1. QECCs

07. QIT, Pal‘t III. 2. Topological QECCs

1. Quantum Error Correction Codes (QECCs)

e Goal: To encode information in qubits in such a way that errors due to
"noise" can be detected and corrected.
- But: Typical quantum algorithms encode information in entangled qubits.

- And: Attempts to detect and correct errors due to noise run the risk of decohering
entangled qubits, thus destroying the information.

Task: To detect and correct errors without
decohering the relevant entangled qubits.




Set-Up: Suppose information is encoded in a qubit |Q) = a|0) + b|1).
Step 1. Encode |Q) in a codeword.

e Do this by performing appropriate transformations ~—— The type of transformations

on the single-qubit basis states |0), |1). gfr’gfgfeogxgjcgytgeogé .

e The new basis states form a space called the code space C.

e Complete the set of basis states to form a larger space

¢ =——— Cisasubspace of H
called the coding space H.

Example: We might transform the single-qubit basis states into three-
qubit basis states:

|0) — |000)
|1) — [111)
- The codeword is then a|000) + b|111).

- The code space C is the space spanned by {|000), |111)}, which is a

2-dim subspace of the larger 8-dim three-qubit coding space space
H spanned by {|000), |001), |010), |100), |110), |101), |011), |111)}.




Step 2. Represent errors by multi-qubit operators constructed from the single-
qubit operators I, X, Y, Z.

e Errors "corrupt” the basis states of C, and hence the codeword,
projecting it out of C.

Example: We might transform the single-qubit basis states into three-
qubit basis states:

|0) — [000)
|1) — [111)
- The codeword is then a|000) + b|111).

- The code space C is the space spanned by {|000), |111)}, which is a
2-dim subspace of the larger 8-dim three-qubit coding space space
H spanned by {|000), |001), |010), |100), |110), |101), |011), |111)}.

- An error might be represented by the operator X QI Q1.

- This would produce a corrupted codeword a|100) 4+ b|011), which
is an element of H but not of C.




Step 3. Devise an appropriate operation that acts on a corrupted codeword in H
and projects it back into C (thereby "correcting” it).

Necessary and sufficient condition for error-correction

e Let C = span{|y), .., |{,)}, for some number p of basis states.
Let £ ={E}, .., E;} be a set of g error operators.

Knill-Laflamme (KL) Condition: A code space C = span{|y,), .., [{,)}
corrects the error set € = {E}, .., E } if and only if

() (WIEWE ) =0
(i) (WAEVEY:) = (WIELED), %]

- Condition (i) says: Corrupted basis states E;[y;), Ei[y;) are orthogonal, and hence
distinguishable from each other.

- Condition (ii) says: Measurements made to determine the error will not give any
information about the codeword itself (and thereby possibly decohere it).

- Conditions (i) & (ii) together say: The projection of the operator E' E, onto the code
space is a multiple of the identity: (y,|E" E |Y;) = cdy, for arbitrary constants cy,.




Example: Single-qubit flip error correction code.

Task: To transmit a qubit |Q) = a|0) + b|1) in the presence of noise that flips

single-qubit basis states.
A three-qubit state
= K

Step 1. Encode |Q) in codeword |®) = a|000) + b|111).
e |®)is an element of the 2-dim code space C = span{|000), [111)}.

° |q)corrupt> = a|—>1|—>2|—)3 + b|—>1|—>2|—>3 can take one of four forms:

000) + b|111)
100) + b|011)
010) + b|101)
001) + b|110)

| D corrupe) 1 an element of the 8-dim three-qubit space
H = span{|000), |001), |010), |100), |110),|101),|011), |111)}

Q Q Q Q

Step 2. Represent single-qubit flip errors by 4 three-qubit operators:
E={IRIRLXRIR IRXRI, QIR X}

does nothing  flips 1st qubit flips 2nd qubit  flips 3rd qubit



Step 3. Error detection/correction protocol:

