
07. QIT, Part II. 

1. Quantum Dense Coding

• Goal: To use one qubit to transmit two classical bits.

• But: One qubit (supposedly) only contains one classical bit's worth of 

information!

• So: How can we send 2 classical bits using just one qubit?

• Answer: Use entangled states!

1. Quantum Dense Coding
2. Quantum Teleporation
3. Quantum Computation

1



Set-Up:

2 classical 
bits encoded

Decoder
Encoder

𝐼, 𝑋, 𝑌, 𝑍

𝑄1 to Alice 𝑄2 to Bob

• Alice gets 𝑄1, Bob gets 𝑄2.

2 classical 
bits decoded1 qubit sent

• Alice manipulates her 𝑄1 so that it steers Bob's 𝑄2 into a state from which he 

can read off the 2 classical bits Alice desires to send. All he needs to do this is the 

post-manipulated 𝑄1 that Alice sends to him.

source

• Prepare two qubits 𝑄1, 𝑄2 in an entangled state |Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2)

|Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2)
2



Protocol
1. Alice has a pair of classical bits: either 00, 01, 10, or 11.

 She first encodes the pair in 𝑄1 by acting on 𝑄1 with one of {𝐼, 𝑋, 𝑌, 𝑍} according to:

2. Alice now sends 𝑄1 to Bob.

According to the Eigenvalue-Eigenvector Rule, 𝑄1 still has no definite value, but 𝑄2 now does!

- Let 𝑄1 and 𝑄2 be electrons in 
Hardness states.

- Let |0⟩ be |𝑠𝑜𝑓𝑡⟩ and |1⟩ be |ℎ𝑎𝑟𝑑⟩.

pair transform new  state

00 (𝐼1 ⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2) = |Ψ+⟩

01 (𝑋1 ⊗ 𝐼2)|Ψ+⟩ ½ (|1⟩1|0⟩2 + |0⟩1|1⟩2) = |Φ+⟩

10 (𝑌1 ⊗ 𝐼2)|Ψ+⟩ ½ (−|1⟩1|0⟩2 + |0⟩1|1⟩2) = |Φ−⟩

11 (𝑍1 ⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 − |1⟩1|1⟩2) = |Ψ−⟩

3. After reception of 𝑄1, Bob first applies a CNOT transformation to both 𝑄1 and 𝑄2:

pair transform new  state Apply CNOT

00 (𝐼1 ⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2) = |Ψ+⟩ ½ (|0⟩1 + |1⟩1)|0⟩2

01 (𝑋1 ⊗ 𝐼2)|Ψ+⟩ ½ (|1⟩1|0⟩2 + |0⟩1|1⟩2) = |Φ+⟩ ½ (|1⟩1 + |0⟩1)|1⟩2

10 (𝑌1 ⊗ 𝐼2)|Ψ+⟩ ½ (−|1⟩1|0⟩2 + |0⟩1|1⟩2) = |Φ−⟩ ½ (−|1⟩1 + |0⟩1)|1⟩2

11 (𝑍1 ⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 − |1⟩1|1⟩2) = |Ψ−⟩ ½ (|0⟩1 − |1⟩1)|0⟩2
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5. Bob now measures 𝑄1 and 𝑄2 to determine the number Alice sent!

(a) (𝑄1 = 0, 𝑄2 = 0) ⇒ 00

(b) (𝑄1 = 0, 𝑄2 = 1) ⇒ 01

(c) (𝑄1 = 1, 𝑄2 = 1) ⇒ 10

(d) (𝑄1 = 1, 𝑄2 = 0) ⇒ 11

4. Bob now applies a Hadamard transformation to 𝑄1:

According to the EE Rule, 𝑄1 and 𝑄2 now both have definite values.

Protocol

pair transform new  state Apply CNOT Apply ℌ1

00 (𝐼1 ⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2) = |Ψ+⟩ ½ (|0⟩1 + |1⟩1)|0⟩2 |0⟩1|0⟩2

01 (𝑋1 ⊗ 𝐼2)|Ψ+⟩ ½ (|1⟩1|0⟩2 + |0⟩1|1⟩2) = |Φ+⟩ ½ (|1⟩1 + |0⟩1)|1⟩2 |0⟩1|1⟩2

10 (𝑌1 ⊗ 𝐼2)|Ψ+⟩ ½ (−|1⟩1|0⟩2 + |0⟩1|1⟩2) = |Φ−⟩ ½ (−|1⟩1 + |0⟩1)|1⟩2 |1⟩1|1⟩2

11 (𝑍1 ⊗ 𝐼2)|Ψ+⟩ ½ (|0⟩1|0⟩2 − |1⟩1|1⟩2) = |Ψ−⟩ ½ (|0⟩1 − |1⟩1)|0⟩2 |1⟩1|0⟩2
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• Not transferred via the single qubit.

