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1. Quantum Dense Coding
e (Goal: To use one qubit to transmit two classical bits.

e But: One qubit (supposedly) only contains one classical bit's worth of
information!
So: How can we send 2 classical bits using just one qubit?

Answer: Use entangled states!



Set-Up:
e Prepare two qubits Q1, Q2 in an entangled state |[¥'+) = /% (|0){]0), + |1){]|1),)
e Alice gets Q1, Bob gets Q2.

e Alice manipulates her Q1 so that it steers Bob's Q2 into a state from which he
can read off the 2 classical bits Alice desires to send. All he needs to do this is the
post-manipulated Q1 that Alice sends to him.

2 classical ~——>| Encoder

________________________________ » | Decoder |~ 2 classical
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[W+) =% (10)1]0)2 + [1)1]1),)



Protocol

1. Alice has a pair of classical bits: either 00, 01, 10, or 11.

She first encodes the pair in Q1 by acting on Q1 with one of {/, X, Y, Z} according to:

pair  transform new state X
00 (I @ ID|¥*) V12 (]0)1]0), + [1)1]1),) = [¥+)
01 X1 @ L)Y+ V¥ (|1)1]0); + [0)4]1),) = |D+)
10 (Y1 @ L)W+ V%2 (=[1)10); + [0)4]1),) = | @)
11 (Z, @ I)I¥*) V% (|0)1]0); — [1)4]1),) = [¥7)

2. Alice now sends Q1 to Bob.

- Let Q1 and Q2 be electrons in

Hardness states.
- Let |0) be |soft) and |1) be |hard).

3. After reception of Q1, Bob first applies a Cy,r transformation to both Q1 and Q2:

pair  transform new state

00 (L @ IDI¥*) V¥ (10)1]0); + [1)1]1),) = [¥+)
01 X1 @ I)I¥*) V¥ (11)1]0); + [0)4]1),) = |P+)
10 Y1 @ )W) V% (—[1)1]0); + |0)1]1)2) = |®7)
11 (Z: @ )W) V¥ (10)1]0); — [1)1]1),) = [¥7)

Apply Cuor g
V% (]0); + |1)1)]0),
V% (1) + 10)1)]1),

V% (—|1); + 10)1)]1),

VY% (10)1 — [1)1)]0);

According to the Eigenvalue-Eigenvector Rule, Q1 still has no definite value, but Q2 now does!



Protocol

4. Bob now applies a Hadamard transformation to Q1:

pair  transform new state Apply Cror Apply $:
00 (L @ L)) V% (|0)1]0), + [1)1]1)2) = [¥*) V32 (|0); + [1)1)]0), 10)1]0)2
01 X1 @ ID|IW*) V%2 (I1)1]0)2 + [0)1]1)) = |[®*)  V¥2 (I11)1 + [0)1)[1); 10)1]1)2
10 Y1 @ L)) V% (=[1)10); + [0)1]1)) = [@7) VI (—|1)1 + [0))[1),  [1)1]1),
11 (Z, @ L)) V%2 (10)1]0), — [1)1]1)) = [¥7) V12 (10); — [1)1)]0), |1)1]0),

According to the EE Rule, Q1 and Q2 now both have definite values.

5. Bob now measures Q1 and Q2 to determine the number Alice sent!

(a) (Q1=0,02=0)= 00 () (01=1,02=1)=10
(b) (Q1=0,Q02=1)= 01 (d) (01=1,02=0)=11



Question: How are the 2 classical bits transferred from Alice to Bob?

e Not transferred via the single qubit.
e Transferred by the correlations present in the 2-qubit entangled state [W).

e In order to convey information between Alice and Bob, it need not be physically
transported from Alice to Bob across the intervening spatial distance.

e The only thing required to convey information is to set up a correlation between
the sender's data and the receiver's data.

2 classical ~——>| Encoder

bits encoded —|1,X,Y,Z

________________________________ » | Decoder |~ 2 classical
— s bits decoded

[¥+) = V2% (10)1]0); + |1)1]1),)



2. Quantum Teleportation

e Goal: To transmit an unknown quantum state using classical bits and to
reconstruct the exact quantum state at the receiver.

e But: How can this avoid the No-Cloning Theorem?

e Answer: Use entangled states!



