the	inner	products	will	vanish.
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2.	Topological	Quantum	Error	Correction	Codes

•	 Is	there	a	way	to	guarantee	the	KL	Condition	for	
a	QECC	based	on	the	topology	of	the	physical	
system	we	use	to	encode	information	in	qubits?

•	 Immediate	goal:	To	construct	a	QECC	from	a	
physical	system	with	a	non-trivial	topology.

Yes!
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•	 Ultimate	goal:	To	build	a	"topological"	
quantum	computer.



A	topological	property	of	a	surface	is	a	property	that	remains	invariant	under	
continuous	deformations	of	the	surface.

Example:	Consider	2-dim	surface	of	a	torus.

𝑐

𝑐1

𝑐2

Three	types	of	closed	paths:
-	 Loops	𝑐	which	can	be	continuously	
deformed	into	a	point.

-	 Loops	𝑐1	which	cannot	be	
continuously	deformed	into	a	point.

-	 Loops	𝑐2	which	cannot	be	
continuously	deformed	into	a	point.

•	 The	surface	of	a	torus	is	characterized	by	these	three	families	of	loops.
-	 They	describe	features	of	the	torus	that	are	invariant	under	continuous	deformations	
of	its	surface	(i.e.,	they	are	topological	properties).

•	 𝑐1	and	𝑐2	are	called	"non-contractible"	loops.
-	 Neither	𝑐,	𝑐1,	nor	𝑐2	can	be	continuously	deformed	into	the	others.
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Slightly	more	abstract	way	to	represent	a	torus:	unwind	it	into	a	flat	surface	with	
periodic	boundary	conditions.

𝑐𝑐1
𝑐2

Periodic	boundary	conditions:
-	 Identify	top	and	bottom	edges.
-	 Identify	left	and	right	edges.
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Let's add some (abstract) physics... 



The	Toric	Code

•	 Put	an	𝐿	×	𝐿	lattice	on	the	torus	
with	𝐿2	vertices.

•	 On	each	lattice	edge,	place	a	qubit.
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•	 For	each	plaquette	𝑝	define	a	plaquette	operator	𝐵𝑝:

	 𝐵𝑝	=	𝐼1⊗⋯⊗𝐼(𝑗−1)⊗(𝑍(𝑗)⊗𝑍(𝑗+1)⊗𝑍(𝑗+2)⊗𝑍(𝑗+3))
	 	 ⊗𝐼(𝑗+4)⊗⋯𝐼(2𝐿2)

𝑝

𝑍

𝑍

𝑍

𝑍

Kitaev	(2003)

2𝐿2 -qubit Hilbert space ℋ	=	𝑉1⊗⋯⊗𝑉2𝐿2,	
where each 𝑉 is a single-qubit Hilbert space.

Acts as 𝐼 on all qubits except 
those on edges leading to 𝑣, on 
which it acts as 𝑋.

•	 For	each	vertex	𝑣	define	a	vertex	operator	𝐴𝑣:

	 𝐴𝑣	=	𝐼1⊗⋯⊗𝐼(𝑖−1)⊗(𝑋(𝑖)⊗𝑋(𝑖+1)⊗𝑋(𝑖+2)⊗𝑋(𝑖+3))
	 	 ⊗𝐼(𝑖+4)⊗⋯𝐼(2𝐿2)

𝑋

𝑋

𝑋 𝑋
𝑣

Acts as 𝐼 on all qubits except 
those on edges around 𝑝, on 
which it acts as 𝑍.



Claim:	𝒞	is	a	4-dim	(i.e.,	two-qubit)	subspace	of	ℋ	with	"topologically	
distinct"	basis	states	{|𝜉⟩𝑒𝑒,	|𝜉⟩𝑒𝑜,	|𝜉⟩𝑜𝑒,	|𝜉⟩𝑜𝑜}	that	are	entangled	with	
respect	to	the	decomposition	ℋ	=	𝑉1⊗⋯⊗𝑉2𝐿2.

Story	to	come:
-	𝒞	will	be	our	code	space:	use	its	two	entangled	qubits	to	encode	
information	in	a	topologically	non-local	way.

-	 Operators	that	act	like	the	identity	on	𝒞	will	be	"local"	operators	associated	
with	contractible	loops.

-	 Operators	that	transform	codewords	to	other	codewords	(that	are	not	the	
identity)	will	be	"non-local"	operators	associated	with	non-contractible	
loops	on	the	torus.	They	preserve	the	non-local	aspects	of	𝒞.

-	Error	operators	will	be	"local"	operators	associated	with	contractible	open	
paths.
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Exercise:	Find	the	space	𝒞	of	eigenvectors	of	all	𝐴𝑣	and	𝐵𝑝	operators	with	
eigenvalue	+1.

