

## 1. Quantum Dense Coding

- Goal: To use one qubit to transmit two classical bits.
- But: One qubit (supposedly) only contains one classical bit's worth of information!
- So: How can we send 2 classical bits using just one qubit?
- Answer: Use entangled states!

## Set-Up:

- Prepare two qubits  $Q1, Q2$  in an entangled state  $|\Psi^+\rangle = \sqrt{1/2} (|0\rangle_1|0\rangle_2 + |1\rangle_1|1\rangle_2)$
- Alice gets  $Q1$ , Bob gets  $Q2$ .
- Alice manipulates her  $Q1$  so that it steers Bob's  $Q2$  into a state from which he can read off the 2 classical bits Alice desires to send. All he needs to do this is the post-manipulated  $Q1$  that Alice sends to him.



## Protocol

1. Alice has a pair of classical bits: either 00, 01, 10, or 11.

She first encodes the pair in  $Q1$  by acting on  $Q1$  with one of  $\{I, X, Y, Z\}$  according to:

| <u>pair</u> | <u>transform</u>                  | <u>new state</u>                                                                        |
|-------------|-----------------------------------|-----------------------------------------------------------------------------------------|
| 00          | $(I_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 0\rangle_1 0\rangle_2 +  1\rangle_1 1\rangle_2) =  \Psi^+\rangle$  |
| 01          | $(X_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 1\rangle_1 0\rangle_2 +  0\rangle_1 1\rangle_2) =  \Phi^+\rangle$  |
| 10          | $(Y_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}(- 1\rangle_1 0\rangle_2 +  0\rangle_1 1\rangle_2) =  \Phi^-\rangle$ |
| 11          | $(Z_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 0\rangle_1 0\rangle_2 -  1\rangle_1 1\rangle_2) =  \Psi^-\rangle$  |

- Let  $Q1$  and  $Q2$  be electrons in Hardness states.
- Let  $|0\rangle$  be  $|\text{soft}\rangle$  and  $|1\rangle$  be  $|\text{hard}\rangle$ .

2. Alice now sends  $Q1$  to Bob.

3. After reception of  $Q1$ , Bob first applies a  $C_{NOT}$  transformation to both  $Q1$  and  $Q2$ :

| <u>pair</u> | <u>transform</u>                  | <u>new state</u>                                                                        | <u>Apply <math>C_{NOT}</math></u>                           |
|-------------|-----------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 00          | $(I_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 0\rangle_1 0\rangle_2 +  1\rangle_1 1\rangle_2) =  \Psi^+\rangle$  | $\sqrt{\frac{1}{2}}( 0\rangle_1 +  1\rangle_1) 0\rangle_2$  |
| 01          | $(X_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 1\rangle_1 0\rangle_2 +  0\rangle_1 1\rangle_2) =  \Phi^+\rangle$  | $\sqrt{\frac{1}{2}}( 1\rangle_1 +  0\rangle_1) 1\rangle_2$  |
| 10          | $(Y_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}(- 1\rangle_1 0\rangle_2 +  0\rangle_1 1\rangle_2) =  \Phi^-\rangle$ | $\sqrt{\frac{1}{2}}(- 1\rangle_1 +  0\rangle_1) 1\rangle_2$ |
| 11          | $(Z_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 0\rangle_1 0\rangle_2 -  1\rangle_1 1\rangle_2) =  \Psi^-\rangle$  | $\sqrt{\frac{1}{2}}( 0\rangle_1 -  1\rangle_1) 0\rangle_2$  |

According to the Eigenvalue-Eigenvector Rule,  $Q1$  still has no definite value, but  $Q2$  now does!

