
07.	QIT,	Part	II.	
1.	Quantum	Dense	Coding
• Goal: To	use	one	qubit	to	transmit	two	classical	bits.
• But:	One	qubit	(supposedly)	only	contains	one	classical	bit's	worth	of	
information!

• So:	How	can	we	send	2	classical	bits	using	just	one	qubit?
• Answer:	Use	entangled	states!

1. Quantum	Dense	Coding
2. Quantum	Teleporation
3. Quantum	Computation
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Set-Up:

2 classical	
bits	encoded

Decoder
Encoder
𝐼,	𝑋,	𝑌,	𝑍

𝑄1 to	Alice 𝑄2 to	Bob

• Alice	gets	𝑄1,	Bob	gets	𝑄2.

2 classical	
bits	decoded1 qubit	sent

• Alice	manipulates	her	𝑄1	so	that	it	steers	Bob's	𝑄2	into	a	state	from	which	he	
can	read	off	the	2	classical	bits	Alice	desires	to	send.	All	he	needs	to	do	this	is	the	
post-manipulated	𝑄1	that	Alice	sends	to	him.

source

• Prepare	two	qubits	𝑄1,	𝑄2	in	an	entangled	state	|Ψ+⟩	=	 ½ (|0⟩1|0⟩2 +	|1⟩1|1⟩2)

|Ψ+⟩	=	 ½ (|0⟩1|0⟩2+	|1⟩1|1⟩2)
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Protocol
1. Alice	has	a	pair	of	classical	bits:	either	00,	01,	10,	or	11.

She	first	encodes	the	pair	in	𝑄1	by	acting	on	𝑄1	with	one	of	{𝐼,	𝑋,	𝑌,	𝑍} according	to:

2. Alice	now	sends	𝑄1	to	Bob.

According to the Eigenvalue-Eigenvector Rule, 𝑄1 still has no definite value, but 𝑄2 now does!

- Let	𝑄1 and	𝑄2 be	electrons	in	
Hardness	states.
- Let	|0⟩ be	|𝑠𝑜𝑓𝑡⟩ and	|1⟩ be	|ℎ𝑎𝑟𝑑⟩.

pair transform new		state
00 (𝐼1⊗	𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 +	|1⟩1|1⟩2)	=	|Ψ+⟩

01 (𝑋1⊗ 𝐼2)|Ψ+⟩ ½ (|1⟩1|0⟩2 +	|0⟩1|1⟩2)	=	|Φ+⟩

10 (𝑌1⊗ 𝐼2)|Ψ+⟩ ½ (−|1⟩1|0⟩2 +	|0⟩1|1⟩2)	=	|Φ−⟩

11 (𝑍1⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 − |1⟩1|1⟩2)	=	|Ψ−⟩

3. After	reception	of	𝑄1,	Bob	first	applies	a	CNOT transformation	to	both	𝑄1	and	𝑄2:

pair transform new		state Apply	CNOT
00 (𝐼1⊗	𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 +	|1⟩1|1⟩2)	=	|Ψ+⟩ ½ (|0⟩1 +	|1⟩1)|0⟩2

01 (𝑋1⊗ 𝐼2)|Ψ+⟩ ½ (|1⟩1|0⟩2 +	|0⟩1|1⟩2)	=	|Φ+⟩ ½ (|1⟩1 +	|0⟩1)|1⟩2

10 (𝑌1⊗ 𝐼2)|Ψ+⟩ ½ (−|1⟩1|0⟩2 +	|0⟩1|1⟩2)	=	|Φ−⟩ ½ (−|1⟩1 +	|0⟩1)|1⟩2

11 (𝑍1⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 − |1⟩1|1⟩2)	=	|Ψ−⟩ ½ (|0⟩1 − |1⟩1)|0⟩2
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5. Bob	now	measures	𝑄1	and	𝑄2	to	determine	the	number	Alice	sent!

(a) (𝑄1	=	0,	𝑄2	=	0)	⇒ 00 (c) (𝑄1	=	1,	𝑄2	=	1)	⇒ 10

(b) (𝑄1	=	0,	𝑄2	=	1)	⇒ 01 (d) (𝑄1	=	1,	𝑄2	=	0)	⇒ 11

4. Bob	now	applies	a	Hadamard	transformation	to	𝑄1:

According to the EE Rule, 𝑄1 and 𝑄2 now both have definite values.