Set-Up:
e Alice has an unknown QO0, |Q), = a|0), + b|1),, and wants to send it to Bob.

e 1 and Q2 are prepared in an entangled state |[W*) =2 (|0)4]|0), + |1)4|1),).
Alice gets 01, Bob gets Q2.
e Alice manipulates Q0 and Q1 so that they steer Bob's Q2 into a form from which

he can reconstruct the unknown state of Q0. All Bob needs to do this are 2
classical bits sent by Alice.

Decoder
1LXY Z

R unknown Q0
reconstructed
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[¥+) = V2% (10)1]0); + |1)1]1),)



Protocol

1. Alice starts with a 3-qubit system (QO0, Q1, Q2) in the state:

Q)| ¥*) = V% (a]0)0|0)1]0), + a|0)|1)1|1); + b|1)6|0)1]0); + b|1)o|1)4]1),)

Alice now applies Cypron Q0 & Q1, and then a Hadamard transformation on QO:

First Cyor.0n Q0 & Q1:

(Cnoro, ®ID Q)0+ = V¥ (a]0)|0)1]0); + al0)o|1)1]1), + b|1)o|1)1]0)5 + b|1)|0)1]1),)

Then $ on 00:

(Do XK 1)(" )= Y2]0)0|0)1(al0), + b|1);) + V2]0)o|1)1(all), + b|0),)
+ 12[1)0|0)1(al0),; — b|1),) + V2[1)o|1)1(al1), — b|0),)

2. Alice now measures Q0 and Q1:

If measurement outcome is: .02 is now in state:
10)0]0)4 a|0), + b|1),
10)0[1)1 a|1l), + b|0),
11)0[0)4 a|0), — b|1),
|1)ol1)1 a|1); — b|0), 7

AN

EE Rule: Each of the terms
represents a state in which

Q0 and Q1 have definite
values, but Q2 does not.



Protocol
If measurement outcome is: ..02 is now in state:
10)00)1 al0); + b|1),
10)0|1): a|1l), + b|0);
|1)0|0)4 al0), — b|1),
|1)ol1): a|1l), — b|0); 7

3. Alice sends the result of her measurement to Bob in the form of 2 classical bits:
00,01, 10, or 11.

4. Depending on what he receives, Bob performs one of {I, X, Y, Z} on Q2.

This allows him to turn it into (reconstruct) the unknown QO0.

If bits received are ..then Q2 is now in state ...50 to reconstruct Q0, use
00 al0), + b|1), I,

01 a|1>2+b|0>2 XZ

10 al0); — b[1), Z7

11 a|1l); — b|0), Y, 7




Question 1: Does Bob violate the No-Cloning Theorem? Doesn't he construct a copy
of the unknown Q0?

e No violation occurs.

e Bob does construct a copy: Q2 has become an exact duplicate of Q0.

e But: After Alice is through transforming Q0 and Q1, the original Q0 has now
collapsed to either |0), or |1),!

- Alice destroys QO in the process of conveying the information contained in it to Bob!

Decoder
1LXY Z

R unknown Q0
reconstructed

unkown Q0 ---»> | Encoder

v VY

2 classical bits sent

[¥+) = V2% (|0)1]0); + |1)]1),)
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Question 2: How does Bob reconstruct the unknown QO (that encodes an
arbitrarily large amount of information) from just 2 classical bits?

e Information to reconstruct QO is transferred by the correlations present in the
entangled state |W), in addition to the 2 classical bits.

e The 2 classical bits are used simply to determine the appropriate trans-
formation on Q2, after it has been "steered” into the appropriate state by Alice.

Decoder
1LXY Z

R unknown Q0

unkown Q0 ---»> | Encoder
reconstructed

v VY

2 classical bits sent

[¥+) = V2% (|0)1]0); + |1)]1),)
11



3. Quantum Computation.

e General Goal: To use the inaccessible arbitrarily large amount of information
encoded in qubits to perform computations in "quantum parallel” (i.e., in record

time!).

e Initial (modest) Goal: To compute all possible values of a function f in a single
computation.

e First Question: Can classical computations be done using qubits instead of
classical bits?

- Can transformations on qubits be defined that reproduce the transformations on
bits that are needed to implement a classical computer.