## Protocol

4. Bob now applies a Hadamard transformation to  $Q1$ :

| <u>pair</u> | <u>transform</u>                  | <u>new state</u>                                                                        | <u>Apply <math>C_{NOT}</math></u>                           | <u>Apply <math>\mathfrak{H}_1</math></u> |
|-------------|-----------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| 00          | $(I_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 0\rangle_1 0\rangle_2 +  1\rangle_1 1\rangle_2) =  \Psi^+\rangle$  | $\sqrt{\frac{1}{2}}( 0\rangle_1 +  1\rangle_1) 0\rangle_2$  | $ 0\rangle_1 0\rangle_2$                 |
| 01          | $(X_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 1\rangle_1 0\rangle_2 +  0\rangle_1 1\rangle_2) =  \Phi^+\rangle$  | $\sqrt{\frac{1}{2}}( 1\rangle_1 +  0\rangle_1) 1\rangle_2$  | $ 0\rangle_1 1\rangle_2$                 |
| 10          | $(Y_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}(- 1\rangle_1 0\rangle_2 +  0\rangle_1 1\rangle_2) =  \Phi^-\rangle$ | $\sqrt{\frac{1}{2}}(- 1\rangle_1 +  0\rangle_1) 1\rangle_2$ | $ 1\rangle_1 1\rangle_2$                 |
| 11          | $(Z_1 \otimes I_2) \Psi^+\rangle$ | $\sqrt{\frac{1}{2}}( 0\rangle_1 0\rangle_2 -  1\rangle_1 1\rangle_2) =  \Psi^-\rangle$  | $\sqrt{\frac{1}{2}}( 0\rangle_1 -  1\rangle_1) 0\rangle_2$  | $ 1\rangle_1 0\rangle_2$                 |

According to the EE Rule,  $Q1$  and  $Q2$  now both have definite values.

5. Bob now measures  $Q1$  and  $Q2$  to determine the number Alice sent!

- (a)  $(Q1 = 0, Q2 = 0) \Rightarrow 00$
- (b)  $(Q1 = 0, Q2 = 1) \Rightarrow 01$
- (c)  $(Q1 = 1, Q2 = 1) \Rightarrow 10$
- (d)  $(Q1 = 1, Q2 = 0) \Rightarrow 11$

Question: How are the 2 classical bits transferred from Alice to Bob?

- Not transferred *via* the single qubit.
- Transferred by the *correlations* present in the 2-qubit entangled state  $|\Psi^+\rangle$ .
- In order to convey information between Alice and Bob, it need *not* be physically transported from Alice to Bob across the intervening spatial distance.
- The *only* thing required to convey information is to set up a correlation between the sender's data and the receiver's data.



## 2. Quantum Teleportation

- Goal: To transmit an unknown quantum state using classical bits and to reconstruct the exact quantum state at the receiver.
- But: How can this avoid the No-Cloning Theorem?
- Answer: Use entangled states!

## Set-Up:

- Alice has an unknown  $Q_0$ ,  $|Q\rangle_0 = a|0\rangle_0 + b|1\rangle_0$ , and wants to send it to Bob.
- $Q_1$  and  $Q_2$  are prepared in an entangled state  $|\Psi^+\rangle = \sqrt{\frac{1}{2}}(|0\rangle_1|0\rangle_2 + |1\rangle_1|1\rangle_2)$ . Alice gets  $Q_1$ , Bob gets  $Q_2$ .
- Alice manipulates  $Q_0$  and  $Q_1$  so that they steer Bob's  $Q_2$  into a form from which he can reconstruct the unknown state of  $Q_0$ . All Bob needs to do this are 2 classical bits sent by Alice.



## Protocol

1. Alice starts with a 3-qubit system ( $Q_0, Q_1, Q_2$ ) in the state:

$$|Q\rangle_0|\Psi^+\rangle = \sqrt{\frac{1}{2}}(a|0\rangle_0|0\rangle_1|0\rangle_2 + a|0\rangle_0|1\rangle_1|1\rangle_2 + b|1\rangle_0|0\rangle_1|0\rangle_2 + b|1\rangle_0|1\rangle_1|1\rangle_2)$$

Alice now applies  $C_{NOT}$  on  $Q_0$  &  $Q_1$ , and then a Hadamard transformation on  $Q_0$ :

First  $C_{NOT}$  on  $Q_0$  &  $Q_1$ :

$$(C_{NOT_{01}} \otimes I_2)|Q\rangle_0|\Psi^+\rangle = \sqrt{\frac{1}{2}}(a|0\rangle_0|0\rangle_1|0\rangle_2 + a|0\rangle_0|1\rangle_1|1\rangle_2 + b|1\rangle_0|1\rangle_1|0\rangle_2 + b|1\rangle_0|0\rangle_1|1\rangle_2)$$

Then  $\mathfrak{H}$  on  $Q_0$ :

$$\begin{aligned} (\mathfrak{H}_0 \otimes I_1 \otimes I_2)(\text{" "}) = & \frac{1}{2}|0\rangle_0|0\rangle_1(a|0\rangle_2 + b|1\rangle_2) + \frac{1}{2}|0\rangle_0|1\rangle_1(a|1\rangle_2 + b|0\rangle_2) \\ & + \frac{1}{2}|1\rangle_0|0\rangle_1(a|0\rangle_2 - b|1\rangle_2) + \frac{1}{2}|1\rangle_0|1\rangle_1(a|1\rangle_2 - b|0\rangle_2) \end{aligned}$$



EE Rule: Each of the terms represents a state in which  $Q_0$  and  $Q_1$  have definite values, but  $Q_2$  does not.