Protocol

pair transform new		state Apply	CNOT Apply	ℌ1

00 (𝐼1⊗	𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 +	|1⟩1|1⟩2)	=	|Ψ+⟩ ½ (|0⟩1 +	|1⟩1)|0⟩2 |0⟩1|0⟩2

01 (𝑋1⊗ 𝐼2)|Ψ+⟩ ½ (|1⟩1|0⟩2 +	|0⟩1|1⟩2)	=	|Φ+⟩ ½ (|1⟩1 +	|0⟩1)|1⟩2 |0⟩1|1⟩2

10 (𝑌1⊗ 𝐼2)|Ψ+⟩ ½ (−|1⟩1|0⟩2 +	|0⟩1|1⟩2)	=	|Φ−⟩ ½ (−|1⟩1 +	|0⟩1)|1⟩2 |1⟩1|1⟩2

11 (𝑍1⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 − |1⟩1|1⟩2)	=	|Ψ−⟩ ½ (|0⟩1 − |1⟩1)|0⟩2 |1⟩1|0⟩2
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• Not transferred	via the	single	qubit.
• Transferred	by	the	correlations present	in	the	2-qubit	entangled	state	|Ψ+⟩.
• In	order	to	convey	information	between	Alice	and	Bob,	it	need	not be	physically	
transported	from	Alice	to	Bob	across	the	intervening	spatial	distance.

• The	only thing	required	to	convey	information	is	to	set	up	a	correlation	between	
the	sender's	data	and	the	receiver's	data.

Question:	How	are	the	2	classical	bits	transferred	from	Alice	to	Bob?

Encoder
Decoder

source

2 classical	
bits	decoded

2 classical	
bits	encoded 1 qubit	sent

𝑄1 to	Alice 𝑄2 to	Bob

𝐼,	𝑋,	𝑌,	𝑍

|Ψ+⟩	=	 ½ (|0⟩1|0⟩2+	|1⟩1|1⟩2)
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2.	Quantum	Teleportation
• Goal:	To	transmit	an	unknown	quantum	state	using	classical	bits	and	to	
reconstruct	the	exact	quantum	state	at	the	receiver.

• But:	How	can	this	avoid	the	No-Cloning	Theorem?
• Answer:	Use	entangled	states!
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• Alice	has	an	unknown	𝑄0,	|𝑄⟩0 =	𝑎|0⟩0 +	𝑏|1⟩0,	and	wants	to	send	it	to	Bob.

unkown	𝑄0

Set-Up:

DecoderEncoder
𝐼,	𝑋,	𝑌,	𝑍

unknown	𝑄0
reconstructed

2	classical	bits	sent

• Alice	manipulates	𝑄0	and	𝑄1	so	that	they	steer	Bob's	𝑄2	into	a	form	from	which	
he	can	reconstruct	the	unknown	state	of	𝑄0.	All	Bob	needs	to	do	this	are	2	
classical	bits	sent	by	Alice.

source

𝑄1 to	Alice 𝑄2 to	Bob

• 𝑄1	and	𝑄2	are	prepared	in	an	entangled	state	|Ψ+⟩	=	 ½ (|0⟩1|0⟩2 +	|1⟩1|1⟩2).
Alice	gets	𝑄1,	Bob	gets	𝑄2.

|Ψ+⟩	=	 ½ (|0⟩1|0⟩2+	|1⟩1|1⟩2)
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Protocol
1. Alice	starts	with	a	3-qubit	system	(𝑄0,	𝑄1,	𝑄2)	in	the	state:

|𝑄⟩0|Ψ+⟩	=	 ½ (𝑎|0⟩0|0⟩1|0⟩2+	𝑎|0⟩0|1⟩1|1⟩2+	𝑏|1⟩0|0⟩1|0⟩2+	𝑏|1⟩0|1⟩1|1⟩2)

Alice	now	applies	CNOT on	𝑄0	&	𝑄1,	and	then	a	Hadamard	transformation	on	𝑄0:

First	CNOT on	𝑄0 & 𝑄1:

(CNOT01⊗𝐼2)|𝑄⟩0|Ψ+⟩	=	 ½ (𝑎|0⟩0|0⟩1|0⟩2+	𝑎|0⟩0|1⟩1|1⟩2+	𝑏|1⟩0|1⟩1|0⟩2+	𝑏|1⟩0|0⟩1|1⟩2)