(a) Attach two "empty register” qubits |00) to [D o)

|(Dcorrupt>|00> = {a|—>1|—>2|—>3 + b|—>1|—>2|—>3} |O>4O>5

(b) Error detection: (D=0
- Perform XOR on qubits 1 and 2 and store result in qubit 4. ' OXOR1 =1 E
- Perform XOR on qubits 1 and 3 and store result in qubit 5. i LMY= 1 i
(b) Error correction: Measure qubits 4 and 5 to determine form LI
of |®yrrupe) and what three-qubit operator to use to correct it.
Corrupted codeword/register  Error detection Error correction
{a|000) + b|111)}|00) {a|000) + b|111)}|00) IRIRQ]
{a|100) + b|011)}|00) {a|100) + b|011)}|11) XQRIRI
{a|010) + b|101)}|00) {a|010) + b|101)}|10) IRXXRI
{a|001) + b|110)}|00) {a|001) + b|110)}|01) IRXIRX

Both detection and correction protocols do not decohere |® o) !



e Now: Check to see if the KL Condition holds for our single-qubit flip error
correction code.
- Does C = span{|000), |[111)} correct the error set € = {I11, XII, IXI, I1X}?

- Do the following conditions hold, for any E, E; € &:
(i) (OOO|E WEi|111) =
(ii) (OOO|E +E|000) = (111|E +Ei|111)

- Note:I'=11I=1X'=X XX=1

- Also: (AQB®C)(DRERQF) = (AD)Q (BE)Q(CF)
- So, eg., (XID'U1X) = XDQRQUD R (IX) = XIX

- In general: In all combinations of E' E;, there will be at most two X's.

- So: Any combination of E «E; will fail to convert |111) into [000) or
vice-versa.

- Thus: In all cases of both (i) and (ii), the inner products will vanish.




2. Topological Quantum Error Correction Codes

e [s there a way to guarantee the KL Condition for
a QECC based on the topology of the physical Yes!
system we use to encode information in qubits?

e Immediate goal: To construct a QECC from a
physical system with a non-trivial topology.

o Ultimate goal: To build a "topological”
quantum computer.




A topological property of a surface is a property that remains invariant under
continuous deformations of the surface.

Example: Consider 2-dim surface of a torus.

Three types of closed paths:

- Closed loops ¢ which can be
continuously deformed into a point.

continuously deformed into a point.

- Closed loops ¢, which cannot be

I 1
! I
! I
! I
! I
! I
! I
I I
| 1 - Closed loops c; which cannot be !
J |
. |
I 1
I 1
I 1
|
| continuously deformed into a point. :

e c; and ¢, are called "non-contractible” closed loops.

- Neither c, ¢4, nor c, can be continuously deformed into the others.

e The surface of a torus is characterized by these three families of closed loops.

- They describe features of the torus that are invariant under continuous deformations
of its surface (i.e., they are topological properties).



Slightly more abstract way to represent a torus: unwind it into a flat surface with
periodic boundary conditions.

o= e e o e o e e e D e e e e e e e

Let's add some (abstract) physics...
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Kitaev (2003)

The Toric Code
(M
u "
O e Putasquare L X L lattice on the
O torus with L2 vertices.
O e On each lattice edge, place a qubit.
L O+ Ot O O— o ____
() ' 2L? -qubit Hilbert space H =V, Q- @V, i
' where each V is a single-qubit Hilbert space. !
O

-

. | . o
e For each vertex v define a vertex operator A, Ay acts as the identity on all
| qubits except those on the 4

Av — 11 ® cee ® I(i—l) ® (X(l) ®X(i+1) ®X(i+2) ®X(i+3)) : edges Ieading to v. On each Of
: these, it acts as the X operator.

Qlivn@ley —  TTTTTTTToToomomTomoes

|
e For each plaquette p define a plaquette operator B, \ B, acts as the identity on all |
| qubits except those on the 4 !

:

|

B,=1,QQI;-1)Q(ZHRZ;j+1)RZj+2)QZj+3)) i edges around p. On each of
®I(j+4)®"’1(n) e -1



Exercise in linear algebra: Find the space C of eigenvectors of A, and B, with
eigenvalue +1, for all vertices v and plaquettes p.

C = {I$) € H, such that 4,[$) = |$), By|S) = [<), for all v, p}

e Result: Cis a 4-dim (i.e., two-qubit) subspace of H whose elements are
entangled with respect to the decomposition H =V, Q- QV ;..

Story to come:

- C will be our code space: use its two entangled qubits to encode our
information.

- Given C, we now need to identify error operators. These will be "local”
operators that act on codewords in C and transform them out of C.