2. Alice now measures  $Q_0$  and  $Q_1$ :

If measurement outcome is:

$$|0\rangle_0|0\rangle_1$$

$$|0\rangle_0|1\rangle_1$$

$$|1\rangle_0|0\rangle_1$$

$$|1\rangle_0|1\rangle_1$$

... $Q_2$  is now in state:

$$a|0\rangle_2 + b|1\rangle_2$$

$$a|1\rangle_2 + b|0\rangle_2$$

$$a|0\rangle_2 - b|1\rangle_2$$

$$a|1\rangle_2 - b|0\rangle_2$$

## Protocol

| <u>If measurement outcome is:</u> | <u>...Q2 is now in state:</u> |
|-----------------------------------|-------------------------------|
| $ 0\rangle_0 0\rangle_1$          | $a 0\rangle_2 + b 1\rangle_2$ |
| $ 0\rangle_0 1\rangle_1$          | $a 1\rangle_2 + b 0\rangle_2$ |
| $ 1\rangle_0 0\rangle_1$          | $a 0\rangle_2 - b 1\rangle_2$ |
| $ 1\rangle_0 1\rangle_1$          | $a 1\rangle_2 - b 0\rangle_2$ |

3. Alice sends the result of her measurement to Bob in the form of 2 classical bits: 00, 01, 10, or 11.
4. Depending on what he receives, Bob performs one of  $\{I, X, Y, Z\}$  on  $Q2$ .  
This allows him to turn it into (reconstruct) the unknown  $Q0$ .

| <u>If bits received are</u> | <u>...then Q2 is now in state</u> | <u>...so to reconstruct Q0, use</u> |
|-----------------------------|-----------------------------------|-------------------------------------|
| 00                          | $a 0\rangle_2 + b 1\rangle_2$     | $I_2$                               |
| 01                          | $a 1\rangle_2 + b 0\rangle_2$     | $X_2$                               |
| 10                          | $a 0\rangle_2 - b 1\rangle_2$     | $Z_2$                               |
| 11                          | $a 1\rangle_2 - b 0\rangle_2$     | $Y_2$                               |

Question 1: Does Bob violate the *No-Cloning Theorem*? Doesn't he construct a copy of the unknown  $Q_0$ ?

- *No violation occurs.*
- Bob *does* construct a copy:  $Q_2$  has become an exact duplicate of  $Q_0$ .
- But: After Alice is through transforming  $Q_0$  and  $Q_1$ , the original  $Q_0$  has now collapsed to either  $|0\rangle_0$  or  $|1\rangle_0$ !
  - *Alice destroys  $Q_0$  in the process of conveying the information contained in it to Bob!*



Question 2: How does Bob reconstruct the unknown  $Q_0$  (that encodes an arbitrarily large amount of information) from just 2 classical bits?

- Information to reconstruct  $Q_0$  is transferred by the correlations present in the entangled state  $|\Psi^+\rangle$ , *in addition* to the 2 classical bits.
- The 2 classical bits are used simply to determine the appropriate transformation on  $Q_2$ , *after* it has been "steered" into the appropriate state by Alice.



### 3. Quantum Computation.

- General Goal: To use the inaccessible arbitrarily large amount of information encoded in qubits to perform computations in "quantum parallel" (*i.e.*, in record time!).
- Initial (modest) Goal: To compute all possible values of a function  $f$  in a single computation.
- First Question: Can classical computations be done using qubits instead of classical bits?
  - *Can transformations on qubits be defined that reproduce the transformations on bits that are needed to implement a classical computer.*

## Classical Computation Using Bits

To implement a classical computer, it suffices to have an *AND* transformation and a *NOT* transformation on classical bits defined by the following:

$$0 \text{ AND } 0 = 0 \qquad \text{NOT } 0 = 1$$

$$0 \text{ AND } 1 = 0 \qquad \text{NOT } 1 = 0$$

$$1 \text{ AND } 0 = 0$$

$$1 \text{ AND } 1 = 1$$

- *AND takes two input bits and produces one output bit.*
- *NOT takes one input bit and produces one output bit.*

- Initial problem: Transformations on qubits are *reversible*: the number of input qubits *always* must equal the number of output qubits.