2. Alice	now	measures	𝑄0 and	𝑄1:

If	measurement	outcome	is: ...𝑄2 is	now	in	state:
|0⟩0|0⟩1 𝑎|0⟩2 +	𝑏|1⟩2
|0⟩0|1⟩1 𝑎|1⟩2 +	𝑏|0⟩2
|1⟩0|0⟩1 𝑎|0⟩2 − 𝑏|1⟩2
|1⟩0|1⟩1 𝑎|1⟩2 − 𝑏|0⟩2

Then	ℌ on	𝑄0:
(ℌ0⊗𝐼1⊗𝐼2)(″ ″)=	½|0⟩0|0⟩1(𝑎|0⟩2+	𝑏|1⟩2)	+	½|0⟩0|1⟩1(𝑎|1⟩2+	𝑏|0⟩2)

+	½|1⟩0|0⟩1(𝑎|0⟩2− 𝑏|1⟩2)	+	½|1⟩0|1⟩1(𝑎|1⟩2− 𝑏|0⟩2)

EE Rule: Each of the terms 
represents a state in which 
𝑄0 and 𝑄1 have definite 
values, but 𝑄2 does not.
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Protocol

3. Alice	sends	the	result	of	her	measurement	to	Bob	in	the	form	of	2	classical	bits:	
00,	01,	10,	or	11.

4. Depending	on	what	he	receives,	Bob	performs	one	of	{𝐼,	𝑋,	𝑌,	𝑍} on	𝑄2.
This	allows	him	to	turn	it	into	(reconstruct)	the	unknown	𝑄0.

If	bits	received	are ...then	𝑄2 is	now	in	state ...so	to	reconstruct	𝑄0,	use
00 𝑎|0⟩2 +	𝑏|1⟩2 𝐼2
01 𝑎|1⟩2 +	𝑏|0⟩2 𝑋2
10 𝑎|0⟩2 − 𝑏|1⟩2 𝑍2
11 𝑎|1⟩2 − 𝑏|0⟩2 𝑌2

If	measurement	outcome	is: ...𝑄2 is	now	in	state:
|0⟩0|0⟩1 𝑎|0⟩2 +	𝑏|1⟩2
|0⟩0|1⟩1 𝑎|1⟩2 +	𝑏|0⟩2
|1⟩0|0⟩1 𝑎|0⟩2 − 𝑏|1⟩2
|1⟩0|1⟩1 𝑎|1⟩2 − 𝑏|0⟩2
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Question	1:	Does	Bob	violate	the	No-Cloning	Theorem?	Doesn't	he	construct	a	copy	
of	the	unknown	𝑄0?

• No	violation	occurs.
• Bob	does construct	a	copy:	𝑄2 has	become	an	exact	duplicate	of	𝑄0.

unkown	𝑄0 DecoderEncoder
𝐼,	𝑋,	𝑌,	𝑍

source

𝑄1 to	Alice 𝑄2 to	Bob

unknown	𝑄0
reconstructed

2	classical	bits	sent

• But:	After	Alice	is	through	transforming	𝑄0 and	𝑄1,	the	original	𝑄0 has	now	
collapsed	to	either	|0⟩0 or	|1⟩0!
- Alice	destroys	𝑄0 in	the	process	of	conveying	the	information	contained	in	it	to	Bob!

|Ψ+⟩	=	 ½ (|0⟩1|0⟩2+	|1⟩1|1⟩2)
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unkown	𝑄0 DecoderEncoder
𝐼,	𝑋,	𝑌,	𝑍

source

𝑄2 to	Bob

unknown	𝑄0
reconstructed

2	classical	bits	sent

Question	2:	How	does	Bob	reconstruct	the	unknown	𝑄0 (that	encodes	an	
arbitrarily	large	amount	of	information)	from	just	2	classical	bits?

• Information	to	reconstruct	𝑄0 is	transferred	by	the	correlations	present	in	the	
entangled	state	|Ψ+⟩,	in	addition to	the	2	classical	bits.

• The	2	classical	bits	are	used	simply	to	determine	the	appropriate	trans-
formation	on	𝑄2,	after it	has	been	"steered"	into	the	appropriate	state	by	Alice.