- The only operators that transform codewords to other codewords, and
that are not the identity, are "non-local” in the sense of being associated
with the non-contractible closed loops c4, ¢, on the torus.




 Aside: Find the space C of eigenvectors of A, and B, with eigenvalue +1, for
' all vertices v and plaquettes p.

C={I$) € H : A,|S) = [$), BylS) = [$), Vv, p}

Constraints:

(a) B,|¢) = [$) requires that there must be an even number
of [1) qubits per plaquette, since Z|1) = —|1).

(b) A,|¢) = |€) requires that |€) must be a superposition of
an element of H and its single-qubit-flipped counterpart.

=1

LZ
1§} = 1_[ 27% (I + A,)|0)1-|0),: <= entangled state!

Proof: Letj =1, .., L% Then
Bp|§) =27V/2B, (I + Ay,)-++(I + A,,)|0..0)

= 2L/ (I+A4,)--(U+A4,.)B,|0..0) B, commutes with (I + A,) for all i, j
=2-L'2(I + A,)-(I + A,,.)|0...0) B, |0..0) = |0..0), for all j
= [$)

Claim: A vector |€) that satisfies (a) and (b) is given by: i



 Aside: Find the space C of eigenvectors of A, and B, with eigenvalue +1, for
' all vertices v and plaquettes p.

C={I$) € H : A,|S) = [$), BylS) = [$), Vv, p}

Constraints:

(a) B,|¢) = [$) requires that there must be an even number
of [1) qubits per plaquette, since Z|1) = —|1).

(b) A,|¢) = |€) requires that |€) must be a superposition of
an element of H and its single-qubit-flipped counterpart.

=1

LZ
1§} = 1_[ 27% (I + A,)|0)1-|0),: <= entangled state!

Proof: Let j =1, .., L? Then
Ay|&) =27L2A, (1 + A,)+( + 4,,)]0..0)
=27L/2(1 + A,)+A, (I + A, + A,)|0..0) A, commutes with (I + A,)
=27L/2(1 + A,)+(A,, + A, A,) (I + 4,,)]0..0)

Claim: A vector |€) that satisfies (a) and (b) is given by: !
= 2-L2(1 + A,) (I + A,) (I + A,.)]0..0) AA, =1 :



' 8 qubits (so H has 28 = 256 dimensions!) :
: 4 plaquettes: p;=1{1,3,4,5} p,=1{2,3,4,6} i
! p3=1{1,57,8} p,={2,6,7,8} !
1

| 4 vertices: v,={1,2,3,7} v,={1,2,4,8} !
: v3 — {31 5) 6; 7} v4- = {4’ 5’ 6’ 8} :

=4I + A,)(I + A,)(I + A,)(I + A,,)|00000000)
= %(I + 4,)(I + A4,)(I + A,){]00000000) + [00011101)}
= %(I + 4,) (I + 4,,){|00000000) + |00011101) + [00101110) + |00110011)}

= 14(I + A,,){|00000000) + [00011101) + [00101110) + [00110011) + |11010001)
+(11001100) + [11111111) + |11100010)}

= 14{|00000000) + |00011101) + [00101110) + |00110011) + |11010001) + |11001100)

+(11111111) + |11100010) + [11100010) + [11111111) + [11001100) + [11010001)
+]00110011) + |00101110) + [00011101) + [00000000)}

= 154{]00000000) + |00011101) + [00101110) + [00110011) .=—entangled state!
+(11010001) + |11001100) + |11111111) + [11100010)}



Three types of operators that act on C

First type: "Stabilizer"” operators.

e Composing adjacent plaquette operators B, , B,, to form B, B, results
in a closed loop of Z operators:

- B, and B, share an edge.
- B, B,, includes the square of the Z
operator of the shared edge, and Z% = I.

- S0: The Z's that appear in B, B, will act on
the qubits that form the boundary of the
two plaquettes!

- The same holds for any number of
adjacent plaquette operators.

- The same holds for vertex operators A,.

e Note: These closed loops are of type c on the torus.

Type c closed loop operators are called "stabilizer” operators:

- They act like the identity on C (since they are compositions of A, and B,, operators).

- They are "local” (in the sense that they are associated with contractible closed loops).