12



Classical Computation Using Bits

To implement a classical computer, it suffices to have an AND transformation and a
NOT transformation on classical bits defined by the following:

0ANDO =0 NOTO0 =1 _ _
- AND takes two input bits and
0OAND1 =20 NOT1=0 produces one output bit.
1ANDO =0 - NOT takes one input bit and
produces one output bit.
1AND1 =1

e Initial problem: Transformations on qubits are reversible: the number of input
qubits always must equal the number of output qubits.

____________________________________________________________
1

» Why? Qubit transformations are operators on vector spaces. And an |
\ operator defined on an n-dim vector space (e.g., n-qubit space) that E
' acts on n-dim vectors (e.g., n qubits) can only spit out n-dim vectors.

B e e e e e e e e e e e e e e e e M M e M M M M e M M M M M M e M M e M e e M M e M e e M e e M e e e e e e e
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Solution: The Controlled-controlled-NOT, CC oy, operator.

e Changes the third target qubit if the first two control qubits are [1)|1),
and leaves it unchanged otherwise.

CCror|0)]0)[0) = 10)[0)]0)
CCror|0)[0)[1) = 10)[0)]1)
CCror|0)[1)[0) = 10)[1)]0)

100 0 0
/01000
0010 0

cour=[8 8¢ 3 ¢
00 0 0 O
\00000
00 0 0 O

SO OFRrRr OO OO O

_, OO OO OO O

CCrnor|0)[1)[1) = [0)|1)|1)
CCror|1)[0)[0) = [1)]|0)|0)

CCrnor|1)[1)10) = [1)|1)|1)
CCrnor|1)[1)[1) = [1)|1)|0)

CCrnor|1)[0)[1) = [1)|0)|1)

o)

0

oo

NN

o o

10)I0)I0) =1 o [ OMO)NTY=1] 5 | DIV =

o) Y o)

e Claim: CCyor implements AND and NOT on qubits.

- To implement AND, act with CCyor
on a 3-qubit state in which the last

qubitis |0):

CCnor|X)1¥)0) = [x)|y)|x AND y)

- To implement NOT, act with CCypr
on a 3-qubit state in which the first
two qubits are |1)|1):

CCnor|1)|1)|x) = |1}[1)|NOT x)

14



So: Any classical computation can be done using qubits instead of bits.

e In particular: Any classical function that takes n input bits and produces k
output bits can be implemented using arrays of primitive CCy,r "gates".

How to Construct a Qubit-Based Function Calculator

e Let|x)., represent n input qubits that encode the number x.
- Example: |1)|1)|0) represents 6.

e Let|0), represent k qubits |0) (the output register).
e Let|f(x))y) represent k output qubits that encode the number f(x).

 Define an operator U, that acts on (n+k) qubits in the following way:

Ur|x) ) 0) o) = |X)(n)|f(x))(k)

e Now: Feed U, a superposition of all possible numbers x it can take as input.

e Result: A superposition of all possible values of the function in a single
computation!

15



Two Steps:

1. Prepare as input a superposition of all possible numbers x that can be encoded
in n bits:
(i) Start with an n-qubit state |0);|0),:--|0),,

(ii) Now apply a Hadamard transformation to each qubit:

(51@ 52@ "‘®5n)|0>1|0>2“’|0>n
= (V%) " {(10)1 + [1)) (|02 + |1)2)-(|0), + [ 1))

= (V%) " {10)1]0)5++|0)y + [0)1]0)ge+[ 1)y + -+ + [1)1] 1) ++| 1)}

\( J N V_/
The first term encodes The last term encodes
the binary number for Each term in between is the the binary number for
0, or|0)m binary number for each 2"-1, or |2"-1) )

number between 0 and 2"-1.

2N 1

n
= (V¥2) z %) (n)
x=0 i So the entire sum is a

superposition that encodes all
numbers x such that 0 < x < 2",

16



Two Steps:

2. Now attach a k-qubit output register |0), and apply Uy:

21 2M—1
n n
Uf(Vl/Z ) z |X)(n)|0>(k) = (V1/2 ) z Uf|x>(n)|0>(k)
x=0 x=0
2M—1

= (V)" ) Wl
x=0

N

A superposition of all possible values

S S S f(x), for0 < x < 2™, of the function f.
' The Catch: None of these values of f is

I [l L]
' accessible until we make a measurement!

___________________________________________

And we've effectively calculated them

all with just a single application of U.