𝒞	=	{|𝜉⟩	∈	ℋ,	such	that	𝐴𝑣|𝜉⟩	=	|𝜉⟩,	𝐵𝑝|𝜉⟩	=	|𝜉⟩,	for	all	𝑣,	𝑝}
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Constraints:
(a)	𝐵𝑝|𝜉⟩	=	|𝜉⟩	requires	that	any	|𝜉⟩	must	either	be	the	|0⟩	2𝐿2–qubit	state,	or	

have	an	even	number	of	|1⟩	qubits	per	plaquette,	since	𝑍|1⟩	=	−|1⟩.

Claim:	Constraint	(a)	entails	|𝜉⟩	is	either	the	|0⟩	2𝐿2–qubit	state	or	a	loop	state.

|1⟩

|1⟩

|1⟩|1⟩

|1⟩

|1⟩

|1⟩|1⟩|1⟩|1⟩|1⟩

|1⟩

|1⟩

|1⟩

|1⟩

Def:	A	loop	state	is	a	2𝐿2–qubit	state	
that	has	|1⟩'s	along	one	or	more	
closed	loops	that	do	not	intersect	
vertices,	and	|0⟩'s	everywhere	else.	

A loop state consisting of three closed loops 
of |1⟩'s. (The "empty" qubits are |0⟩'s.)

Exercise:	Find	the	space	𝒞	of	eigenvectors	of	all	𝐴𝑣	and	𝐵𝑝	operators	with	
eigenvalue	+1.

𝒞	=	{|𝜉⟩	∈	ℋ,	such	that	𝐴𝑣|𝜉⟩	=	|𝜉⟩,	𝐵𝑝|𝜉⟩	=	|𝜉⟩,	for	all	𝑣,	𝑝}
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Constraints:
(b)	𝐴𝑣|𝜉⟩	=	|𝜉⟩	requires	that	any	|𝜉⟩	must	be	a	superposition	of	a	vector	in	ℋ	

and	its	𝐴𝑣-flipped	counterpart,	since	𝑋	flips	qubits.

|1⟩

|1⟩

|1⟩|1⟩

|1⟩

|1⟩

Example: 

- This loop state is not a +1 eigenvector of any 𝐴𝑣	, 
since they flip |0⟩'s to |1⟩'s and |1⟩'s to |0⟩'s.

Exercise:	Find	the	space	𝒞	of	eigenvectors	of	all	𝐴𝑣	and	𝐵𝑝	operators	with	
eigenvalue	+1.

𝒞	=	{|𝜉⟩	∈	ℋ,	such	that	𝐴𝑣|𝜉⟩	=	|𝜉⟩,	𝐵𝑝|𝜉⟩	=	|𝜉⟩,	for	all	𝑣,	𝑝}

|loop⟩
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Constraints:
(b)	𝐴𝑣|𝜉⟩	=	|𝜉⟩	requires	that	any	|𝜉⟩	must	be	a	superposition	of	a	vector	in	ℋ	

and	its	𝐴𝑣-flipped	counterpart,	since	𝑋	flips	qubits.

|1⟩

|1⟩

|1⟩

Example: 

- But: The sum of the loop state and any of its 𝐴𝑣-
flipped counterparts is a +1 eigenvector of that 
vertex operator!

- 𝐴𝑣𝑎{|loop⟩	+	𝐴𝑣𝑎|loop⟩}	=	{𝐴𝑣𝑎|loop⟩	+	|loop⟩}

𝑣𝑎
•

Exercise:	Find	the	space	𝒞	of	eigenvectors	of	all	𝐴𝑣	and	𝐵𝑝	operators	with	
eigenvalue	+1.

𝒞	=	{|𝜉⟩	∈	ℋ,	such	that	𝐴𝑣|𝜉⟩	=	|𝜉⟩,	𝐵𝑝|𝜉⟩	=	|𝜉⟩,	for	all	𝑣,	𝑝}

|1⟩

|1⟩

|1⟩

|1⟩

|1⟩

𝐴𝑣𝑎|loop⟩

- Also note: Any 𝐴𝑣 that acts on all |0⟩'s creates a 
loop. And any 𝐴𝑣 that "touches" a loop deforms it 
into another loop.

- So: If |𝜉⟩ is a loop state, then so is 𝐴𝑣|𝜉⟩ for all 𝑣.
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Constraints:
(a)	𝐵𝑝|𝜉⟩	=	|𝜉⟩	requires	that	any	|𝜉⟩	must	either	be	the	|0⟩	2𝐿2–qubit	state	or	a	

loop	state.
(b)	𝐴𝑣|𝜉⟩	=	|𝜉⟩	requires	that	any	|𝜉⟩	must	be	a	superposition	of	a	vector	in	ℋ	

and	its	𝐴𝑣-flipped	counterpart.