*Why? Qubit transformations are operators on vector spaces. And an operator defined on an  $n$ -dim vector space (e.g.,  $n$ -qubit space) that acts on  $n$ -dim vectors (e.g.,  $n$  qubits) can only spit out  $n$ -dim vectors.*

Solution: The Controlled-controlled-NOT,  $CC_{NOT}$ , operator.

- Changes the third target qubit if the first two qubits are  $|1\rangle|1\rangle$ , and leaves it unchanged otherwise.

$$CC_{NOT}|0\rangle|0\rangle|0\rangle = |0\rangle|0\rangle|0\rangle$$

$$CC_{NOT}|0\rangle|1\rangle|1\rangle = |0\rangle|1\rangle|1\rangle$$

$$CC_{NOT}|1\rangle|1\rangle|0\rangle = |1\rangle|1\rangle|1\rangle$$

$$CC_{NOT}|0\rangle|0\rangle|1\rangle = |0\rangle|0\rangle|1\rangle$$

$$CC_{NOT}|1\rangle|0\rangle|0\rangle = |1\rangle|0\rangle|0\rangle$$

$$CC_{NOT}|1\rangle|1\rangle|0\rangle = |1\rangle|1\rangle|0\rangle$$

$$CC_{NOT}|0\rangle|1\rangle|0\rangle = |0\rangle|1\rangle|0\rangle$$

$$CC_{NOT}|1\rangle|0\rangle|1\rangle = |1\rangle|0\rangle|1\rangle$$

$$CC_{NOT} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \quad |0\rangle|0\rangle|0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad |0\rangle|0\rangle|1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad |1\rangle|1\rangle|1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

- Claim:  $CC_{NOT}$  implements AND and NOT on qubits.

- To implement AND, act with  $CC_{NOT}$  on a 3-qubit state in which the last qubit is  $|0\rangle$ :

$$CC_{NOT}|x\rangle|y\rangle|0\rangle = |x\rangle|y\rangle|x \text{ AND } y\rangle$$

- To implement NOT, act with  $CC_{NOT}$  on a 3-qubit state in which the first two qubits are  $|1\rangle|1\rangle$ :

$$CC_{NOT}|1\rangle|1\rangle|x\rangle = |1\rangle|1\rangle|NOT x\rangle$$

So: Any classical computation can be done using qubits instead of bits.

- In particular: Any classical function that takes  $n$  input bits and produces  $k$  output bits can be implemented using arrays of primitive  $CC_{NOT}$  "gates".

## How to Construct a Qubit-Based Function Calculator

- Let  $|x\rangle_{(n)}$  represent  $n$  input qubits that encode the number  $x$ .
  - Example:  $|1\rangle|1\rangle|0\rangle$  represents 6.
- Let  $|0\rangle_{(k)}$  represent  $k$   $|0\rangle$  qubits (the output register).
- Let  $|f(x)\rangle_{(k)}$  represent  $k$  output qubits that encode the number  $f(x)$ .
- Define an operator  $U_f$  that acts on  $(n+k)$  qubits in the following way:

$$U_f|x\rangle_{(n)}|0\rangle_{(k)} = |x\rangle_{(n)}|f(x)\rangle_{(k)}$$

- Now: Feed  $U_f$  a *superposition* of all possible numbers  $x$  it can take as input.
- Result: A superposition of all possible values of the function in a *single* computation!

## Two Steps:

1. Prepare as input a superposition of all possible numbers  $x$  that can be encoded in  $n$  bits:

(i) Start with an  $n$ -qubit state  $|0\rangle_1|0\rangle_2\cdots|0\rangle_n$

(ii) Now apply a Hadamard transformation to each qubit:

$$(\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n) |0\rangle_1|0\rangle_2\cdots|0\rangle_n$$

$$= (\sqrt{\frac{1}{2}})^n \{ (|0\rangle_1 + |1\rangle_1)(|0\rangle_2 + |1\rangle_2)\cdots(|0\rangle_n + |1\rangle_n) \}$$

$$= (\sqrt{\frac{1}{2}})^n \{ |0\rangle_1|0\rangle_2\cdots|0\rangle_n + |0\rangle_1|0\rangle_2\cdots|1\rangle_n + \cdots + |1\rangle_1|1\rangle_2\cdots|1\rangle_n \}$$



