1. QECCs

07. QIT, Pal‘t III. 2. Topological QECCs

1. Quantum Error Correction Codes (QECCs)

e Goal: To encode information in qubits in such a way that errors due to
"noise" can be detected and corrected.
- But: Typical quantum algorithms encode information in entangled qubits.

- And: Attempts to detect and correct errors due to noise run the risk of decohering
entangled qubits, thus destroying the information.

Task: To detect and correct errors without
decohering the relevant entangled qubits.




Set-Up: Suppose information is encoded in a qubit |Q) = a|0) + b|1).

Step 1. Encode |Q) in a codeword.

* Do this by performing appropriate transformations _  ——— 7 ype of transiormations

on the single-qubit basis states |0), |1). gfr’;fgi’vseogxfjcfytgeogg .

e The new basis states form a space called the code space C.

e Complete the set of basis states to form a larger space

¢ =——— Cis asubspace of H
called the coding space .

Example: We might transform the single-qubit basis states into three-
qubit basis states:

|0) > |000)

|1) - |111)
- The codeword is then a|000) + b|111).

- The code space C is the space spanned by {|000), |111)}, which is a
2-dim subspace of the larger 8-dim three-qubit coding space space
H spanned by {|000), |001), |010), |100), |110), |101), [011), |111)}.




Step 2. Represent errors by multi-qubit operators constructed from the single-
qubit operators I, X, Y, Z.

e Errors "corrupt” the basis states of C, and hence the codeword,
projecting it out of C.

Example: We might transform the single-qubit basis states into three-
qubit basis states:

|0) = |000)
|1) - |111)
- The codeword is then a|000) + b|111).

- The code space C is the space spanned by {|000), |111)}, which is a
2-dim subspace of the larger 8-dim three-qubit coding space space
H spanned by {|000), |001), [010), |100), [110), |101), [011), |111)}.

- An error might be represented by the operator X QI I.

- This would produce a corrupted codeword a|100) + b|011), which
is an element of H but not of C.

Step 3. Devise an appropriate operation that acts on a corrupted codeword in H
and projects it back into C (thereby "correcting” it).



Necessary and sufficient condition for error-correction

e Let C = span{|yy), .., [{,)}, for some number p of basis states.
Let € ={E, .., E } be a set of g error operators.

Knill-Laflamme (KL) Condition: A code space C = span{|y), ..., [{,,)}
corrects the error set £ = {E}, .., E} if and only if

(i) (1/)l | ETk El | l/J]) —0 P — Corrupted basis states E|\;), E|y;) are orthogonal,

and hence distinguishable from each other

.. T T ) ) < Measurements made to determine the error
(ii) (YJlERE|Y:) = (W|EEY;), T+ )

will not give any information about the
codeword (and thereby possibly decohere it).

e Constraints (i) & (ii) together entail:

The projection of the operator E 1;(E ; onto

(l/)i | ETk El | l/)]> = Cyy 61’] AN the code space is a multiple of the identity

where ¢y, are arbitrary constants and ¢;; is the identity

Intuition: Errors can be corrected if we can reverse their damage;
i.e., if for any error E, there is a reverse error E Jrk.




Example: Single-qubit flip error correction code.

Task: To transmit a qubit |Q) = a|0) + b|1) in the presence of noise that flips

single-qubit basis states.

5 Encoding one qubit

Step 1. Encode |Q) in codeword |®) = a|000) + b|111). in & three-qubit state

e |®)is an element of the 2-dim code space C = span{|000), |[111)}.

* |Peorrupe) = al 1l )2l )3 + b|_)1|_)2|_); can take one of four forms:

000) + b
100) + b
010) + b
001) + b

Q Q Q Q

111)
011)
101)
110)

| @ corrupe) is an element of the 8-dim three-qubit space
H = span{|000), [001), |010), |[100), |110), |101), |011), |111)}

Step 2. Represent single-qubit flip errors by 4 three-qubit operators:
E={IRQIRLXRIRXIRQXRI, IRIR X}

VoM

does nothing  flips 1st qubit

W

flips 2nd qubit flips 3rd qubit



Step 3. Error detection/correction protocol:

(a) Attach two "empty register” qubits [00) to [D )

(b)

(b)

| P corrupe|00) = {al__)1]__)2l )3 + b| 1| )2l_)3}10)40)s

Error detection:

0 XOR0=0 !
- Perform XOR on qubits 1 and 2 and store result in qubit 4. ' OXOR1=1"
- Perform XOR on qubits 1 and 3 and store result in qubit 5.  LXORO =1
t 1XOR1=0 ,

Error correction: Measure qubits 4 and 5 to determine form

__________

of |®.orrype) and what three-qubit operator to use to correct it.