𝐵𝑝𝑗|𝜉⟩𝑒𝑒	 =	2−𝐿
2/2𝐵𝑝𝑗(𝐼	+	𝐴𝑣1)⋯(𝐼	+	𝐴𝑣𝐿2)|0⋯0⟩

	 =	2−𝐿2/2(𝐼	+	𝐴𝑣1)⋯(𝐼	+	𝐴𝑣𝐿2)𝐵𝑝𝑗|0⋯0⟩	 𝐵𝑝𝑗	commutes	with	(𝐼	+	𝐴𝑣𝑖)	for	all	𝑖,	𝑗

	 =	2−𝐿2/2(𝐼	+	𝐴𝑣1)⋯(𝐼	+	𝐴𝑣𝐿2)|0⋯0⟩	 𝐵𝑝𝑗|0⋯0⟩	=	|0⋯0⟩,	for	all	𝑗

	 =	|𝜉⟩𝑒𝑒

Proof:	Let	𝑗	=	1,	...,	𝐿2.	Then

d
!"#

$(

2%½|𝜉⟩𝑒𝑒	= (𝐼	+	𝐴𝑣𝑖)|0⟩1⋯|0⟩2𝐿2

Claim:	A	vector	that	satisfies	(a)	and	(b)	is	given	by:
- Start with |0⟩	2𝐿2–qubit state.
- Then add all other states that can 

be obtained via 𝐴𝑣-flips, and their 
unflipped counterparts.

Exercise:	Find	the	space	𝒞	of	eigenvectors	of	all	𝐴𝑣	and	𝐵𝑝	operators	with	
eigenvalue	+1.

𝒞	=	{|𝜉⟩	∈	ℋ,	such	that	𝐴𝑣|𝜉⟩	=	|𝜉⟩,	𝐵𝑝|𝜉⟩	=	|𝜉⟩,	for	all	𝑣,	𝑝}
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Constraints:
(a)	𝐵𝑝|𝜉⟩	=	|𝜉⟩	requires	that	any	|𝜉⟩	must	either	be	the	|0⟩	2𝐿2–qubit	state	or	a	

loop	state.
(b)	𝐴𝑣|𝜉⟩	=	|𝜉⟩	requires	that	any	|𝜉⟩	must	be	a	superposition	of	a	vector	in	ℋ	

and	its	𝐴𝑣-flipped	counterpart.

d
!"#

$(

2%½ (𝐼	+	𝐴𝑣𝑖)|0⟩1⋯|0⟩2𝐿2

Claim:	A	vector	that	satisfies	(a)	and	(b)	is	given	by:
- Start with |0⟩	2𝐿2–qubit state.
- Then add all other states that can 

be obtained via 𝐴𝑣-flips, and their 
unflipped counterparts.

Proof:	Let	𝑗	=	1,	...,	𝐿2.	Then
𝐴𝑣𝑗|𝜉⟩𝑒𝑒	 =	2−𝐿

2/2𝐴𝑣𝑗(𝐼	+	𝐴𝑣1)⋯(𝐼	+	𝐴𝑣𝐿2)|0...0⟩
	 =	2−𝐿2/2(𝐼	+	𝐴𝑣1)⋯𝐴𝑣𝑗(𝐼	+	𝐴𝑣𝑗)⋯(𝐼	+	𝐴𝑣𝐿2)|0...0⟩	 𝐴𝑣𝑗	commutes	with	(𝐼	+	𝐴𝑣𝑖)

	 =	2−𝐿2/2(𝐼	+	𝐴𝑣1)⋯(𝐴𝑣𝑗	+	𝐴𝑣𝑗𝐴𝑣𝑗)⋯(𝐼	+	𝐴𝑣𝐿2)|0...0⟩
	 =	2−𝐿2/2(𝐼	+	𝐴𝑣1)⋯(𝐼	+	𝐴𝑣𝑗)⋯(𝐼	+	𝐴𝑣𝐿2)|0...0⟩	 𝐴𝑣𝑗𝐴𝑣𝑗	=	𝐼

	 =	|𝜉⟩𝑒𝑒

|𝜉⟩𝑒𝑒	=

Exercise:	Find	the	space	𝒞	of	eigenvectors	of	all	𝐴𝑣	and	𝐵𝑝	operators	with	
eigenvalue	+1.

𝒞	=	{|𝜉⟩	∈	ℋ,	such	that	𝐴𝑣|𝜉⟩	=	|𝜉⟩,	𝐵𝑝|𝜉⟩	=	|𝜉⟩,	for	all	𝑣,	𝑝}
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d
!"#

$(

2%½ (𝐼	+	𝐴𝑣𝑖)|0⟩1⋯|0⟩2𝐿2
- Start with |0⟩	2𝐿2–qubit state.
- Then add all other states that can 

be obtained via 𝐴𝑣-flips, and their 
unflipped counterparts.

•	 Note:	The	|0⟩	2𝐿2–qubit	state	has	an	even	number	(zero!)	of	𝑐1	and	𝑐2	loops.
•	 And:	The	(𝐼	+	𝐴𝑣𝑖)	operators	do	not	change	the	parity	of	the	number	of	𝑐1	and	𝑐2	
loops	(so	|𝜉⟩𝑒𝑒	also	has	an	even	number	of	𝑐1	and	𝑐2	loops).

|𝜉⟩𝑒𝑒	=

Exercise:	Find	the	space	𝒞	of	eigenvectors	of	all	𝐴𝑣	and	𝐵𝑝	operators	with	
eigenvalue	+1.