• Transferred by the correlations present in the 2-qubit entangled state |Ψ+⟩.

• In order to convey information between Alice and Bob, it need not be physically 

transported from Alice to Bob across the intervening spatial distance.

• The only thing required to convey information is to set up a correlation between 

the sender's data and the receiver's data.

Question: How are the 2 classical bits transferred from Alice to Bob?

Encoder
Decoder

source

2 classical 
bits decoded

2 classical 
bits encoded 1 qubit sent

𝑄1 to Alice 𝑄2 to Bob

𝐼, 𝑋, 𝑌, 𝑍

|Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2)
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2. Quantum Teleportation

• Goal: To transmit an unknown quantum state using classical bits and to 

reconstruct the exact quantum state at the receiver.

• But: How can this avoid the No-Cloning Theorem?

• Answer: Use entangled states!
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• Alice has an unknown 𝑄0, |𝑄⟩0 = 𝑎|0⟩0 + 𝑏|1⟩0, and wants to send it to Bob.

unkown 𝑄0

Set-Up:

DecoderEncoder

𝐼, 𝑋, 𝑌, 𝑍

unknown 𝑄0 
reconstructed

2 classical bits sent

• Alice manipulates 𝑄0 and 𝑄1 so that they steer Bob's 𝑄2 into a form from which 

he can reconstruct the unknown state of 𝑄0. All Bob needs to do this are 2 

classical bits sent by Alice.

source

𝑄1 to Alice 𝑄2 to Bob

• 𝑄1 and 𝑄2 are prepared in an entangled state |Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2).

 Alice gets 𝑄1, Bob gets 𝑄2.

|Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2)
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Protocol

1. Alice starts with a 3-qubit system (𝑄0, 𝑄1, 𝑄2) in the state:

 |𝑄⟩0|Ψ+⟩ = ½ (𝑎|0⟩0|0⟩1|0⟩2 + 𝑎|0⟩0|1⟩1|1⟩2 + 𝑏|1⟩0|0⟩1|0⟩2 + 𝑏|1⟩0|1⟩1|1⟩2)

Alice now applies CNOT on 𝑄0 & 𝑄1, and then a Hadamard transformation on 𝑄0:

First CNOT on 𝑄0 & 𝑄1:

(CNOT01
 ⊗𝐼2)|𝑄⟩0|Ψ+⟩ = ½ (𝑎|0⟩0|0⟩1|0⟩2 + 𝑎|0⟩0|1⟩1|1⟩2 + 𝑏|1⟩0|1⟩1|0⟩2 + 𝑏|1⟩0|0⟩1|1⟩2)

2. Alice now measures 𝑄0 and 𝑄1:

If measurement outcome is: ...𝑄2 is now in state:

|0⟩0|0⟩1   𝑎|0⟩2 + 𝑏|1⟩2

|0⟩0|1⟩1    𝑎|1⟩2 + 𝑏|0⟩2

|1⟩0|0⟩1    𝑎|0⟩2 − 𝑏|1⟩2

|1⟩0|1⟩1    𝑎|1⟩2 − 𝑏|0⟩2

Then ℌ on 𝑄0:

(ℌ0 ⊗𝐼1⊗𝐼2)(″ ″) = ½|0⟩0|0⟩1(𝑎|0⟩2 + 𝑏|1⟩2) + ½|0⟩0|1⟩1(𝑎|1⟩2 + 𝑏|0⟩2)

          + ½|1⟩0|0⟩1(𝑎|0⟩2 − 𝑏|1⟩2) + ½|1⟩0|1⟩1(𝑎|1⟩2 − 𝑏|0⟩2)

EE Rule: Each of the terms 

represents a state in which 

𝑄0 and 𝑄1 have definite 

values, but 𝑄2 does not.
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Protocol

3. Alice sends the result of her measurement to Bob in the form of 2 classical bits: 

00, 01, 10, or 11.