*The first term encodes  
the binary number for  
0, or  $|0\rangle_{(n)}$*



*The last term encodes  
the binary number for  
 $2^n-1$ , or  $|2^n-1\rangle_{(n)}$*

*Each term in between is the  
binary number for each  
number between 0 and  $2^n-1$ .*

$$= (\sqrt{\frac{1}{2}})^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)}$$



*So the entire sum is a  
superposition that encodes all  
numbers  $x$  such that  $0 \leq x < 2^n$ .*

## Two Steps:

2. Now attach a  $k$ -qubit output register  $|0\rangle_{(k)}$  and apply  $U_f$ :

$$\begin{aligned} U_f \left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |0\rangle_{(k)} &= \left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} U_f |x\rangle_{(n)} |0\rangle_{(k)} \\ &= \left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |f(x)\rangle_{(k)} \end{aligned}$$



*The Catch:* None of these values of  $f$  is accessible until we make a measurement!

A superposition of all possible values  $f(x)$ , for  $0 \leq x < 2^n$ , of the function  $f$ . And we've effectively calculated them all with just a single application of  $U_f$ .

## The Task for Quantum Algorithm construction

Given a problem, first construct an appropriate superposition of solutions; and then manipulate the superposition so that the relevant terms acquire high probability.

## Two Steps:

2. Now attach a  $k$ -qubit output register  $|0\rangle_{(k)}$  and apply  $U_f$ :

$$\begin{aligned} U_f \left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |0\rangle_{(k)} &= \left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} U_f |x\rangle_{(n)} |0\rangle_{(k)} \\ &= \left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |f(x)\rangle_{(k)} \end{aligned}$$



*A superposition of all possible values  $f(x)$ , for  $0 \leq x < 2^n$ , of the function  $f$ .*

Example: Let  $f(x) = x^2$ ,  $n = 2$ ,  $k = 4$

$$\left(\sqrt{\frac{1}{2}}\right)^2 \sum_{x=0}^3 |x\rangle_{(2)} |x^2\rangle_{(4)} = \frac{1}{2} \{ (|0\rangle|0\rangle)(|0\rangle|0\rangle|0\rangle|0\rangle) + (|0\rangle|1\rangle)(|0\rangle|0\rangle|0\rangle|1\rangle) + (|1\rangle|0\rangle)(|0\rangle|1\rangle|0\rangle|0\rangle) + (|1\rangle|1\rangle)(|1\rangle|0\rangle|0\rangle|1\rangle) \}$$



- *A superposition of all possible values of  $x^2$ , for  $0 \leq x < 4$ .*
- *Takes the form of an entangled 6-qubit state: Input 2-qubit state is in a superposition, output 4-qubit state is in a superposition, and both superpositions are entangled.*

## Example: Shor's Factorization Algorithm (1994)

- Factors large integers into primes in polynomial time.

- *Polynomial time*: The number of steps required to complete the algorithm for a given input is of the order  $n^c$ ,  $c > 1$ , where  $n$  is the complexity of the input.
- *Exponential time*: The number of steps required to complete the algorithm for a given input is of the order  $c^n$ ,  $c > 1$ , where  $n$  is the complexity of the input.

- Current classical algorithms require exponential times.

## Why is fast prime factorization important?

- Classical RSA Encryption (Rivest, Shamir & Adleman 1978).
  - *public encryption key* = product  $pq$  of two (very large) primes.
  - *private decryption key* =  $p, q$  separately
  - Thus: Factorizing  $pq$  (in your lifetime) would let you break RSA encryption (standard encryption for web transactions).

Two essential facts underlie Shor's algorithm:

- (i) Factorizing a large integer is equivalent to determining the period  $r$  of an associated periodic function  $f(x+r) = f(x)$ .
- (ii) A *discrete Fourier transform* maps a function  $g(x)$  of period  $r$  on the domain  $(0, 2^n - 1)$  to a function  $G(c)$  which has approximately non-zero values only at multiples of  $2^n/r$ .

### Protocol

- By Fact (i), to factorize a given large integer, suppose we've determined that we need to find the period  $r$  of an appropriate periodic function  $f(x)$ .