𝒞	=	{|𝜉⟩	∈	ℋ,	such	that	𝐴𝑣|𝜉⟩	=	|𝜉⟩,	𝐵𝑝|𝜉⟩	=	|𝜉⟩,	for	all	𝑣,	𝑝}

•	Which	means:	There	are	four	topologically	distinct	types	of	elements	of	𝒞:
|𝜉⟩𝑒𝑒	:	loop	state	with	even	#	𝑐1	loops	and	even	#	𝑐2	loops.
|𝜉⟩𝑒𝑜	:	loop	state	with	even	#	𝑐1	loops	and	odd	#	𝑐2	loops.
|𝜉⟩𝑜𝑒	:	loop	state	with	odd	#	𝑐1	loops	and	even	#	𝑐2	loops.
|𝜉⟩𝑜𝑜	:	loop	state	with	odd	#	𝑐1	loops	and	odd	#	𝑐2	loops.

•	So:		𝒞	=	span{|𝜉⟩𝑒𝑒,	|𝜉⟩𝑒𝑜,	|𝜉⟩𝑜𝑒,	|𝜉⟩𝑜𝑜}
- Topologically distinct bases vectors.
- Entangled with respect to ℋ	=	𝑉1⊗⋯⊗𝑉2𝐿2.



Example:	𝐿	=	2	|𝜉⟩𝑒𝑒	state.

𝑝1 𝑝2

𝑝3 𝑝4

21

43

65

87

••

• •

𝑣2𝑣1

𝑣4𝑣3

8	qubits	(so	ℋ	has	28	=	256	dimensions!)
4	plaquettes:	 𝑝1	=	{1,	3,	4,	5}			𝑝2	=	{2,	3,	4,	6}
	 𝑝3	=	{1,	5,	7,	8}			𝑝4	=	{2,	6,	7,	8}
4	vertices:	 𝑣1	=	{1,	2,	3,	7}			𝑣2	=	{1,	2,	4,	8}
	 𝑣3	=	{3,	5,	6,	7}			𝑣4	=	{4,	5,	6,	8}

|𝜉⟩𝑒𝑒	 =	∏
4
𝑖=1 2−½	(𝐼	+	𝐴𝑣𝑖)|00000000⟩

	 	 =	¼(𝐼	+	𝐴𝑣1)(𝐼	+	𝐴𝑣2)(𝐼	+	𝐴𝑣3)(𝐼	+	𝐴𝑣4)|00000000⟩

	 	 =	¼(𝐼	+	𝐴𝑣1)(𝐼	+	𝐴𝑣2)(𝐼	+	𝐴𝑣3){|00000000⟩	+	|00011101⟩}

	 	 =	¼(𝐼	+	𝐴𝑣1)(𝐼	+	𝐴𝑣2){|00000000⟩	+	|00011101⟩	+	|00101110⟩	+	|00110011⟩}

=	¼(𝐼	+	𝐴𝑣1){|00000000⟩	+	|00011101⟩	+	|00101110⟩	+	|00110011⟩	+	|11010001⟩	
	 	 					+	|11001100⟩	+	|11111111⟩	+	|11100010⟩}

=	¼{|00000000⟩	+	|00011101⟩	+	|00101110⟩	+	|00110011⟩	+	|11010001⟩	+	|11001100⟩

	 	 						+	|11111111⟩	+	|11100010⟩	+	|11100010⟩	+	|11111111⟩	+	|11001100⟩	+	|11010001⟩		
												+	|00110011⟩	+	|00101110⟩	+	|00011101⟩	+	|00000000⟩}

=	½{|00000000⟩	+	|00011101⟩	+	|00101110⟩	+	|00110011⟩

	 	 											+	|11010001⟩	+	|11001100⟩	+	|11111111⟩	+	|11100010⟩}
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- entangled state!
- each term has even #of 1's
- each term has an 𝐴𝑣	-

flipped counterpart



First	type:	"Stabilizer"	operators.

-	 𝐵𝑝1	and	𝐵𝑝2	share	an	edge.
-	 𝐵𝑝1𝐵𝑝2	includes	the	square	of	the	𝑍	
operator	of	the	shared	edge,	and	𝑍2	=	𝐼.

-	 So:	The	𝑍's	that	appear	in	𝐵𝑝1𝐵𝑝2	will	act	on	
the	qubits	that	form	the	boundary	of	the	
two	plaquettes!

-	 The	same	holds	for	any	number	of	
adjacent	plaquette	operators.

Three	types	of	operators	that	act	on	𝒞

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑍

𝑍

𝑍

𝑍 𝑍

𝑍

•	 Composing	adjacent	plaquette	operators	𝐵𝑝1,	𝐵𝑝2	to	form	𝐵𝑝1𝐵𝑝2	results	
in	a	loop	of	𝑍	operators:

•	 Note:	These	loops	are	of	type	𝑐	on	the	torus.

-	 The	same	holds	for	vertex	operators	𝐴𝑣.