𝑄1 to	Alice

|Ψ+⟩	=	 ½ (|0⟩1|0⟩2+	|1⟩1|1⟩2)
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3.	Quantum	Computation.
• General	Goal:	To	use	the	inaccessible	arbitrarily	large	amount	of	information	
encoded	in	qubits	to	perform	computations	in	"quantum	parallel"	(i.e.,	in	record	
time!).	

• Initial	(modest)	Goal:	To	compute	all	possible	values	of	a	function	𝑓 in	a	single	
computation.

• First	Question:	Can	classical	computations	be	done	using	qubits	instead	of	
classical	bits?
- Can	transformations	on	qubits	be	defined	that	reproduce	the	transformations	on	
bits	that	are	needed	to	implement	a	classical	computer.
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Classical	Computation	Using	Bits
To	implement	a	classical	computer,	it	suffices	to	have	an	AND transformation	and	a	
NOT transformation	on	classical	bits	defined	by	the	following:

- AND takes two input bits and 
produces one output bit.

- NOT takes one input bit and 
produces one output bit.  

0	AND 0	=	0 NOT 0	=	1
0	AND	1	=	0 NOT 1	=	0
1	AND	0	=	0
1	AND	1	=	1

• Initial	problem:	Transformations	on	qubits	are	reversible:	the	number	of	input	
qubits	alwaysmust	equal	the	number	of	output	qubits.

Why?	Qubit	transformations	are	operators	on	vector	spaces.	And	an	
operator	defined	on	an	𝑛-dim	vector	space	(e.g.,	𝑛-qubit	space)	that	
acts	on	𝑛-dim	vectors	(e.g.,	𝑛 qubits)	can	only	spit	out	𝑛-dim	vectors.
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• Changes	the	third	target	qubit	if	the	first	two	control	qubits	are	|1⟩|1⟩,	
and	leaves	it	unchanged	otherwise.

Solution:	The	Controlled-controlled-NOT,	𝐶𝐶𝑁𝑂𝑇,	operator.

• Claim: 𝐶𝐶𝑁𝑂𝑇 implements	AND and	NOT on	qubits.
- To	implement	NOT,	act	with	𝐶𝐶𝑁𝑂𝑇
on	a	3-qubit	state	in	which	the	first	
two	qubits	are	|1⟩|1⟩:
𝐶𝐶𝑁𝑂𝑇|1⟩|1⟩|𝑥⟩	=	|1⟩|1⟩|NOT 𝑥⟩

- To	implement	AND,	act	with	𝐶𝐶𝑁𝑂𝑇
on	a	3-qubit	state	in	which	the	last	
qubit	is	|0⟩:
𝐶𝐶𝑁𝑂𝑇|𝑥⟩|𝑦⟩|0⟩	=	|𝑥⟩|𝑦⟩|𝑥 AND 𝑦⟩

𝐶𝐶𝑁𝑂𝑇|0⟩|0⟩|0⟩ =	|0⟩|0⟩|0⟩ 𝐶𝐶𝑁𝑂𝑇|0⟩|1⟩|1⟩ =	|0⟩|1⟩|1⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|1⟩|0⟩ =	|1⟩|1⟩|1⟩

𝐶𝐶𝑁𝑂𝑇|0⟩|0⟩|1⟩ =	|0⟩|0⟩|1⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|0⟩|0⟩ =	|1⟩|0⟩|0⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|1⟩|1⟩ =	|1⟩|1⟩|0⟩

𝐶𝐶𝑁𝑂𝑇|0⟩|1⟩|0⟩ =	|0⟩|1⟩|0⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|0⟩|1⟩ =	|1⟩|0⟩|1⟩

𝐶𝐶𝑁𝑂𝑇 =	

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

|0⟩|0⟩|0⟩	=	

1
0
0
0
0
0
0
0

,		|0⟩|0⟩|1⟩	=	

0
1
0
0
0
0
0
0

,			⋯,	|1⟩|1⟩|1⟩	=	

0
0
0
0
0
0
0
1
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So:	Any	classical	computation	can	be	done	using	qubits	instead	of	bits.

• In	particular:	Any	classical	function	that	takes	𝑛 input	bits	and	produces	𝑘
output	bits	can	be	implemented	using	arrays	of	primitive	𝐶𝐶𝑁𝑂𝑇 "gates".

How	to	Construct	a	Qubit-Based	Function	Calculator
• Let	|𝑥⟩(𝑛) represent	𝑛 input	qubits	that	encode	the	number	𝑥.
- Example:	|1⟩|1⟩|0⟩ represents	6.