4. Depending on what he receives, Bob performs one of {𝐼, 𝑋, 𝑌, 𝑍} on 𝑄2.

 This allows him to turn it into (reconstruct) the unknown 𝑄0.

If bits received are ...then 𝑄2 is now in state ...so to reconstruct 𝑄0, use

00 𝑎|0⟩2 + 𝑏|1⟩2 𝐼2

01 𝑎|1⟩2 + 𝑏|0⟩2 𝑋2

10 𝑎|0⟩2 − 𝑏|1⟩2 𝑍2

11 𝑎|1⟩2 − 𝑏|0⟩2 𝑌2

If measurement outcome is: ...𝑄2 is now in state:

|0⟩0|0⟩1   𝑎|0⟩2 + 𝑏|1⟩2

|0⟩0|1⟩1    𝑎|1⟩2 + 𝑏|0⟩2

|1⟩0|0⟩1    𝑎|0⟩2 − 𝑏|1⟩2

|1⟩0|1⟩1    𝑎|1⟩2 − 𝑏|0⟩2
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Question 1: Does Bob violate the No-Cloning Theorem? Doesn't he construct a copy 

of the unknown 𝑄0?

• No violation occurs.

• Bob does construct a copy: 𝑄2 has become an exact duplicate of 𝑄0.

unkown 𝑄0
DecoderEncoder

𝐼, 𝑋, 𝑌, 𝑍

source

𝑄1 to Alice 𝑄2 to Bob

unknown 𝑄0 
reconstructed

2 classical bits sent

• But: After Alice is through transforming 𝑄0 and 𝑄1, the original 𝑄0 has now 

collapsed to either |0⟩0 or |1⟩0!

- Alice destroys 𝑄0 in the process of conveying the information contained in it to Bob!

|Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2)
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unkown 𝑄0
DecoderEncoder

𝐼, 𝑋, 𝑌, 𝑍

source

𝑄2 to Bob

unknown 𝑄0 
reconstructed

2 classical bits sent

Question 2: How does Bob reconstruct the unknown 𝑄0 (that encodes an 

arbitrarily large amount of information) from just 2 classical bits?

• Information to reconstruct 𝑄0 is transferred by the correlations present in the 

entangled state |Ψ+⟩, in addition to the 2 classical bits.

• The 2 classical bits are used simply to determine the appropriate trans-

formation on 𝑄2, after it has been "steered" into the appropriate state by Alice.

𝑄1 to Alice

|Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2)
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3. Quantum Computation.

• General Goal: To use the inaccessible arbitrarily large amount of information 

encoded in qubits to perform computations in "quantum parallel" (i.e., in record 

time!). 

• Initial (modest) Goal: To compute all possible values of a function 𝑓 in a single 

computation.

• First Question: Can classical computations be done using qubits instead of 

classical bits?

- Can transformations on qubits be defined that reproduce the transformations on 

bits that are needed to implement a classical computer.
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Classical Computation Using Bits

To implement a classical computer, it suffices to have an AND transformation and a 

NOT transformation on classical bits defined by the following:

- AND takes two input bits and 

produces one output bit.

- NOT takes one input bit and 

produces one output bit.  

0 AND 0 = 0 NOT 0 = 1

0 AND 1 = 0 NOT 1 = 0

1 AND 0 = 0

1 AND 1 = 1

• Initial problem: Transformations on qubits are reversible: the number of input 

qubits always must equal the number of output qubits.

Why? Qubit transformations are operators on vector spaces. And an 

operator defined on an 𝑛-dim vector space (e.g., 𝑛-qubit space) that 

acts on 𝑛-dim vectors (e.g., 𝑛 qubits) can only spit out 𝑛-dim vectors.
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• Changes the third target qubit if the first two qubits are |1⟩|1⟩, and 

leaves it unchanged otherwise.

Solution: The Controlled-controlled-NOT, 𝐶𝐶𝑁𝑂𝑇, operator.

• Claim: 𝐶𝐶𝑁𝑂𝑇 implements AND and NOT on qubits.