Corrupted codeword /[register  Error detection

{a
{a
{a
{a

000) + b|111)}|00) {a|000) + b|111)}|00)
100) + b|011)}|00) {a|100) + b|011)}[11)
010) + b|101)}|00) {a|010) + b|101)}|10)
001) + b|110)}|00) {a|001) + b|110)}|01)

Error correction
IRXIR]
XQRIRQI
IRXXI
IRXIRX

Both detection and correction protocols do not decohere |® .oype)!



e Now: Check to see if the KL Condition holds for our single-qubit flip error
correction code:
Does C = span{|000), |111)} correct the error set € = {II1, XII, IXI, I11X}?

- Do the following constraints hold, for any E,, E; € &:
(i) (OOO|E (E|111) =0
(ii) (OOO|E El|000)—(111|E LE]111)

- Note:I'=111=1X'=X XX=1.

- Also: (AQBQC)(DQEQF) = (AD)® (BE) ® (CF)
- So,eg., (XIDTUIX) = (XD U)X (IX) = XIX

- In general: In all combinations of E E;, there will be at most two X's.

- So: Any combination of E* «E; will fail to convert |111) into |000) or
vice-versa.

- Thus: In all cases of both (i) and (ii), the inner products will vanish.




2. Topological Quantum Error Correction Codes

e [s there a way to guarantee the KL Condition for
a QECC based on the topology of the physical Yes!
system we use to encode information in qubits?

e Immediate goal: To construct a QECC from a
physical system with a non-trivial topology.

o Ultimate goal: To build a "topological”
quantum computer.




A topological property of a surface is a property that remains invariant under
continuous deformations of the surface.

Example: Consider 2-dim surface of a torus.

' Three types of closed paths:

- Loops ¢ which can be continuously
deformed into a point.

continuously deformed into a point.

- Loops ¢, which cannot be

1
1
1
1
1
1
1
1
- Loops ¢4 which cannot be :
|
1
1
1

continuously deformed into a point. ,

e ¢, and c, are called "non-contractible” loops.

- Neither c, ¢4, nor c, can be continuously deformed into the others.

e The surface of a torus is characterized by these three families of loops.

- They describe features of the torus that are invariant under continuous deformations
of its surface (i.e., they are topological properties).



Slightly more abstract way to represent a torus: unwind it into a flat surface with
periodic boundary conditions.

P e o s s o S M M M M EEE M M M M MEE M M M M M

' Periodic boundary conditions:

|

|

I |

(-\/> i - Identify top and bottom edges. i
I |

|

) = Identify left and right edges.

Let's add some (abstract) physics...
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Kitaev (2003)

The Toric Code

Y
U/
O e Putan L X L lattice on the torus
e' with L? vertices.
O (C e On each lattice edge, place a qubit.
__ O—
O 2L? -qubit Hilbert space H =V, Q- Q V5,2,

where each V is a single-qubit Hilbert space.

X
2¢O
OO0 0

e For each vertex v define a vertex operator A, Acts as I on all qubits except

A, =1 Q-1 (XX (1+1) R X (142) R X (i 43)) < those on edges leading to v, on

which it acts as X.
®I(i+4) X- 1212

 For each plaquette p define a plaquette operator B,,:
Bp — ]1®...®10_1)® (ZU)®ZU+1)®ZU+2)®Z(]'+3)) <~ Acts as I on all qubits except

those on edges around p, on
®IU+4)®“’I(2L2) which it acts as Z.
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Exercise: Find the space C of eigenvectors of all 4, and B, operators with
eigenvalue +1.

C = {|¢) € H, such that 4,|¢) = [$), B,[S) = |¢), for all v, p}

i Claim: C is a 4-dim (i.e., two-qubit) subspace of H with "topologically i
' distinct” basis states {|€) e, [€)eor [€)0er [€)0o) that are entangled with !

Story to come:

- C will be our code space: use its two entangled qubits to encode
information in a topologically non-local way.

- Operators that act like the identity on C will be "local” operators associated
with contractible loops.

- Operators that transform codewords to other codewords (that are not the
identity) will be "non-local” operators associated with non-contractible
loops on the torus. They preserve the non-local aspects of C.

- Error operators will be "local” operators associated with contractible open
paths.