• Now:	Feed	𝑈𝑓 a	superposition of	all	possible	numbers	𝑥 it	can	take	as	input.
• Result:	A	superposition	of	all	possible	values	of	the	function	in	a	single
computation!

• Define	an	operator	𝑈𝑓 that	acts	on	(𝑛+𝑘) qubits	in	the	following	way:		

𝑈𝑓|𝑥⟩(𝑛)|0⟩(𝑘) =	|𝑥⟩(𝑛)|𝑓(𝑥)⟩(𝑘)

• Let	|0⟩(𝑘) represent	𝑘 qubits	|0⟩ (the	output	register).
• Let	|𝑓(𝑥)⟩(𝑘) represent	𝑘 output	qubits	that	encode	the	number	𝑓(𝑥).
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1. Prepare	as	input	a	superposition	of	all	possible	numbers	𝑥 that	can	be	encoded	
in	𝑛 bits:
(i) Start	with	an	𝑛-qubit	state	|0⟩1|0⟩2⋯|0⟩𝑛
(ii) Now	apply	a	Hadamard	transformation	to	each	qubit:

The first term encodes 
the binary number for 
0, or |0⟩(𝑛)

Each term in between is the 
binary number for each 
number between 0 and 2𝑛–1.

The last term encodes 
the binary number for 
2𝑛–1, or |2𝑛–1⟩(𝑛)

Two	Steps:

(ℌ1⊗ℌ2⊗⋯⊗ℌ𝑛)|0⟩1|0⟩2⋯|0⟩𝑛

=	 ½
-{(|0⟩1 +	|1⟩1)(|0⟩2 +	|1⟩2)⋯(|0⟩𝑛 +	|1⟩𝑛)}

=	 ½
-{|0⟩1|0⟩2⋯|0⟩𝑛 +	|0⟩1|0⟩2⋯|1⟩𝑛 +	⋯	+	|1⟩1|1⟩2⋯|1⟩𝑛}

So the entire sum is a 
superposition that encodes all 
numbers 𝑥 such that 0	≤	𝑥 <	2𝑛.

= ½
>
;
?@A

B(CD

| ⟩𝑥 (>)
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2. Now	attach	a	𝑘-qubit	output	register	|0⟩(𝑘) and	apply	𝑈𝑓:
Two	Steps:

The	Catch:	None	of	these	values	of	𝑓 is	
accessible	until	we	make	a	measurement!

The	Task	for	Quantum	Algorithm	construction
Given	a	problem,	first	construct	an	appropriate	superposition	
of	solutions;	and	then	manipulate	the	superposition	so	that	
the	relevant	terms	aquire	high	probability.

𝑈𝑓 ½
>
;
?@A

B(CD

| ⟩𝑥 (>)|0⟩(𝑘) = ½
>
;
?@A

B(CD

𝑈𝑓| ⟩𝑥 (>)|0⟩(𝑘)

= ½
>
;
?@A

B(CD

| ⟩𝑥 (>)|𝑓(𝑥)⟩(𝑘)

A superposition of all possible values 
𝑓(𝑥), for 0	≤	𝑥 <	2𝑛, of the function 𝑓. 
And we've effectively calculated them 
all with just a single application of 𝑈𝑓.
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2. Now	attach	a	𝑘-qubit	output	register	|0⟩(𝑘) and	apply	𝑈𝑓:
Two	Steps:

𝑈𝑓 ½
>
;
?@A

B(CD

| ⟩𝑥 (>)|0⟩(𝑘) = ½
>
;
?@A

B(CD

𝑈𝑓| ⟩𝑥 (>)|0⟩(𝑘)

= ½
>
;
?@A

B(CD

| ⟩𝑥 (>)|𝑓(𝑥)⟩(𝑘)
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Example:	Let	𝑓(𝑥)	=	𝑥2,	𝑛 =	2,	𝑘 =	4
A superposition of all possible values 
𝑓(𝑥), for 0	≤	𝑥 <	2𝑛, of the function 𝑓.