- To implement NOT, act with 𝐶𝐶𝑁𝑂𝑇 

on a 3-qubit state in which the first 

two qubits are |1⟩|1⟩:

    𝐶𝐶𝑁𝑂𝑇|1⟩|1⟩|𝑥⟩ = |1⟩|1⟩|NOT 𝑥⟩

- To implement AND, act with 𝐶𝐶𝑁𝑂𝑇 

on a 3-qubit state in which the last 

qubit is |0⟩:

    𝐶𝐶𝑁𝑂𝑇|𝑥⟩|𝑦⟩|0⟩ = |𝑥⟩|𝑦⟩|𝑥 AND 𝑦⟩

𝐶𝐶𝑁𝑂𝑇|0⟩|0⟩|0⟩ = |0⟩|0⟩|0⟩ 𝐶𝐶𝑁𝑂𝑇|0⟩|1⟩|1⟩ = |0⟩|1⟩|1⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|1⟩|0⟩ = |1⟩|1⟩|1⟩

𝐶𝐶𝑁𝑂𝑇|0⟩|0⟩|1⟩ = |0⟩|0⟩|1⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|0⟩|0⟩ = |1⟩|0⟩|0⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|1⟩|1⟩ = |1⟩|1⟩|0⟩

𝐶𝐶𝑁𝑂𝑇|0⟩|1⟩|0⟩ = |0⟩|1⟩|0⟩ 𝐶𝐶𝑁𝑂𝑇|1⟩|0⟩|1⟩ = |1⟩|0⟩|1⟩

𝐶𝐶𝑁𝑂𝑇 = 

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

       |0⟩|0⟩|0⟩ = 

1
0
0
0
0
0
0
0

,  |0⟩|0⟩|1⟩ = 

0
1
0
0
0
0
0
0

,   ⋯, |1⟩|1⟩|1⟩ = 

0
0
0
0
0
0
0
1
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So: Any classical computation can be done using qubits instead of bits.

• In particular: Any classical function that takes 𝑛 input bits and produces 𝑘 

output bits can be implemented using arrays of primitive 𝐶𝐶𝑁𝑂𝑇 "gates".

How to Construct a Qubit-Based Function Calculator

• Let |𝑥⟩(𝑛) represent 𝑛 input qubits that encode the number 𝑥.

- Example: |1⟩|1⟩|0⟩ represents 6.

• Now: Feed 𝑈𝑓 a superposition of all possible numbers 𝑥 it can take as input.

• Result: A superposition of all possible values of the function in a single 

computation!

• Define an operator 𝑈𝑓 that acts on (𝑛+𝑘) qubits in the following way:  

𝑈𝑓|𝑥⟩(𝑛)|0⟩(𝑘) = |𝑥⟩(𝑛)|𝑓(𝑥)⟩(𝑘)

• Let |0⟩(𝑘) represent 𝑘 |0⟩ qubits (the output register).

• Let |𝑓(𝑥)⟩(𝑘) represent 𝑘 output qubits that encode the number 𝑓(𝑥).
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1. Prepare as input a superposition of all possible numbers 𝑥 that can be encoded 

in 𝑛 bits:

(i) Start with an 𝑛-qubit state |0⟩1|0⟩2⋯|0⟩𝑛

(ii) Now apply a Hadamard transformation to each qubit:

The first term encodes 

the binary number for 

0, or |0⟩(𝑛)

Each term in between is the 

binary number for each 

number between 0 and 2𝑛–1.

The last term encodes 

the binary number for 

2𝑛–1, or |2𝑛–1⟩(𝑛)

Two Steps:

(ℌ1⊗ℌ2⊗⋯⊗ℌ𝑛)|0⟩1|0⟩2⋯|0⟩𝑛

  = ½ 
𝑛

{(|0⟩1 + |1⟩1)(|0⟩2 + |1⟩2)⋯(|0⟩𝑛 + |1⟩𝑛)}

  = ½ 
𝑛

{|0⟩1|0⟩2⋯|0⟩𝑛 + |0⟩1|0⟩2⋯|1⟩𝑛 + ⋯ + |1⟩1|1⟩2⋯|1⟩𝑛}

So the entire sum is a 

superposition that encodes all 

numbers 𝑥 such that 0 ≤ 𝑥 < 2𝑛.

= ½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)
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2. Now attach a 𝑘-qubit output register |0⟩(𝑘) and apply 𝑈𝑓:

Two Steps:

The Catch: None of these values of 𝑓 is 

accessible until we make a measurement!