### Step 1

- Construct a superposition of all possible solutions of  $f(x)$  for  $0 \leq x < 2^n$ .

$$U_f \left( \sqrt{1/2} \right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |0\rangle_{(k)} = \left( \sqrt{1/2} \right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |f(x)\rangle_{(k)}$$

Our Good Friend  
the qubit-based  
function calculator!

Our Good Friend  
the qubit-based  
function calculator!

2<sup>n</sup> terms!

superposition  
of 2<sup>n</sup> terms

superposition  
of 2<sup>n</sup> terms

input and output are entangled!

## Step 2

- Measure  $f(x)$ ; i.e., compute *one* value of it, say  $f(x_0)$ .

$$\left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |f(x)\rangle_{(k)} \xrightarrow{\text{collapse}} C \sum_{x=0}^{2^n-1} g(x) |x\rangle_{(n)} |f(x_0)\rangle_{(k)}$$

Diagram illustrating the state evolution:

- Initial state:  $\left(\sqrt{\frac{1}{2}}\right)^n \sum_{x=0}^{2^n-1} |x\rangle_{(n)} |f(x)\rangle_{(k)}$ . The term  $\sum_{x=0}^{2^n-1}$  is labeled "superposition of  $2^n$  terms".
- After collapse:  $C \sum_{x=0}^{2^n-1} g(x) |x\rangle_{(n)} |f(x_0)\rangle_{(k)}$ . The term  $\sum_{x=0}^{2^n-1}$  is labeled "superposition of  $2^n/r$  terms".
- The final state  $|f(x_0)\rangle_{(k)}$  is labeled "single term".

where  $g(x) = 1$  for  $x = x_0 + kr$ , and zero otherwise (for  $k$  an integer).

- The output register has collapsed to a single term  $|f(x_0)\rangle_{(k)}$ .
- The input register  $|x\rangle_{(n)}$  is still in a superposition of all those values of  $x$  for which  $f(x) = f(x_0)$ .
  - *Initially there were  $2^n$  input terms; now there are  $2^n/r$ .*
- Also:  $g(x)$  has the same period  $r$  as  $f(x)$ , since  $g(x) = g(x_0 + kr)$ .

So: To find the period of  $f(x)$ , we now need to find the period of  $g(x)$ .

### Step 3

- Act on the input register with a *quantum Fourier transformation*:

$$C \sum_{x=0}^{2^n-1} g(x) |x\rangle_{(n)} |f(x_0)\rangle_{(k)} \xrightarrow{\text{quantum FT}} C' \sum_{c=0}^{2^n-1} G(c) |c\rangle_{(n)} |f(x_0)\rangle_{(k)}$$

*superposition of  $2^n/r$  terms*

*Still a superposition of  $2^n/r$  terms, but now  $c = j2^n/r$  terms are "favorably" weighted*

where  $G(c)$  is the *discrete Fourier transform* of  $g(x)$ .

- By Fact (ii),  $G(c)$  is approximately non-zero only for  $c = j2^n/r$ , for integer  $j$ .
- Which means: The input superposition has now been "favorably" weighted to produce values of  $c = j2^n/r$  when measured.
- Which means: If we measure the input register, we will most likely get a value for  $j2^n/r$ . From this value, we can extract a value for  $r$ .

## Two Interpretive Issues

### (1) *How are quantum computers different from classical computers?*



Claim: Apart from *hardware* differences (quantum 2-state systems vs. classical 2-state systems), the essential difference between a quantum computer and a classical computer is that the former are ideally much more *efficient* than the latter.

- A quantum computer can compute anything that a classical computer can.
  - Recall: *Any computation implemented using bits can be implemented using qubits.*
- A classical computer can compute anything that a quantum computer can.
  - *Any computation implemented using qubits can be implemented using bits and a probabilistic algorithm.*
  - Intuitively: *There are probabilistic classical 2-state systems that can simulate the output of quantum 2-state systems, (although perhaps not as efficiently).*

## (2) *Is quantum information different from classical information?*

Claim: No fundamental difference between classical and quantum information: just a difference in types of *sources*.

Information = What is produced by an information source that is required to be reproducible at the receiver if the transmission is to be counted a success.