½
B
;
?@A

E

| ⟩𝑥 (B)|𝑥B⟩(4) = ½{(|0⟩|0⟩)(|0⟩|0⟩|0⟩|0⟩)	+	(|0⟩|1⟩)(|0⟩|0⟩|0⟩|1⟩)	+	

(|1⟩|0⟩)(|0⟩|1⟩|0⟩|0⟩)	+	(|1⟩|1⟩)(|1⟩|0⟩|0⟩|1⟩)}

- A superposition of all possible values of 𝑥2, for 0	≤	𝑥 <	4.
- Takes the form of an entangled 6-qubit state: Input 2-qubit 

state is in a superposition, output 4-qubit state is in a 
superposition, and both superpositions are entangled.



• Factors	large	integers	into	primes	in	polynomial time.

- Polynomial	time:	The	number	of	steps	required	to	complete	the	algorithm	for	
a	given	input	is	of	the	order	𝑛𝑐,	𝑐 >	1,	where	𝑛 is	the	complexity	of	the	input.

- Exponential	time:	The	number	of	steps	required	to	complete	the	algorithm	for	
a	given	input	is	of	the	order	𝑐𝑛,	𝑐 >	1,	where	𝑛 is	the	complexity	of	the	input.

Example:	Shor's	Factorization	Algorithm	(1994)

• Current	classical	algorithms	require	exponential	times.

Why	is	fast	prime	factorization	important?
• Classical	RSA	Encryption	(Rivest,	Shamir	&	Adleman	1978).
- public	encryption	key = product	𝑝𝑞 of	two	(very	large)	primes.
- private	decryption	key = 𝑝,	𝑞 separately
- Thus:	Factorizing	𝑝𝑞 (in	your	lifetime)	would	let	you	break	RSA	
encryption	(standard	encryption	for	web	transactions).

18
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Two	essential	facts	underlie	Shor's	algorithm:
(i) Factorizing	a	large	integer	is	equivalent	to	determining	the	period	𝑟 of	

an	associated	periodic	function	𝑓(𝑥+𝑟)	=	𝑓(𝑥).
(ii) A	discrete	Fourier	transform	maps	a	function	𝑔(𝑥) of	period	𝑟 on	the	

domain	(0,	2𝑛− 1) to	a	function	𝐺(𝑐)which	has	approximately	non-
zero	values	only	at	multiples	of	2𝑛/𝑟.

Protocol
• By	Fact	(i),	to	factorize	a	given	large	integer,	suppose	we've	determined	
that	we	need	to	find	the	period	𝑟 of	an	appropriate	periodic	function	𝑓(𝑥).

Step	1
• Construct	a	superposition	of	all	possible	solutions	of	𝑓(𝑥) for	0	≤	𝑥 <	2𝑛.

Our Good Friend 
the qubit-based 
function calculator!

𝑈𝑓 ½
>
;
?@A

B(CD

| ⟩𝑥 (>)|0⟩(𝑘) = ½
>
;
?@A

B(CD

| ⟩𝑥 (>)|𝑓(𝑥)⟩(𝑘)

2𝑛 terms! superposition 
of 2𝑛 terms

superposition 
of 2𝑛 terms

input and output are entangled!
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Step	2
• Measure	𝑓(𝑥);	i.e.,	compute	one value	of	it,	say	𝑓(𝑥0).

where	𝑔(𝑥)	=	1 for	𝑥 =	𝑥0 +	𝑘𝑟,	and	zero	otherwise	(for	𝑘 an	integer).

• Also: 𝑔(𝑥) has	the	same	period	𝑟 as	𝑓(𝑥),	since	𝑔(𝑥)	=	𝑔(𝑥0 +	𝑘𝑟).

So: To find the period of 𝑓(𝑥), we now need to find the period of 𝑔(𝑥).

• The	output	register	has	collapsed	to	a	single	term	|𝑓(𝑥0)⟩(𝑘).

• The	input	register	|𝑥⟩(𝑛) is	still	in	a	superposition	of	all	those	values	of	𝑥
for	which	𝑓(𝑥)	=	𝑓(𝑥0).
- Initially	there	were	2𝑛 input	terms;	now	there	are	2𝑛/𝑟.