16



Three types of operators that act on C

Second type: "Encoded logical” operators.

e There are two other types of closed loops on a torus: non-contractible closed
loops ¢ and c,.

- Let Z; and Z, refer to the two types of
products of Z operators along closed
loops of type ¢4 and c,.

- Let X; and X, refer to the two types of
products of X operators along closed
loops of type ¢, and c,.

Types c; and ¢, closed loop operators are called "encoded logical” operators:

- They act on codewords in C and transform them into other codewords (they are not the
identity on C).

- They are not "local” operators (in the sense that they are associated with non-
contractible closed loops).

17



Why do the encoded logical operators map vectors in C to other vectors in C?

Claim 1. Any operator D that maps C to C must commute with all 4,
and B, operators.

i - Suppose DO = —0D (D anticommutes with O).
' - Then for any [1) € C, D|ip) = DO|p) = —OD|).

- S0: O(D|y)) = —(D[y)) # D).
- So: D|y) & C (contradiction!)

18



Why do the encoded logical operators map vectors in C to other vectors in C?

Claim 2. Any operator formed from an open path of X's or Z's will
anticommute with some 4, or B,

O— - Consider an operator formed from a

O product of I's on all qubits except for an
open path of Z's.

- This operator commutes with all B,,'s
(since Z commutes with itself).

- It commutes with all A,'s, except for the
two that contain the endpoint Z's.

- It anticommutes with these two A4,'s
(since Z anticommutes with X).

C
(
O
O

e To avoid "hanging" Z's at endpoints, form an operator from a closed loop of
Z's (or X's). (Closed loop operators commute with all B,’s and 4,,'s.)

- But: A type-c closed loop operator is - Solution: Form an operator from a
a stabilizer operator that acts like the non-contractible closed loop that
identity on C. has no enapoints!

19



Three types of operators that act on C

Third type: Error operators.

e By definition, error operators act on codewords and corrupt them (transform
them into states not in C).

OTOTOTOTO -5 . ated wi
- Error operators can't be associated with

O J) O products of Z's or X's on closed loops:

—QO O —(O— There are only three types, and each type
O O O O transforms codewords to codewords.

- (O— O O— - What about "open path" products of Z's or
O 0 0 0 & o X

—O—T 07070 O Claim: Open path products of Z's or X's
o O O @, O O transform codewords in C out of C.

oO+O0 "0 0O 0O

' roof: We've just seen that open path products of Z's or X's anticommute |
|
| with some 4, or B, and hence transform codewords out of C. !

"Open path" operators are "local” (in the sense that they are associated with
contractible line segments).

20



Summary: Three types of operators that act on C

1.

Stabilizer operators (local).
SZ(C) — ®jEch
§¥(c) = Rjec X;

Encoded logical operators (non-local).
Z1 = Qjey, Z; Z; = Qjey, Z;
X = Qjey, X X2 = ®jey, X

Error operators (local).
Sz(t) — ®jetzj
S¥(t) = Rjer X;

¢, ¢’ = contractible
closed loops

Y1, ¥'1 = non-contractible
closed loops of type c;4

Y2 ¥', = non-contractible
closed loops of type ¢,

t, t' = contractible open
paths

21



Now: Check to see if the KL Condition holds for the toric code.

e Does C correct the error set € = {§%(t), SX(t') : for all ¢, t'}?
- Is it the case that (1/)i|ETkEl|l/)j) = c0y, forany Ey, E, € €, and Py, Y, € C?

Yes!

OT-OT-OTOT0-
O (J> O F01(‘i any open-path operator E; between two
e O endpoints...
O O o
-O— OO
O O O O %) O
-O—+-O—+0O—+0—+0-
O O O O #) O
OO0 "0 "0




Now: Check to see if the KL Condition holds for the toric code.

e Does C correct the error set € = {§%(t), SX(t') : for all ¢, t'}?
- Is it the case that (1/)i|ETkEl|l/)j) = c0y, forany Ey, E, € €, and Py, Y, € C?

Yes!

- For any open-path operator E; between two
endpoints...