Type	𝑐	loop	operators	are	called	"stabilizer"	operators:
-	 They	act	like	the	identity	on	𝒞	(since	they	are	compositions	of	𝐴𝑣	and	𝐵𝑝	operators).
-	 They	are	"local"	(in	the	sense	that	they	are	associated	with	contractible	loops).

𝑝1 𝑝2

20



-	 Let	𝑍̅5	and	𝑍̅6	refer	to	the	two	types	of	
products	of	𝑍	operators	along	loops	of	
type	𝑐1	and	𝑐2.

-	 Let	 @𝑋5	and	 @𝑋6	refer	to	the	two	types	of	
products	of	𝑋	operators	along	loops	of	
type	𝑐1	and	𝑐2.

Types	𝑐1	and	𝑐2	loop	operators	are	called	"encoded	logical"	operators:
-	 They	act	on	codewords	in	𝒞	and	transform	them	into	other	codewords	(they	are	not	
the	identity	on	𝒞).

-	 They	are	not	"local"	operators	(in	the	sense	that	they	are	associated	with	non-
contractible	loops).	

𝑍

𝑍

𝑍

𝑍 𝑍

𝑍

𝑍

𝑍

𝑍

𝑍

𝑍 𝑍 𝑍 𝑍 𝑍

Three	types	of	operators	that	act	on	𝒞
Second	type:	"Encoded	logical"	operators.
•	 There	are	two	other	types	of	loops	on	a	torus:	non-contractible	loops	𝑐1	and	𝑐2.
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Claim	1.	Any	operator	𝐷	that	maps	𝒞	to	𝒞	must	commute	with	all	𝐴𝑣	
and	𝐵𝑝	operators.

Proof.	Recall	𝒞	=	{|𝜙⟩	:	𝒪|𝜙⟩	=	|𝜙⟩,	for	𝒪	=	𝐴𝑣	or	𝐵𝑝}.
-	 Let	𝐷	be	an	operator	such	that	𝐷|𝜓⟩	∈	𝒞,	for	any	|𝜓⟩	∈	𝒞.
-	 Suppose	𝐷𝒪	=	−𝒪𝐷	(𝐷	anticommutes	with	𝒪).
-	 Then	for	any	|𝜓⟩	∈	𝒞,	𝐷|𝜓⟩	=	𝐷𝒪|𝜓⟩	=	−𝒪𝐷|𝜓⟩.
-	 Or:	𝒪𝐷|𝜓⟩	=	−𝐷𝒪|𝜓⟩	=	−𝐷|𝜓⟩.
-	 So:	𝒪(𝐷|𝜓⟩)	=	−(𝐷|𝜓⟩)	≠	𝐷|𝜓⟩.
-	 But:	𝒪	is	the	identity	on	𝒞!
-	 So:	𝐷|𝜓⟩	∉	𝒞	(contradiction!)

-	 Hence:	𝐷	must	commute	with	𝒪.

Aside:	Why	do	the	non-contractible	loop	operators	map	vectors	in	𝒞	to	other	
vectors	in	𝒞?

22

Claim	1	(reworded).
(maps	𝒞	to	𝒞)	⇒	(commutes	with	all	𝐴𝑣,	𝐵𝑝)



Claim	2.	Any	operator	formed	from	an	open	path	of	𝑋's	or	𝑍's	will	
anticommute	with	two	𝐴𝑣's	or	two	𝐵𝑝's.
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-	 𝑆𝑍(𝑡)	commutes	with	all	𝐵𝑝's.
- We only need to consider 𝐵𝑝's with 𝑍's that overlap the 𝑍's in 𝑆𝑍(𝑡).
- Those 𝐵𝑝's commute with  𝑆𝑍(𝑡), since 𝑍 commutes with itself.

-	 𝑆𝑍(𝑡)	commutes	with	all	𝐴𝑣's,	except	for	
the	two	at	the	endpoints	of	𝑡.
- We only need to consider 𝐴𝑣's with 𝑋's that overlap the 𝑍's in 𝑆𝑍(𝑡).
- Those 𝐴𝑣's that are not at the endpoints of 𝑡 commute with 𝑆𝑍(𝑡), 

since each one has 2 𝑋's that overlap 2 𝑍's in 𝑆𝑍(𝑡), and 𝑍	
anticommutes with 𝑋.

-	 𝑆𝑍(𝑡)	anticommutes	with	the	two	𝐴𝑣's	at	the	
endpoints	of	𝑡.
- Each of these 𝐴𝑣's has 1 𝑋 that overlaps 1 𝑍 in 𝑆𝑍(𝑡), and 𝑍	

anticommutes with 𝑋.

-	 Consider	an	operator	𝑆𝑍(𝑡)	which	is	the	identity	
on	all	qubits	except	for	an	open	path	𝑡	of	𝑍's.

𝑍

𝑍

𝑍 𝑍

Claim	2	(reworded).
(open	path	operator)	⇒	
¬(commutes	with	all	𝐴𝑣,	𝐵𝑝)

Aside:	Why	do	the	non-contractible	loop	operators	map	vectors	in	𝒞	to	other	
vectors	in	𝒞?