½
>
;
?@A

B(CD

| ⟩𝑥 (>)|𝑓(𝑥)⟩(𝑘) ¾¾¾¾® 𝐶 ;
?@A

B(CD

𝑔(𝑥)| ⟩𝑥 (>)|𝑓(𝑥A)⟩(𝑘)collapse

single termsuperposition 
of 2𝑛/𝑟 terms

superposition 
of 2𝑛 terms

superposition 
of 2𝑛 terms



𝐶 ;
?@A

B(CD

𝑔(𝑥)| ⟩𝑥 (>)|𝑓(𝑥A)⟩(𝑘) ¾¾¾¾® 𝐶′ ;
G@A

B(CD

𝐺(𝑐)| ⟩𝑐 (>)|𝑓(𝑥A)⟩(𝑘)quantum	FT
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• By	Fact	(ii),	𝐺(𝑐) is	approximately	non-zero	only	for	𝑐 =	𝑗2𝑛/𝑟,	for	integer	𝑗.

Step	3
• Act	on	the	input	register	with	a	quantum	Fourier	transformation:

where	𝐺(𝑐) is	the	discrete	Fourier	transform	of	𝑔(𝑥).

• Which	means:	The	input	superposition	has	now	been	"favorably"	weighted	
to	produce	values	of	𝑐 =	𝑗2𝑛/𝑟when	measured.

•Which	means:	If	we	measure	the	input	register,	we	will	most	likely	get	a	
value	for	𝑗2𝑛/𝑟.	From	this	value,	we	can	extract	a	value	for	𝑟.	

superposition 
of 2𝑛/𝑟 terms

Still a superposition of 2𝑛/𝑟
terms, but now 𝑐 =	𝑗2𝑛/𝑟
terms are "favorably" weighted
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Two	Interpretive	Issues

(1)	How	are	quantum	computers	different	from	classical	computers?

• A	quantum	computer	can	compute	anything	that	a	classical	computer	can.
- Recall: Any	computation	implemented	using	bits	can	be	implemented	using	qubits.

• A	classical	computer	can	compute	anything	that	a	quantum	computer	can.
- Any	computation	implemented	using	qubits	can	be	implemented	using	bits	and	a	
probabilistic	algorithm.

- Intuitively:	There	are	probabilistic	classical	2-state	systems	that	can	simulate	the	
output	of	quantum	2-state	systems,	(although	perhaps	not	as	efficiently).

Claim:	Apart	from	hardware differences	(quantum	2-state	
systems	vs.	classical	2-state	systems),	the	essential	difference	
between	a	quantum	computer	and	a	classical	computer	is	
that	the	former	are	ideally	much	more	efficient than	the	latter.
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(2)	Is	quantum	information	different	from	classical	information?

Claim:	No	fundamental difference	between	classical	and	
quantum	information:	just	a	difference	in	types	of	sources.

Information =What	is	produced	by	an	information	
source	that	is	required	to	be	reproducible	at	the	receiver	
if	the	transmission	is	to	be	counted	a	success.
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Two	Types	of	Information	Source

I.	Classical	information	source
- Abstractly:	Produces	letters	from	a	set	{𝑥1,	𝑥2,	...,	𝑥𝑛}with	probabilities	𝑝𝑖=	𝑝(𝑥𝑖).
- Messages	= sequences	of	letters.	Ex:	𝑥7𝑥3𝑥4...
- Concretely:	Produces	physical	systems (e.g.,	on-off	switches)	in	classical	states
{𝑥1, 𝑥2, ..., 𝑥𝑛}.

- Output	= sequence	of	classical	states.	Ex:	𝑥7𝑥3𝑥4...

II(a).	Quantum	information,	Non-Entangled	Source
- Produces	physical	systems (e.g.,	electrons)	in	non-entangled	
quantum	states {|𝜓1⟩,	|𝜓2⟩,	...,	|𝜓𝑛⟩}.

- Output = sequence	of	quantum	pure	states.	Ex:	|𝜓7⟩|𝜓3⟩|𝜓4⟩...

Timpson,	C.	(2008)	"Philosophical	Aspects	of	Quantum	Information	Theory",	in	D.	
Rickles	(ed.)	The	Ashgate	Companion	to	the	New	Philosophy	of	Physics,	Ashgate.
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II(b).	Quantum	information,	Entanglement	Source
- Produces	physical	systems (i.e.,	electrons)	in	entangled	quantum	stateswhich	
include	other	systems	inaccessible	to	the	source.

- Output	= sequence	of	quantum	entangled	states.