O

- ... there is always another E; with the same
O endpoints such that ELE, is a "type-c" closed
O
O

loop operator; i.e., a stabilizer operator.
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Now: Check to see if the KL Condition holds for the toric code.

e Does C correct the error set € = {§%(t), SX(t') : for all ¢, t'}?
- Is it the case that (1/)i|ETkEl|l/)j) = c0y, forany Ey, E, € €, and Py, Y, € C?

Yes!

- For any open-path operator E; between two

endpoints...
- ... there is always another E; with the same

endpoints such that ELE, is a "type-c" closed
loop operator; i.e., a stabilizer operator.

- And: Stabilizer operators act as the identity
on C.

o000 0

Upshot: We've encoded information "non-locally” in C in such
a way that local errors can be detected and corrected.
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Two senses of "non-locality” in the Toric Code

e Entanglement non-locality: The codewords (elements of C) are entangled states.

- Entanglement non-locality = Einstein non-locality + Bell non-locality

- Einstein non-locality occurs when two systems are correlated
and the correlation cannot be explained by a direct cause that
travels from one system to the other.

- Bell non-locality occurs when two systems are correlated and
the correlation cannot be explained by a common cause

e Topological non-locality: The operators that act on codewords are non-
contractible loop operators.

Ll el e e e e e e T B T I I I e

i Suppose: Topological non-locality occurs when a quantity
! is not localized to a contractible region of space.

Open Question: Under what conditions does entanglement
non-locality entail topological non-locality and/or vice-versa?

25



Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

- Interpret a Z (or X) error operator as
acting on a ground-state to produce a pair
of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

e ' e
t - What happens when we move an m
around an e?
t’
OO - |Whniiar) = SAO)S* (X))
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

- Interpret a Z (or X) error operator as
acting on a ground-state to produce a pair
of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

- What happens when we move an m
around an e?

- |Winitiar) = SZ(®)S*(t) | q)
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

)

|

I
‘ Zt Z t EX
I

1

A P P P

- Interpret a Z (or X) error operator as

acting on a ground-state to produce a pair

of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

- What happens when we move an m
around an e?

- |Winitiar) = SZ(®)S*(t) | q)
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

- Interpret a Z (or X) error operator as

X X
O=p--- ﬁ:){ acting on a ground-state to produce a pair
1
: of "e" (or "m") "quasiparticle" excitations
, , Iy at the ends of the open path.
—& &- i
t ! - What happens when we move an m
X around an e?
|
S EE R —— L J
Oz X X X - |Winida) = SZ@®)S*(t)1q)
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest

energy) of a physical system.

X X
e ———— ey
!X 1x
= |
]
P Zt Z:Xt EX
c’: |
1X Ix
t' ] I
S
o |Whna) = S*¥(c)SZ()S*(t)|q)

= —SZ(t)S*(c)S*(t)|q)
= —SZ(t)SX(t")S*(c)|q)
— _lqjinitial>

- Interpret a Z (or X) error operator as
acting on a ground-state to produce a pair
of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

- What happens when we move an m
around an e?

- |Winitiar) = SZ(®)S*(t) | q)

SZ(t) and SX(c") anticommute
SX(c") and S*(t") commute

SX(c") acts like the identity on C

e So: Moving an m quasiparticle completely around an e quasiparticle

changes the phase of the initial 4-particle state by —1.
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In general: When two particles are exchanged in a multiparticle
system, the multiparticle state |¥) picks up a phase |¥) — e!?|W¥).

Taking one particle around another is equivalent to two exchanges;
so W) — e?if|W),

So: Taking an m quasiparticle around an e quasi- !
particle produces the phase 2 = —-1,or0 =n/2.  ---=====--------- |
So: One exchange of an m quasiparticle and an e quasiparticle

produces the phase |¥) — ei™/2|W),

Bosons: Particle exchange phase 68 = 0.

Fermions: Particle exchange phase 6 = .

Anyons: Particle exchange phase 6 € (0, o).

Upshot: m and e quasiparticles are anyons!
(They obey "fractional statistics".)
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Physical significance: There are physical systems that exhibit
characteristics of the toric code!

e Fractional quantum Hall system: B

- 2-dim conductor in external
magnetic field B.

- At low temps, longitudinal
resistance vanishes, and
transverse (Hall) resistance
becomes quantized.

- Prediction: Low-energy
anyonic excitations.

Open Question: Can we build a topological quantum
computer out of a fractional quantum Hall system?
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