The Task for Quantum Algorithm construction

Given a problem, first construct an appropriate superposition 

of solutions; and then manipulate the superposition so that 

the relevant terms aquire high probability.

𝑈𝑓 ½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)|0⟩(𝑘) = ½
𝑛

෍

𝑥=0

2𝑛−1

𝑈𝑓| ⟩𝑥 (𝑛)|0⟩(𝑘)

= ½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)|𝑓(𝑥)⟩(𝑘)

A superposition of all possible values 

𝑓(𝑥), for 0 ≤ 𝑥 < 2𝑛, of the function 𝑓. 

And we've effectively calculated them 

all with just a single application of 𝑈𝑓.
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2. Now attach a 𝑘-qubit output register |0⟩(𝑘) and apply 𝑈𝑓:

Two Steps:

𝑈𝑓 ½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)|0⟩(𝑘) = ½
𝑛

෍

𝑥=0

2𝑛−1

𝑈𝑓| ⟩𝑥 (𝑛)|0⟩(𝑘)

= ½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)|𝑓(𝑥)⟩(𝑘)
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Example: Let 𝑓(𝑥) = 𝑥2, 𝑛 = 2, 𝑘 = 4
A superposition of all possible values 

𝑓(𝑥), for 0 ≤ 𝑥 < 2𝑛, of the function 𝑓.

½
2

෍

𝑥=0

3

| ⟩𝑥 (2)|𝑥2⟩(4) = ½{(|0⟩|0⟩)(|0⟩|0⟩|0⟩|0⟩) + (|0⟩|1⟩)(|0⟩|0⟩|0⟩|1⟩) + 

(|1⟩|0⟩)(|0⟩|1⟩|0⟩|0⟩) + (|1⟩|1⟩)(|1⟩|0⟩|0⟩|1⟩)}

- A superposition of all possible values of 𝑥2, for 0 ≤ 𝑥 < 4.

- Takes the form of an entangled 6-qubit state: Input 2-qubit 

state is in a superposition, output 4-qubit state is in a 

superposition, and both superpositions are entangled.



• Factors large integers into primes in polynomial time.

- Polynomial time: The number of steps required to complete the algorithm for 

a given input is of the order 𝑛𝑐, 𝑐 > 1, where 𝑛 is the complexity of the input.

- Exponential time: The number of steps required to complete the algorithm for 

a given input is of the order 𝑐𝑛, 𝑐 > 1, where 𝑛 is the complexity of the input.

Example: Shor's Factorization Algorithm (1994)

• Current classical algorithms require exponential times.

Why is fast prime factorization important?

• Classical RSA Encryption (Rivest, Shamir & Adleman 1978).

- public encryption key = product 𝑝𝑞 of two (very large) primes.

- private decryption key = 𝑝, 𝑞 separately

- Thus: Factorizing 𝑝𝑞 (in your lifetime) would let you break RSA 

encryption (standard encryption for web transactions).
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Two essential facts underlie Shor's algorithm:

(i) Factorizing a large integer is equivalent to determining the period 𝑟 of 

an associated periodic function 𝑓(𝑥+𝑟) = 𝑓(𝑥).

(ii) A discrete Fourier transform maps a function 𝑔(𝑥) of period 𝑟 on the 

domain (0, 2𝑛− 1) to a function 𝐺(𝑐) which has approximately non-

zero values only at multiples of 2𝑛/𝑟.

Protocol

• By Fact (i), to factorize a given large integer, suppose we've determined 

that we need to find the period 𝑟 of an appropriate periodic function 𝑓(𝑥).

Step 1

• Construct a superposition of all possible solutions of 𝑓(𝑥) for 0 ≤ 𝑥 < 2𝑛.

Our Good Friend 

the qubit-based 
function calculator!

𝑈𝑓 ½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)|0⟩(𝑘) = ½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)|𝑓(𝑥)⟩(𝑘)

2𝑛 terms!
superposition 

of 2𝑛 terms

superposition 

of 2𝑛 terms

input and output are entangled!
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Step 2

• Measure 𝑓(𝑥); i.e., compute one value of it, say 𝑓(𝑥0).

where 𝑔(𝑥) = 1 for 𝑥 = 𝑥0 + 𝑘𝑟, and zero otherwise (for 𝑘 an integer).

• Also: 𝑔(𝑥) has the same period 𝑟 as 𝑓(𝑥), since 𝑔(𝑥) = 𝑔(𝑥0 + 𝑘𝑟).