•	 Claims	1	&	2	entail:
	 (maps	𝒞	to	𝒞)	⇒	¬(open	path	operator) 
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Claim	1	(reworded).
(maps	𝒞	to	𝒞)	⇒	(commutes	with	all	𝐴𝑣,	𝐵𝑝)

Claim	2	(reworded).
(open	path	operator)	⇒	¬(commutes	with	all	𝐴𝑣,	𝐵𝑝)

•	 And:	The	identity	on	𝒞	is	either	an	individual	𝐴𝑣	or	𝐵𝑝,	or	a	contractible	loop	
operator.
-	Moreover:	A	non-contractible	loop	operator	cannot	be	constructed	by	a	product	of	𝐴𝑣's	
or	𝐵𝑝's	(such	a	product	is	the	boundary	of	a	set	of	adjacent	plaquettes	or	vertices).

Aside:	Why	do	the	non-contractible	loop	operators	map	vectors	in	𝒞	to	other	
vectors	in	𝒞?

So: A non-contractible loop operator is a code space operator 
that is not the identity on 𝒞.

•	 So:	A	code	space	operator	is	either	an	individual	𝐴𝑣	or	𝐵𝑝,	or	a	loop	operator.



-	 Error	operators	can't	be	associated	with	
products	of	𝑍's	or	𝑋's	on	loops:	There	are	
only	three	types,	and	each	type	transforms	
codewords	to	codewords.

Proof:	We've	just	seen	that	open	path	products	of	𝑍's	or	𝑋's	anticommute	
with	two	𝐴𝑣's	or	tow	𝐵𝑝's,	and	hence	transform	codewords	out	of	𝒞.

𝑍

𝑍

𝑍 𝑍

Three	types	of	operators	that	act	on	𝒞
Third	type:	Error	operators.
•	 By	definition,	error	operators	act	on	codewords	and	corrupt	them	(transform	
them	into	states	not	in	𝒞).

-	 What	about	"open	path"	products	of	𝑍's	or	
𝑋's?

Claim:	Open	path	products	of	𝑍's	or	𝑋's	
transform	codewords	in	𝒞	out	of	𝒞.

•	 "Open	path"	operators	are	"local"	(in	the	sense	that	they	are	associated	with	
contractible	line	segments).
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Summary:	Three	types	of	operators	that	act	on	𝒞

1.	 Stabilizer	operators	(local).

	 𝑆𝑍(𝑐)	=	⊗𝑗∈𝑐	𝑍𝑗
𝑆𝑋(𝑐′)	=	⊗𝑗∈𝑐′	𝑋𝑗

2.	 Encoded	logical	operators	(non-local).
 𝑍̅#	=	⊗𝑗∈𝛾1	𝑍𝑗	 𝑍̅&	=	⊗𝑗∈𝛾2	𝑍𝑗
 o𝑋#	=	⊗𝑗∈𝛾′1	𝑋𝑗	 o𝑋&	=	⊗𝑗∈𝛾′2	𝑋𝑗

𝑐,	𝑐′	=	contractible	
loops

𝛾1,	𝛾′1	=	non-contractible	
loops	of	type	𝑐1
𝛾2,	𝛾′2	=	non-contractible	
loops	of	type	𝑐2

3.	 Error	operators	(local).

	 𝑆𝑍(𝑡)	=	⊗𝑗∈𝑡	𝑍𝑗
	 𝑆𝑋(𝑡′)	=	⊗𝑗∈𝑡′	𝑋𝑗

𝑡,	𝑡′	=	contractible	open	
paths
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Now:	Check	to	see	if	the	KL	Condition	holds	for	the	toric	code.

•	 Does	𝒞	correct	the	error	set	ℰ	=	{𝑆𝑍(𝑡),	𝑆𝑋(𝑡′)	:	for	all	𝑡,	𝑡′}?
-	 Is	it	the	case	that	⟨𝜓𝑖|𝐸

†
𝑘𝐸𝑙|𝜓𝑗⟩	=	𝑐𝑘𝑙𝛿𝑖𝑗,	for	any	𝐸𝑘, 	𝐸𝑙	∈	ℰ,	and	𝜓𝑖, 	𝜓𝑗	∈	𝒞? 	

Yes!

-	 For	any	open-path	operator	𝐸𝑙	between	two	
endpoints...

𝑍

𝑍

𝑍 𝑍
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𝑍

𝑍

𝑍 𝑍
-	 ...	there	is	always	another	𝐸𝑘	with	the	same	
endpoints	such	that	𝐸†𝑘𝐸𝑙	is	a	"type-𝑐"	loop	
operator;	i.e.,	a	stabilizer	operator.