The Task for Quantum Algorithm construction R

Given a problem, first construct an appropriate superposition
of solutions; and then manipulate the superposition so that
the relevant terms aquire high probability.

17



Two Steps:

2. Now attach a k-qubit output register |0), and apply Uy:

21 2M—1
n n
Uf(Vl/Z ) z |X)(n)|0>(k) = (V1/2 ) z Uf|x>(n)|0>(k)
x=0 x=0
2M—1

= (V)" ) Wl
x=0

N

A superposition of all possible values
Example: Let f(x) =x*n=2,k=4 f(x), for 0 < x < 2™, of the function f.

(V¥2) Z @)1 = %{(10)10))(10)]0)]0)]0)) + (10)|1))(10)]0)[0)|1)) +
(11)10)(10)1)]0)]0)) + (I1)I1))(11)[0)]0)] 1))}

v

- A superposition of all possible values of x?, for 0 < x < 4.
- Takes the form of an entangled 6-qubit state: Input 2-qubit
State is in a superposition, output 4-qubit state is in a

superposition, and both superpositions are entangled.
17



Example: Shor's Factorization Algorithm (1994)

e Factors large integers into primes in polynomial time.

- Exponential time: The number of steps required to complete the algorithm for
a given input is of the order c", ¢ > 1, where n is the complexity of the input.

________________________________________________________________________

e Current classical algorithms require exponential times.

Why is fast prime factorization important?
e Classical RSA Encryption (Rivest, Shamir & Adleman 1978).
- public encryption key = product pq of two (very large) primes.

- private decryption key = p, q separately

- Thus: Factorizing pq (in your lifetime) would let you break RSA
encryption (standard encryption for web transactions).

18



Two essential facts underlie Shor's algorithm: S

(i) Factorizing a large integer is equivalent to determining the period r of
an associated periodic function f(x+71) = f(x).

(ii) A discrete Fourier transform maps a function g(x) of period r on the

domain (0, 2"— 1) to a function G(c) which has approximately non-
zero values only at multiples of 27/7.

Protocol

e By Fact (i), to factorize a given large integer, suppose we've determined
that we need to find the period r of an appropriate periodic function f (x).

Step 1
e Construct a superposition of all possible solutions of f(x) for 0 < x < 2™

2N 1 21

U (V)" ) I0ml0e = (V)" ) 10wl f @)
x=0 x=0

V4 27 0N

_ o terms! superposition superposition
Our Good Friend ' of 2™ terms of 2™ terms
the qubit-based \ v J

' /
function calculator input and output are entangled!

19



Step 2

e Measure f(x); i.e.,, compute one value of it, say f(x,).
2n—1 21
n
(V)" Y W wlf (e ———C D gl o)
x=0 ‘\7\ Y§ x=0 /f \

iti i roosition 1
superposition superposition z;’gi/ioz r’,On : single term
of 2™ terms of 2" terms

where g(x) = 1 for x = x, + kr, and zero otherwise (for k an integer).

e The output register has collapsed to a single term | f (X)) .

e The input register |x), is still in a superposition of all those values of x
for which f(x) = f(x).

- Initially there were 2™ input terms; now there are 2"/r.

e Also: g(x) has the same period r as f(x), since g(x) = g(x, + kr).

So: To find the period of f (x), we now need to find the period of g(x).

20



Step 3

e Acton the input register with a quantum Fourier transformation:

2n_1

211
€ ) 90w )y ——— € D GOl X))t
x=0 /l/1 c=0 '§
superposition Still a superposition of 2™ /r
of 2" /r terms

terms, but now ¢ = j2"/r
terms are "favorably" weighted

where G(c) is the discrete Fourier transform of g(x).

e By Fact (ii), G(c) is approximately non-zero only for ¢ = j2"/r, for integer j.

Which means: The input superposition has now been "favorably” weighted
to produce values of ¢ = j2"/r when measured.

e Which means: If we measure the input register, we will most likely get a
value for j2"/r. From this value, we can extract a value for r.




Two Interpretive Issues

(1) How are quantum computers different from classical computers?

\N

Claim: Apart from hardware differences (quantum 2-state
systems vs. classical 2-state systems), the essential difference
between a quantum computer and a classical computer is
that the former are ideally much more efficient than the latter.

e A quantum computer can compute anything that a classical computer can.