12



Exercise: Find the space C of eigenvectors of all 4, and B, operators with
eigenvalue +1.

C = {|¢) € H, such that 4,|¢) = [$), B,[S) = |¢), for all v, p}

Constraints:
(a) B,|¢) = [¢) requires that any |¢) must either be the |0) 2L2-qubit state, or
have an even number of |1) qubits per plaquette, since Z|1) = —|1).

Claim: Constraint (a) entails |§) is either the |0) 2L?-qubit state or a loop state.

OTOTOT0O07T0- i 7 - -7 - -
@ S - - L ' Def: A loop state is a 2L?-qubit state
' that has |1)'s along one or more
_O N e :
O O O ~ 5 ~ 3 O_ | closed loops that do not intersect
- ~ . vertices, and |0)'s everywhere else.
- O— O——@)— Lo Il I DT T
o O Q @'—'® O
—O OO0 __
A loop state consisting of three closed loops
Q o <> 1 Cb o Cb o (b o O of |1)'s. (The "empty" qubits are |0)'s.)
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Exercise: Find the space C of eigenvectors of all 4, and B, operators with
eigenvalue +1.

C = {|¢) € H, such that 4,|¢) = [$), B,[S) = |¢), for all v, p}

Constraints:

(b) A,|&) = |¢) requires that any |§) must be a superposition of a vector in H
and its A -flipped counterpart, since X flips qubits.

OT 0O+ 00
Q #3 Qg QID #3 O Example:
—O O O O - This loop state is not a +1 eigenvector of any A,,,
O #} O ) Q since they flip |0)'s to |1)'s and |1)'s to |0) s.
—O O B O 1)
O (I) O T—@ D= O
- O—1-0{-00+0
O O O O O O
o+ro o0 "0 "0
lloop)

14



Exercise: Find the space C of eigenvectors of all 4, and B, operators with
eigenvalue +1.

C = {|¢) € H, such that 4,|¢) = [$), B,[S) = |¢), for all v, p}

Constraints:

(b) A,|&) = |¢) requires that any |§) must be a superposition of a vector in H
and its A -flipped counterpart, since X flips qubits.

Example:

- But: The sum of the loop state and any of its A,-
flipped counterparts is a +1 eigenvector of that
vertex operator!

- Ay, t|loop) + 4, |loop)} = {4, |loop) + |loop)}

- Also note: Any A, that acts on all |0)'s creates a
loop. And any A, that "touches" a loop deforms it
into another loop.

- So: If |€) is a loop state, then so is A,|&) for all v.

15



Exercise: Find the space C of eigenvectors of all 4, and B, operators with
eigenvalue +1.

C = {|¢) € H, such that 4,|¢) = [$), B,[S) = |¢), for all v, p}

Constraints:

(a) B,|¢) = [¢) requires that any |¢) must either be the |0) 2L?-qubit state or a
loop state.

(b) A,|&) = |¢) requires that any [§) must be a superposition of a vector in H
and its A -flipped counterpart.

Claim: A vector that satisfies (a) and (b) is given by:

[$)ee =

1—[L2 - Start with |0) 2L>—qubit state.

2—1/2 (I + A )|0> |0) , <—S_ - Then add all other states that can
Ui 1 2L be obtained via A,-flips, and their

1=1 unflipped counterparts.

Proof: Letj=1,.., L2 Then
By |§)ee = 271/2B, (I + Ay)-~(I + 4,,)]0--0)
= 2-L/2(] + Ay )+ Ay)By |0--0) By, commutes with (I + A,) for alli, j
= 2-L/2(] + Ay)(I+ Ay.)[0---0) B, |0---0) = |0---0), for all j
= |€>ee

16



Exercise: Find the space C of eigenvectors of all 4, and B, operators with
eigenvalue +1.

C = {|¢) € H, such that 4,|¢) = [$), B,[S) = |¢), for all v, p}

Constraints:

(a) B,|¢) = [¢) requires that any |¢) must either be the |0) 2L?-qubit state or a
loop state.

(b) A,|&) = |¢) requires that any [§) must be a superposition of a vector in H
and its A -flipped counterpart.

Claim: A vector that satisfies (a) and (b) is given by:

[$)ee =

1—[L2 - Start with |0) 2L>—qubit state.

2—1/2 (I + A )|0> |0) , <—S_ - Then add all other states that can
Ui 1 2L be obtained via A,-flips, and their

1=1 unflipped counterparts.