𝑍

𝑍

𝑍𝑍𝑍

𝑍

•	 Does	𝒞	correct	the	error	set	ℰ	=	{𝑆𝑍(𝑡),	𝑆𝑋(𝑡′)	:	for	all	𝑡,	𝑡′}?
-	 Is	it	the	case	that	⟨𝜓𝑖|𝐸

†
𝑘𝐸𝑙|𝜓𝑗⟩	=	𝑐𝑘𝑙𝛿𝑖𝑗,	for	any	𝐸𝑘, 	𝐸𝑙	∈	ℰ,	and	𝜓𝑖, 	𝜓𝑗	∈	𝒞? 	

Yes!

-	 For	any	open-path	operator	𝐸𝑙	between	two	
endpoints...

28

Now:	Check	to	see	if	the	KL	Condition	holds	for	the	toric	code.



𝑍

𝑍

𝑍 𝑍

-	 And:	Stabilizer	operators	act	as	the	identity	
on	𝒞.

𝑍

𝑍

𝑍𝑍𝑍

𝑍

Upshot:	We've	encoded	information	"non-locally"	in	𝒞	in	such	
a	way	that	local	errors	can	be	detected	and	corrected.

-	 ...	there	is	always	another	𝐸𝑘	with	the	same	
endpoints	such	that	𝐸†𝑘𝐸𝑙	is	a	"type-𝑐"	loop	
operator;	i.e.,	a	stabilizer	operator.

•	 Does	𝒞	correct	the	error	set	ℰ	=	{𝑆𝑍(𝑡),	𝑆𝑋(𝑡′)	:	for	all	𝑡,	𝑡′}?
-	 Is	it	the	case	that	⟨𝜓𝑖|𝐸

†
𝑘𝐸𝑙|𝜓𝑗⟩	=	𝑐𝑘𝑙𝛿𝑖𝑗,	for	any	𝐸𝑘, 	𝐸𝑙	∈	ℰ,	and	𝜓𝑖, 	𝜓𝑗	∈	𝒞? 	

Yes!

-	 For	any	open-path	operator	𝐸𝑙	between	two	
endpoints...
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Now:	Check	to	see	if	the	KL	Condition	holds	for	the	toric	code.



30

Two	senses	of	"non-locality"	in	the	Toric	Code

• Entanglement	non-locality:	The	codewords	(elements	of	𝒞)	are	entangled	states.
-	 Entanglement	non-locality	=	Einstein	non-locality	+	Bell	non-locality

Recall:	
-	 Einstein	non-locality	occurs	when	two	systems	are	correlated	
and	the	correlation	cannot	be	explained	by	a	direct	cause	that	
travels	from	one	system	to	the	other.

-	 Bell	non-locality	occurs	when	two	systems	are	correlated	and	
the	correlation	cannot	be	explained	by	a	common	cause	

• Topological	non-locality:	The	operators	that	act	on	codewords	are	non-
contractible	loop	operators.

Suppose:	Topological	non-locality	occurs	when	a	quantity	
is	not	localized	to	a	contractible	region	of	space.

Open Question: Under what conditions does entanglement 
non-locality entail topological non-locality and/or vice-versa?



Let's add some (slightly more concrete) physics...

𝑋 𝑋
𝑚𝑚

𝑡′

•	 Interpret	the	code	space	𝒞	as	the	space	of	ground-states	|𝑞⟩	(states	of	lowest	
energy)	of	a	physical	system.

-	 Interpret	a	𝑍	(or	𝑋)	error	operator	as	
acting	on	a	ground-state	to	produce	a	pair	
of	"𝑒"	(or	"𝑚")	"quasiparticle"	excitations	
at	the	ends	of	the	open	path.

-	What	happens	when	we	move	an	𝑚	
around	an	𝑒?

-	 |Ψinitial⟩	=	𝑆𝑍(𝑡)𝑆𝑋(𝑡′)|𝑞⟩

𝑍𝑒 𝑒
𝑡

𝑍
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𝑋 𝑋
𝑚𝑚

𝑋 𝑋

•	 Interpret	the	code	space	𝒞	as	the	space	of	ground-states	|𝑞⟩	(states	of	lowest	
energy)	of	a	physical	system.

-	 Interpret	a	𝑍	(or	𝑋)	error	operator	as	
acting	on	a	ground-state	to	produce	a	pair	
of	"𝑒"	(or	"𝑚")	"quasiparticle"	excitations	
at	the	ends	of	the	open	path.

-	What	happens	when	we	move	an	𝑚	
around	an	𝑒?

-	 |Ψinitial⟩	=	𝑆𝑍(𝑡)𝑆𝑋(𝑡′)|𝑞⟩

𝑍𝑒 𝑒
𝑡

𝑍
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Let's add some (slightly more concrete) physics...



𝑋 𝑋
𝑚

𝑋 𝑋

𝑚

𝑋

𝑋

𝑋

•	 Interpret	the	code	space	𝒞	as	the	space	of	ground-states	|𝑞⟩	(states	of	lowest	
energy)	of	a	physical	system.

-	 Interpret	a	𝑍	(or	𝑋)	error	operator	as	
acting	on	a	ground-state	to	produce	a	pair	
of	"𝑒"	(or	"𝑚")	"quasiparticle"	excitations	
at	the	ends	of	the	open	path.