So: To find the period of 𝑓(𝑥), we now need to find the period of 𝑔(𝑥).

• The output register has collapsed to a single term |𝑓(𝑥0)⟩(𝑘).

• The input register |𝑥⟩(𝑛) is still in a superposition of all those values of 𝑥 

for which 𝑓(𝑥) = 𝑓(𝑥0).

- Initially there were 2𝑛 input terms; now there are 2𝑛/𝑟.

½
𝑛

෍

𝑥=0

2𝑛−1

| ⟩𝑥 (𝑛)|𝑓(𝑥)⟩(𝑘) ⎯⎯⎯⎯→ 𝐶 ෍

𝑥=0

2𝑛−1

𝑔(𝑥)| ⟩𝑥 (𝑛)|𝑓(𝑥0)⟩(𝑘)collapse

single termsuperposition 

of 2𝑛/𝑟 terms
superposition 

of 2𝑛 terms

superposition 

of 2𝑛 terms



𝐶 ෍

𝑥=0

2𝑛−1

𝑔(𝑥)| ⟩𝑥 (𝑛)|𝑓(𝑥0)⟩(𝑘) ⎯⎯⎯⎯→ 𝐶′ ෍

𝑐=0

2𝑛−1

𝐺(𝑐)| ⟩𝑐 (𝑛)|𝑓(𝑥0)⟩(𝑘)quantum FT
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• By Fact (ii), 𝐺(𝑐) is approximately non-zero only for 𝑐 = 𝑗2𝑛/𝑟, for integer 𝑗.

Step 3

• Act on the input register with a quantum Fourier transformation:

where 𝐺(𝑐) is the discrete Fourier transform of 𝑔(𝑥).

• Which means: The input superposition has now been "favorably" weighted 

to produce values of 𝑐 = 𝑗2𝑛/𝑟 when measured.

 • Which means: If we measure the input register, we will most likely get a 

value for 𝑗2𝑛/𝑟. From this value, we can extract a value for 𝑟. 

superposition 

of 2𝑛/𝑟 terms
Still a superposition of 2𝑛/𝑟 

terms, but now 𝑐 = 𝑗2𝑛/𝑟 

terms are "favorably" weighted
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Two Interpretive Issues

(1) How are quantum computers different from classical computers?

• A quantum computer can compute anything that a classical computer can.

- Recall: Any computation implemented using bits can be implemented using qubits.

• A classical computer can compute anything that a quantum computer can.

- Any computation implemented using qubits can be implemented using bits and a 

probabilistic algorithm.

- Intuitively: There are probabilistic classical 2-state systems that can simulate the 

output of quantum 2-state systems, (although perhaps not as efficiently).

Claim: Apart from hardware differences (quantum 2-state 

systems vs. classical 2-state systems), the essential difference 

between a quantum computer and a classical computer is 

that the former are ideally much more efficient than the latter.
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(2) Is quantum information different from classical information?

Claim: No fundamental difference between classical and 

quantum information: just a difference in types of sources.

Information = What is produced by an information 

source that is required to be reproducible at the receiver 

if the transmission is to be counted a success.
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Two Types of Information Source

I. Classical information source 

- Abstractly: Produces letters from a set {𝑥1, 𝑥2, ..., 𝑥𝑛} with probabilities 𝑝𝑖 = 𝑝(𝑥𝑖).

- Messages = sequences of letters. Ex: 𝑥7𝑥3𝑥4...

- Concretely: Produces physical systems (e.g., on-off switches) in classical states 

{𝑥1,𝑥2, ...,𝑥𝑛}.

- Output = sequence of classical states. Ex: 𝑥7𝑥3𝑥4... 

II(a). Quantum information, Non-Entanglement Source

- Produces physical systems (e.g., electrons) in non-entangled 

quantum states {|𝜓1⟩, |𝜓2⟩, ..., |𝜓𝑛⟩}.

- Output = sequence of quantum pure states. Ex: |𝜓7⟩|𝜓3⟩|𝜓4⟩...

Timpson, C. (2008) "Philosophical Aspects of Quantum Information Theory", in D. 
Rickles (ed.) The Ashgate Companion to the New Philosophy of Physics, Ashgate.
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II(b). Quantum information, Entanglement Source

- Produces physical systems (i.e., electrons) in entangled quantum states which 

include other systems inaccessible to the source.