## Two Types of Information Source

### **I. Classical information source**

- Abstractly: Produces letters from a set  $\{x_1, x_2, \dots, x_n\}$  with probabilities  $p_i = p(x_i)$ .
- Messages = sequences of letters. Ex:  $x_7x_3x_4\dots$
- Concretely: Produces *physical systems* (e.g., on-off switches) in *classical states*  $\{x_1, x_2, \dots, x_n\}$ .
- Output = sequence of classical states. Ex:  $x_7x_3x_4\dots$

### **II(a). Quantum information, Non-Entanglement Source**

- Produces *physical systems* (e.g., electrons) in *non-entangled quantum states*  $\{|\psi_1\rangle, |\psi_2\rangle, \dots, |\psi_n\rangle\}$ .
- Output = sequence of quantum pure states. Ex:  $|\psi_7\rangle|\psi_3\rangle|\psi_4\rangle\dots$

## II(b). Quantum information, Entanglement Source

- Produces *physical systems* (i.e., electrons) in *entangled quantum states* which include other systems inaccessible to the source.
- Output = sequence of quantum entangled states.

Example of II(b):

$B = \{B_1, B_2, \dots\} = \{\text{electrons produced by source}\}$

$A = \{A_1, A_2, \dots\} = \{\text{electrons entangled with source electrons}\}$

$C = \{C_1, C_2, \dots\} = \{\text{"target" electrons at receiver}\}$

- Suppose: Electron  $B_i$  is produced at source in entangled state  $|\psi\rangle_{A_iB_i}$  with electron  $A_i$ .
- Goal: To reproduce this entangled state at receiver, but between  $A_i$  and  $C_i$ :  $|\psi\rangle_{A_iC_i}$
- In general: If source produces sequence of states

$$|\psi\rangle_{A_iB_i}|\psi'\rangle_{A_jB_j}|\psi''\rangle_{A_kB_k}\dots$$

then successful transmission occurs if receiver reproduces sequence of states

$$|\psi\rangle_{A_iC_i}|\psi'\rangle_{A_jC_j}|\psi''\rangle_{A_kC_k}\dots$$

## Measures of information, depending on source

- The *Shannon Entropy*:

$$H(X) = -\sum_i p_i \log_2 p_i$$



- $X = \{x_1, \dots, x_n\}$ , where  $x_i$  is a state produced by a classical information source, and  $p_i$  is a probability distribution over such states.

Specifies the minimal number of bits required to encode the output of a classical information source (Shannon 1948).

## Aside!

Ex: Let  $X = \{A, B, C, D\}$

- To encode  $X$ , need 2 bits per letter.
- So: Need  $2N$  bits to encode an  $N$ -letter message.
- Suppose: We have a probability distribution over  $X$ .
  - Ex:  $p_A = 1/2, p_B = 1/4, p_C = p_D = 1/8$

$$\begin{aligned} A &= 00, \quad B = 01, \\ C &= 10, \quad D = 11 \end{aligned}$$

Claim 1: There are  $2^{NH(X)}$  possible  $N$ -letter messages.

$$\log_2 \left( \frac{\# \text{ possible } N\text{-letter messages}}{N!} \right) = \log_2 \left( \frac{N!}{(p_A N)! (p_B N)! (p_C N)! (p_D N)!} \right) = NH(X)$$



Number of ways to arrange  $N$  distinct letters into  
4 bins with capacities  $p_A N, p_B N, p_C N, p_D N$ .

" $\log_2 x = y$ "  
means " $x = 2^y$ "

Claim 2:  $2^x$  messages require  $x$  bits to encode them.

- So: Instead of  $2N$  bits, we only need  $NH(X)$  bits, where

$$NH(X) = -N \left( \frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{8} \log_2 \frac{1}{8} + \frac{1}{8} \log_2 \frac{1}{8} \right) = 1.75N$$

## Measures of information, depending on source

- The *Shannon Entropy*:

$$H(X) = -\sum_i p_i \log_2 p_i$$



- $X = \{x_1, \dots, x_n\}$ , where  $x_i$  is a state produced by a classical information source, and  $p_i$  is a probability distribution over such states.

Specifies the minimal number of bits required to encode the output of a classical information source (Shannon 1948).

- The *von Neumann Entropy*:

$$S(\rho) = -\text{Tr}(\rho \log_2 \rho) = -\sum_i p_i \log_2 p_i$$



- $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ , where  $|\psi_i\rangle$  is a vector state produced by a quantum information source, and  $p_i$  is a probability distribution over such states.

Specifies the minimal number of qubits required to encode the output of a quantum information source (Schumacher 1995).