Example	of	II(b):
𝐵 =	{𝐵1,	𝐵2,	...}	= {electrons	produced	by	source}
𝐴 =	{𝐴1,	𝐴2,	...}	= {electrons	entangled	with	source	electrons}
𝐶 =	{𝐶1,	𝐶2,	...}	= {"target"	electrons	at	receiver}

- Suppose:	Electron	𝐵𝑖 is	produced	at	source	in	entangled	state	|𝜓⟩𝐴𝑖𝐵𝑖with	electron	𝐴𝑖.
- Goal:	To	reproduce	this	entangled	state	at	receiver,	but	between	𝐴𝑖 and	𝐶𝑖:	|𝜓⟩𝐴𝑖𝐶𝑖
- In	general:	If	source	produces	sequence	of	states

|𝜓⟩𝐴𝑖𝐵𝑖|𝜓′⟩𝐴𝑗𝐵𝑗|𝜓″⟩𝐴𝑘𝐵𝑘...,
then	successful	transmission	occurs	if	receiver	reproduces	sequence	of	states

|𝜓⟩𝐴𝑖𝐶𝑖|𝜓′⟩𝐴𝑗𝐶𝑗|𝜓″⟩𝐴𝑘𝐶𝑘... .
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Measures	of	information,	depending	on	source

• The	Shannon	Entropy:

𝐻(𝑋)	=	−∑𝑖𝑝𝑖 log2𝑝𝑖

- 𝑋 = {𝑥1,	...,	𝑥𝑛},	where	𝑥𝑖 is	a	state	
produced	by	a	classical	information	
source,	and	𝑝𝑖 is	a	probability	
distribution	over	such	states.

Specifies the minimal number of 
bits required to encode the 
output of a classical information 
source (Shannon 1948).
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Ex:	Let	𝑋 =	{𝐴,	𝐵,	𝐶,	𝐷}

• Suppose:	We	have	a	probability	distribution	over	𝑋.
- Ex:		𝑝𝐴 =	1/2,			𝑝𝐵 =1/4,			𝑝𝐶 =	𝑝𝐷 =	1/8

• So:	Instead	of	2𝑁 bits,	we	only	need	𝑁𝐻(𝑋) bits,	where

𝑁𝐻 𝑋 = −𝑁 0
1
log1

0
1
+ 0

2
log1

0
2
+ 0

3
log1

0
3
+ 0

3
log1

0
3
= 1.75𝑁

• To	encode	𝑋,	need	2	bits	per	letter.
• So:	Need	2𝑁 bits	to	encode	an	𝑁-letter	message.

𝐴 =	00,			𝐵 =	01,	
𝐶 =	10,			𝐷 =	11

"log2𝑥 =	𝑦"	
means	"𝑥 =	2𝑦"

Claim	1:	There	are	2𝑁𝐻(𝑋) possible	𝑁-letter	messages.

Number of ways to arrange 𝑁 distinct letters into 
4 bins with capacities 𝑝𝐴𝑁, 𝑝𝐵𝑁,	𝑝𝐶𝑁,	𝑝𝐷𝑁.

= log!
𝑁!

𝑝"𝑁 ! 𝑝#𝑁 ! 𝑝$𝑁 ! 𝑝%𝑁 ! = 𝑁𝐻(𝑋)log2
#	possible	N-letter	
messages

Claim	2:	2𝑥messages	require	𝑥 bits	to	encode	them.

Aside!
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Measures	of	information,	depending	on	source

• The	Shannon	Entropy:

𝐻(𝑋)	=	−∑𝑖𝑝𝑖 log2𝑝𝑖

- 𝑋 = {𝑥1,	...,	𝑥𝑛},	where	𝑥𝑖 is	a	state	
produced	by	a	classical	information	
source,	and	𝑝𝑖 is	a	probability	
distribution	over	such	states.

Specifies the minimal number of 
bits required to encode the 
output of a classical information 
source (Shannon 1948).

• The	von	Neumann	Entropy:

𝑆(𝜌)	=	−Tr(𝜌log2𝜌)	=	−∑𝑖𝑝𝑖 log2𝑝𝑖

- 𝜌 = ∑4 𝑝4|𝜓𝑖⟩⟨𝜓𝑖| ,where	|𝜓𝑖⟩ is	a	vector	
state	produced	by	a	quantum	information	
source,	and	𝑝𝑖 is	a	probability	distribution	
over	such	states.

Specifies the minimal number of 
qubits required to encode the 
output of a quantum information 
source (Schumacher 1995).