Proof: Letj =1, .., L2 Then
Ay|8)ee = 271124, (I + A,) (I + 4,,)]0..0)
— 2-1%/2 (I + Avl)'“Avj(I + Avj)"'(l + 4,,.)]0...0) A, commutes with (I + A,)
=272 (1 + A, (Ay, + Ay Ay)(I + Ay,)]0..0)
=271+ A,) (I + A,)--(I +4,,)]0..0) A A, =1

17



Exercise: Find the space C of eigenvectors of all 4, and B, operators with
eigenvalue +1.

C = {|¢) € H, such that 4,|¢) = [$), B,[S) = |¢), for all v, p}

$)ee =

1—[L2 - Start with |0) 2L2—qubit state.

2—1/2 (I + A )lO) |O) , S - Then add all other states that can
Vi 1 2L be obtained via A,-flips, and their

1=1 unflipped counterparts.

e Note: The |0) 2L?-qubit state has an even number (zero!) of c; and ¢, loops.

e And: The (I + A,) operators do not change the parity of the number of ¢, and c,
loops (so |€),. also has an even number of ¢; and ¢, loops).

e Which means: There are four topologically distinct types of elements of C:

¢)ee : looOp state with even # ¢, loops and even # ¢, loops.
¢)eo : loOp state with even # ¢, loops and odd # ¢, loops.

¢)oe : loOp state with odd # ¢, loops and even # ¢, loops.

¢)oo : loop state with odd # ¢, loops and odd # ¢, loops.

- Topologically distinct bases vectors.

e S50: C = span{|&)ee, [€)eor 1€)0er [€)00} = Entangled with respectto H =V, Q- QV ;2.
18



i O O— ' 8 qubits (so H has 28 = 256 dimensions!) !

® m ® : 4 plaquettes: p; ={1,3,4,5} p,=1{2,3,4,6} i
| p:={1578} p.={2678} |

@ s (Ifb Py ' 4vertices: v, ={1,2,3,7} v,={1,2,4,8} |
! ={3,5,6,7} v,={4,56,8} ,

- o O O D B M B M B BN BN EEE BN M B M M M M e M M e Ee e me ome owd

=1 + 4, + 4,)( + 4,)(I + 4,)]00000000)
= 1% + A,)(I + A,) (I + 4,){/00000000) + |00011101)}
= 1%(I + A,)(I + A,){|00000000) + [00011101) + [00101110) + |00110011)}

= 14 (I + 4,){|00000000) + [00011101) + [00101110) + [00110011) + [11010001)
+111001100) + [11111111) + [11100010)}

= 14{]00000000) + [00011101) + [00101110) + [00110011) + [11010001) + |11001100)

+]11111111) + [11100010) + [11100010) + [11111111) + [11001100) + [11010001)
+1]00110011) 4+ [00101110) + |00011101) + [00000000)}

- entangled state!

= 15{|00000000) + [00011101) + [00101110) + |[00110011) <= - each term has even #of 1's
- each term has an A, -

+]11010001) + |11001100) + [11111111) + |11100010)}  flipped counterpart



Three types of operators that act on C

First type: "Stabilizer" operators.

e Composing adjacent plaquette operators B, , B, to form B, B,, results
in a loop of Z operators:

- B, and B,, share an edge.

- B, B, includes the square of the Z
operator of the shared edge, and Z? = I.

- S0: The Z's that appear in B, B, will act on
the qubits that form the boundary of the
two plaquettes!

- The same holds for any number of
adjacent plaquette operators.

- The same holds for vertex operators A,.

e Note: These loops are of type ¢ on the torus.

Type c loop operators are called "stabilizer” operators:

- They act like the identity on C (since they are compositions of A, and B, operators).

- They are "local” (in the sense that they are associated with contractible loops).

20



Three types of operators that act on C

Second type: "Encoded logical” operators.

e There are two other types of loops on a torus: non-contractible loops ¢, and c,.

- Let Z, and Z, refer to the two types of
products of Z operators along loops of
type ¢4 and c,.

- Let X; and X, refer to the two types of
products of X operators along loops of
type ¢4 and c,.

Types c; and ¢, loop operators are called "encoded logical” operators:

- They act on codewords in C and transform them into other codewords (they are not
the identity on C).

- They are not "local” operators (in the sense that they are associated with non-
contractible loops).

21



Aside: Why do the non-contractible loop operators map vectors in C to other

vectors in C?

Claim 1. Any operator D that maps C to C must commute with all 4,
and B, operators.