- Output = sequence of quantum entangled states.

Example of II(b):

𝐵 = {𝐵1, 𝐵2, ...} = {electrons produced by source}

𝐴 = {𝐴1, 𝐴2, ...} = {electrons entangled with source electrons}

𝐶 = {𝐶1, 𝐶2, ...} = {"target" electrons at receiver}

- Suppose: Electron 𝐵𝑖 is produced at source in entangled state |𝜓⟩𝐴𝑖𝐵𝑖
 with electron 𝐴𝑖.

- Goal: To reproduce this entangled state at receiver, but between 𝐴𝑖 and 𝐶𝑖: |𝜓⟩𝐴𝑖𝐶𝑖

- In general: If source produces sequence of states

  |𝜓⟩𝐴𝑖𝐵𝑖
|𝜓′⟩𝐴𝑗𝐵𝑗

|𝜓″⟩𝐴𝑘𝐵𝑘
...,

 then successful transmission occurs if receiver reproduces sequence of states

  |𝜓⟩𝐴𝑖𝐶𝑖|𝜓′⟩𝐴𝑗𝐶𝑗|𝜓″⟩𝐴𝑘𝐶𝑘... .
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Measures of information, depending on source

• The Shannon Entropy:

  𝐻(𝑋) = −∑
𝑖
𝑝𝑖 log2𝑝𝑖

- 𝑋 = {𝑥1, ..., 𝑥𝑛}, where 𝑥𝑖 is a state 

produced by a classical information 

source, and 𝑝𝑖 is a probability 

distribution over such states. 

Specifies the minimal number of 

bits required to encode the 

output of a classical information 

source (Shannon 1948).
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Ex: Let 𝑋 = {𝐴, 𝐵, 𝐶, 𝐷}

• Suppose: We have a probability distribution over 𝑋.

- Ex:  𝑝𝐴 = 1/2,   𝑝𝐵 =1/4,   𝑝𝐶 = 𝑝𝐷 = 1/8

• So: Instead of 2𝑁 bits, we only need 𝑁𝐻(𝑋) bits, where

 𝑁𝐻 𝑋 = −𝑁
1

2
log2

1

2
+

1

4
log2

1

4
+

1

8
log2

1

8
+

1

8
log2

1

8
= 1.75𝑁

• To encode 𝑋, need 2 bits per letter.

• So: Need 2𝑁 bits to encode an 𝑁-letter message.

𝐴 = 00,   𝐵 = 01, 

𝐶 = 10,   𝐷 = 11

"log2𝑥 = 𝑦" 

means "𝑥 = 2𝑦"

Claim 1: There are 2𝑁𝐻(𝑋) possible 𝑁-letter messages.

Number of ways to arrange 𝑁 distinct letters into 

4 bins with capacities 𝑝𝐴𝑁, 𝑝𝐵𝑁, 𝑝𝐶𝑁, 𝑝𝐷𝑁.

= log2

𝑁!

𝑝𝐴𝑁 ! 𝑝𝐵𝑁 ! 𝑝𝐶𝑁 ! 𝑝𝐷𝑁 !
= 𝑁𝐻(𝑋)log2

# possible N-letter 
messages

Claim 2: 2𝑥 messages require 𝑥 bits to encode them.

Aside!
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Measures of information, depending on source

• The Shannon Entropy:

  𝐻(𝑋) = −∑
𝑖
𝑝𝑖 log2𝑝𝑖

- 𝑋 = {𝑥1, ..., 𝑥𝑛}, where 𝑥𝑖 is a state 

produced by a classical information 

source, and 𝑝𝑖 is a probability 

distribution over such states. 

Specifies the minimal number of 

bits required to encode the 

output of a classical information 

source (Shannon 1948).

• The von Neumann Entropy:

  𝑆(𝜌) = −Tr(𝜌 log 2𝜌) = −∑
𝑖
𝑝𝑖 log2𝑝𝑖

- 𝜌 = ∑𝑖 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖| ,where |𝜓𝑖⟩ is a vector 

state produced by a quantum information 

source, and 𝑝𝑖 is a probability distribution 

over such states. 

Specifies the minimal number of 

qubits required to encode the 

output of a quantum information 

source (Schumacher 1995).
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