-	What	happens	when	we	move	an	𝑚	
around	an	𝑒?

-	 |Ψinitial⟩	=	𝑆𝑍(𝑡)𝑆𝑋(𝑡′)|𝑞⟩

𝑍𝑒 𝑒
𝑡

𝑍
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Let's add some (slightly more concrete) physics...



𝑋 𝑋
𝑚

𝑋 𝑋

𝑋

𝑋

𝑋
𝑚 𝑋𝑋

•	 Interpret	the	code	space	𝒞	as	the	space	of	ground-states	|𝑞⟩	(states	of	lowest	
energy)	of	a	physical	system.

-	 Interpret	a	𝑍	(or	𝑋)	error	operator	as	
acting	on	a	ground-state	to	produce	a	pair	
of	"𝑒"	(or	"𝑚")	"quasiparticle"	excitations	
at	the	ends	of	the	open	path.

-	What	happens	when	we	move	an	𝑚	
around	an	𝑒?

-	 |Ψinitial⟩	=	𝑆𝑍(𝑡)𝑆𝑋(𝑡′)|𝑞⟩

𝑍𝑒 𝑒
𝑡

𝑍
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Let's add some (slightly more concrete) physics...



𝑋 𝑋 𝑋 𝑋

𝑋

𝑋

𝑋

𝑋𝑋

𝑋

𝑋

𝑋

𝑚 𝑚
𝑡′

𝑐′

•	 |Ψfinal⟩	=	𝑆𝑋(𝑐′)𝑆𝑍(𝑡)𝑆𝑋(𝑡′)|𝑞⟩

•	 So:	Moving	an	𝑚	quasiparticle	completely	around	an	𝑒	quasiparticle	
changes	the	phase	of	the	initial	4-particle	state	by	−1.

•	 Interpret	the	code	space	𝒞	as	the	space	of	ground-states	|𝑞⟩	(states	of	lowest	
energy)	of	a	physical	system.

-	 Interpret	a	𝑍	(or	𝑋)	error	operator	as	
acting	on	a	ground-state	to	produce	a	pair	
of	"𝑒"	(or	"𝑚")	"quasiparticle"	excitations	
at	the	ends	of	the	open	path.

-	What	happens	when	we	move	an	𝑚	
around	an	𝑒?

-	 |Ψinitial⟩	=	𝑆𝑍(𝑡)𝑆𝑋(𝑡′)|𝑞⟩

𝑍 𝑍𝑒 𝑒
𝑡
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Let's add some (slightly more concrete) physics...

	 =	−𝑆𝑍(𝑡)𝑆𝑋(𝑐′)𝑆𝑋(𝑡′)|𝑞⟩	 𝑆𝑍(𝑡)	and	𝑆𝑋(𝑐′)	anticommute

	 	 =	−𝑆𝑍(𝑡)𝑆𝑋(𝑡′)𝑆𝑋(𝑐′)|𝑞⟩	 𝑆𝑋(𝑐′)	and	𝑆𝑋(𝑡′)	commute

	 	 =	−|Ψinitial⟩	 𝑆𝑋(𝑐′)	acts	like	the	identity	on	𝒞



In	general:	When	two	particles	are	exchanged	in	a	multiparticle	
system,	the	multiparticle	state	|Ψ⟩	picks	up	a	phase	|Ψ⟩	→	𝑒𝑖𝜃|Ψ⟩.

•	 Taking	one	particle	around	another	is	equivalent	to	two	exchanges;	
so	|Ψ⟩	→	𝑒2𝑖𝜃|Ψ⟩.

•	 So:	Taking	an	𝑚	quasiparticle	around	an	𝑒	quasi-
particle	produces	the	phase	𝑒2𝑖𝜃	=	−1,	or	𝜃	=	𝜋/2.

𝑒2𝑖𝜃	=	cos2𝜃	+	𝑖sin2𝜃

•	 So:	One	exchange	of	an	𝑚	quasiparticle	and	an	𝑒	quasiparticle	
produces	the	phase	|Ψ⟩	→	𝑒𝑖𝜋/2|Ψ⟩.

Bosons:	 Particle	exchange	phase	𝜃	=	0.
Fermions:	 Particle	exchange	phase	𝜃	=	𝜋.
Anyons:	 Particle	exchange	phase	𝜃	∈	(0,	𝜋).

Upshot: 𝑚 and 𝑒 quasiparticles are anyons! 
(They obey "fractional statistics".)
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Physical	significance:	There	are	physical	systems	
that	exhibit	characteristics	of	the	toric	code!
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-	 2-dim	conductor	in	external	
magnetic	field	𝐵.

-	 At	low	temps,	longitudinal	
resistance	vanishes,	and	
transverse	(Hall)	resistance	
becomes	quantized.

-	 Prediction:	Low-energy	
anyonic	excitations.

•	 Fractional	quantum	Hall	system: 1998	Nobel	Prize	in	Physics

Open Question: Can we build a topological quantum 
computer out of a fractional quantum Hall system?