- S50: O(D[Y)) = —=(D[Y)) # D|Y).
- But: O is the identity on C!
- So: D|Y) € C (contradiction!)

- Or: OD[3p) = —DOJp) = —D|).

Claim 1 (reworded).
(maps C to C) = (commutes with all 4,, B,)

22



Aside: Why do the non-contractible loop operators map vectors in C to other
vectors in C?

Claim 2. Any operator formed from an open path of X's or Z's will
anticommute with two 4,'s or two B,'s.

Consider an operator S%(t) which is the identity
on all qubits except for an open path t of Z's.

5%(t) commutes with all B,,'s.

- We only need to consider B,,'s with Z's that overlap the Z's in S%(t).
- Those B,'s commute with S%(t), since Z commutes with itself.

S$%(t) commutes with all A,'s, except for
the two at the endpoints of t.

- We only need to consider A,'s with X's that overlap the Z's in S%(t).

- Those A,'s that are not at the endpoints of t commute with S%(t),
since each one has 2 X''s that overlap 2 Z's in S%(t), and Z
anticommutes with X.

Claim 2 (reworded). S%(t) anticommutes with the two A,'s at the
(open path operator) = endpoints of t.

— (Commutes with all Av' Bp) - Each of these A,,'s has 1 X that overlaps 1 Z in S%(t), and Z
anticommutes with X.

23



Aside: Why do the non-contractible loop operators map vectors in C to other
vectors in C?

Claim 1 (reworded).
(maps C to C) = (commutes with all 4,, B,))

Claim 2 (reworded).
(open path operator) = —(commutes with all 4,, B,))

e Claims 1 & 2 entail:

(maps C to C) = —(open path operator)

e S0: A code space operator is either an individual 4, or B,, or a loop operator.

e And: The identity on C is either an individual 4, or B, or a contractible loop
operator.

- Moreover: A non-contractible loop operator cannot be constructed by a product of A,'s
or B,'s (such a product is the boundary of a set of adjacent plaquettes or vertices).

So: A non-contractible loop operator is a code space operator

that is not the identity on C.
24



Three types of operators that act on C

Third type: Error operators.

e By definition, error operators act on codewords and corrupt them (transform
them into states not in C).

() ) () ()
-/ - QJ) -/ J) O - Error operators can't be associated with
O O products of Z's or X's on loops: There are
—CO —(O— only three types, and each type transforms
O C O O codewords to codewords.
—(O— O— - What about "open path" products of Z's or
o O O O O O X
—O 7 Claim: Open path products of Z's or X's
O O O O O O transform codewords in C out of C.

! . [ [ . !
' Proof: We've just seen that open path products of Z's or X's anticommute !
, with two A4,'s or tow B,'s, and hence transform codewords out of C. !

e "Open path" operators are "local” (in the sense that they are associated with
contractible line segments).

25



Summary: Three types of operators that act on C

1.

Stabilizer operators (local).
SZ(C) — ®jEch
§¥(c") = Qjec X;

Encoded logical operators (non-local).
Z1 = Qjey, Z; Z2 = Bjey, Z;
Xl = ®j€y'1 Xj XZ = ®j€y'2 Xj

Error operators (local).
Sz(t) — ®j€tzj
SX(t') = Rjer X;

¢, ¢' = contractible
loops

Y1, ¥'1 = non-contractible
loops of type ¢,

Y2 ¥'2 = non-contractible
loops of type ¢,

t, t' = contractible open
paths

26



Now: Check to see if the KL Condition holds for the toric code.

e Does C correct the error set € = {§%(t), SX(t") : for all t, t'}?

- Is it the case that (1/)1-|ETkEl|1/Jj) = Cy0y, forany Ey, E; € €, and Y, ; € C?

Yes!

- For any open-path operator E; between two
endpoints...

27



Now: Check to see if the KL Condition holds for the toric code.

e Does C correct the error set € = {§%(t), SX(t") : for all t, t'}?
- Is it the case that (1/)1-|ETkEl|1/Jj) = Cy0y, forany Ey, E; € €, and Y, ; € C?

Yes!

M Y I 7\
@, O O—
C O For any open-path operator E; between two
endpoints...
C o - .. there is always another E; with the same

endpoints such that ETkEl is a "type-c" loop
O— operator; Le., a stabilizer operator.

O
O




Now: Check to see if the KL Condition holds for the toric code.

e Does C correct the error set € = {§%(t), SX(t") : for all t, t'}?