- Recall: Any computation implemented using bits can be implemented using qubits.

e A classical computer can compute anything that a quantum computer can.

- Any computation implemented using qubits can be implemented using bits and a
probabilistic algorithm.

- Intuitively: There are probabilistic classical 2-state systems that can simulate the
output of quantum 2-state systems, (although perhaps not as efficiently).

22



(2) Is quantum information different from classical information?

Claim: No fundamental difference between classical and
quantum information: just a difference in types of sources.

_________________________________________________________

' Information = What is produced by an information
source that is required to be reproducible at the receiver

if the transmission is to be counted a success.

B o e o e e e e e e e e e M e e M e e M e e M e M M M M M M e M e M M M M M e e M e e M e e M e e e e e e
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Two Types of Information Source

I. Classical information source

- Messages = sequences of letters. Ex: x7x3x4...

{X1, X9, 0, X}

- Output = sequence of classical states. Ex: x7x3X,...

- Concretely: Produces physical systems (e.g., on-off switches) in classical states

\N

- Abstractly: Produces letters from a set {x;, x,, ..., x,;} with probabilities p; = p(x;).

II(a). Quantum information, Non-Entangled Source

- Produces physical systems (e.g., electrons) in non-entangled
quantum states {|Y1), |Y¥57), ..., |¥)}
- Output = sequence of quantum pure states. Ex: [{;)|3)|[Y4)...

\N

Timpson, C. (2008) "Philosophical Aspects of Quantum Information Theory", in D.
Rickles (ed.) The Ashgate Companion to the New Philosophy of Physics, Ashgate.
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II(b). Quantum information, Entanglement Source :

- Produces physical systems (i.e., electrons) in entangled quantum states which
include other systems inaccessible to the source.

- Output = sequence of quantum entangled states.

i B ={B4, B,, ...} = {electrons produced by source}
' A={A,, A,, ..} = {electrons entangled with source electrons}

|
' C={C,, C,, ..} ={"target" electrons at receiver
1 L2 g

- Suppose: Electron B, is produced at source in entangled state |y), g with electron A..
- Goal: To reproduce this entangled state at receiver, but between A; and C;: [{), ¢,
- In general: If source produces sequence of states

) a5 510" e

then successful transmission occurs if receiver reproduces sequence of states

|¢>AiCi|lp,)Ajlel/)”>Aka... .
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Measures of information, depending on source

e The Shannon Entropy:

H(X) = —), pilog,p;

- X = {xy, .., x,}, where x; is a state
produced by a classical information
source, and p;, is a probability
distribution over such states.

<— Specifies the minimal number of

bits required to encode the
output of a classical information

source (Shannon 1948).

26



Aside!

Ex:LetX ={A, B, C, D}
e To encode X, need 2 bits per letter. A=00 B=01
e So: Need 2N bits to encode an N-letter message. ¢=10b=11

e Suppose: We have a probability distribution over X.
- Ex: pa=1/2, pp=1/4, pc=pp=1/8

7

Number of ways to arrange N distinct letters into
4 bins with capacities p,N, pgN, pcN, ppN.

Claim 2: 2* messages require x bits to encode them.

AN
Claim 1: There are 2V7® possible N-letter messages.
o # possible N-letter | _ log ( N! ) ~ NHOO
* | messages “\@aN)! (psN)! (pcN)! (ppN)!

e So:Instead of 2N bits, we only need NH(X) bits, where

1 11 1,1 1 1 1
NH(X) = —N (Elogz S+ Zlog22+ glogz . glogz §) = 1.75N

"1Og2x — yll
means "x = 2"
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Measures of information, depending on source

e The Shannon Entropy:

H(X) = =), pilog,p, -

<— Specifies the minimal number of

- X = {xy, .., x,}, where x; is a state
produced by a classical information
source, and p;, is a probability
distribution over such states.

e The von Neumann Entropy:

S(p) = —Tr(plog,p) = —),.p;log,p;

- p = X pilpiXyil ,where [¢;) is a vector
state produced by a quantum information

source, and p;, is a probability distribution
over such states.

bits required to encode the
output of a classical information

source (Shannon 1948).

<< Specifies the minimal number of
qubits required to encode the
output of a quantum information
source (Schumacher 1995).
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