- Is it the case that (1/)1-|ETkEl|1/Jj) = Cy0y, forany Ey, E; € €, and Y, ; € C?

Yes!

- For any open-path operator E; between two
endpoints...

- ... there is always another E;, with the same
endpoints such that ETkEl is a "type-c" loop

operator; i.e., a stabilizer operator.

- And: Stabilizer operators act as the identity
on C.

o000 0O

Upshot: We've encoded information "non-locally” in € in such
a way that local errors can be detected and corrected.

29



Two senses of "non-locality” in the Toric Code

e Entanglement non-locality: The codewords (elements of C) are entangled states.

- Entanglement non-locality = Einstein non-locality + Bell non-locality

- Einstein non-locality occurs when two systems are correlated
and the correlation cannot be explained by a direct cause that
travels from one system to the other.

- Bell non-locality occurs when two systems are correlated and
the correlation cannot be explained by a common cause

e Topological non-locality: The operators that act on codewords are non-
contractible loop operators.

————————————————————————————————————————————

i Suppose: Topological non-locality occurs when a quantity
' is not localized to a contractible region of space.

Open Question: Under what conditions does entanglement
non-locality entail topological non-locality and/or vice-versa?
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

- Interpret a Z (or X) error operator as
acting on a ground-state to produce a pair

of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

90— 4 Che
t - What happens when we move an m
around an e?
tl
Tty P P - |Winitiar) = SZ()S* () q)
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

- Interpret a Z (or X) error operator as
acting on a ground-state to produce a pair

of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

90— 4 Che
t - What happens when we move an m
around an e?
OGO - |Winita) = SZ(®)S*(¢)1q)
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

- Interpret a Z (or X) error operator as

@X acting on a ground-state to produce a pair

of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

—e 4 4 @— S
t - What happens when we move an m
| X around an e?
I
O e i i T - |Winitiat) = SZ()S*(t)|q)
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest
energy) of a physical system.

- Interpret a Z (or X) error operator as
-“ﬁ - [l

I, acting on a ground-state to produce a pair
|

! of "e" (or "m") "quasiparticle" excitations
|
|
|
|
|
|
[ |
|

@=L -

at the ends of the open path.

—e 4 4 @— S
t - What happens when we move an m
X around an e?
O e i i T - |Winitiat) = SZ()S*(t)|q)
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Let's add some (slightly more concrete) physics...

e Interpret the code space C as the space of ground-states |g) (states of lowest

energy) of a physical system.

X X
F=f=———- ——
Ix 1x
I [
! I
l
P Zt Z:X o iX
o : 1
Ix X
t’ i i
SRR -
° LIinnal) — SX(C’)SZ(t)SX(t’)|q>

= —SZ(£)S*(c")S*(t")|q)
= —SZ(£)S*(t")S*(c")|q)
— _lqjinitial>

- Interpret a Z (or X) error operator as
acting on a ground-state to produce a pair

of "e" (or "m") "quasiparticle" excitations
at the ends of the open path.

- What happens when we move an m
around an e?

- [ Winiciar) = SZ(®)SX(t)|q)

S%(t) and S*(c") anticommute
SX(c") and S*(t") commute

SX(c") acts like the identity on C

e So: Moving an m quasiparticle completely around an e quasiparticle

changes the phase of the initial 4-particle state by —1.
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In general: When two particles are exchanged in a multiparticle
system, the multiparticle state |¥) picks up a phase |¥) — e®|W).

Taking one particle around another is equivalent to two exchanges;
so |W) — e?if|P).

. . . . . S .
So: Taking an m quasiparticle around an e quasi i £%0 = ¢os2 + isin28 |

particle produces the phase e2 = —1,0or 0 = /2.  '-=-=-------------

So: One exchange of an m quasiparticle and an e quasiparticle
produces the phase |¥) — ei™/2|P),

Bosons: Particle exchange phase 6 = 0.

Fermions: Particle exchange phase 6 = .

Anyons: Particle exchange phase 6 € (0, ).

Upshot: m and e quasiparticles are anyons!
(They obey "fractional statistics".)
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Physical significance: There are physical systems
that exhibit characteristics of the toric code!

e Fractional quantum Hall system:

- 2-dim conductor in external
magnetic field B.

- At low temps, longitudinal
resistance vanishes, and
transverse (Hall) resistance
becomes quantized.

- Prediction: Low-energy
anyonic excitations.

Open Question: Can we build a topological quantum
computer out of a fractional quantum Hall system?
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