1. Quantum Dense Coding

07. QIT, Pal‘t II. 2. Quantum Teleporation

] 3. Quantum Computation
1. Quantum Dense Coding
e Goal: To use one qubit to transmit two classical bits.

e But: One qubit (supposedly) only contains one classical bit's worth of
information!

e So: How can we send 2 classical bits using just one qubit?

e Answer: Use entangled states!



Set-Up:
e Prepare two qubits Q1, Q2 in an entangled state |¥+) =+/% (|0),|0), + |1)4]1),)
e Alice gets Q1, Bob gets Q2.

e Alice manipulates her Q1 so that it steers Bob's Q2 into a state from which he
can read off the 2 classical bits Alice desires to send. All he needs to do this is the
post-manipulated Q1 that Alice sends to him.
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Protocol
1. Alice has a pair of classical bits: either 00,01, 10, or 11.
She first encodes the pair in Q1 by acting on Q1 with one of {/, X, Y, Z} according to:

\N

pair transform new_state
00 (L Q@ )[PF) V2 (|01]0); + [Th]1)z) = [¥F)

01 X ® )W) V% (11)1]0); + [0)]1),) = | ) - Let Q1 and Q2 be electrons in
Hardness states.
10 (Y, Q I)|Y*) V¥ (—|1)1]0), + [0)4]1),) = |P~) - Let |0) be |soft) and |1) be |hard).

11 (Z; @ I)|¥*) V¥ (|0)1]0); — [1)1]1)) = [¥7)

2. Alice now sends Q1 to Bob.

3. After reception of Q1, Bob first applies a Cy,; transformation to both Q1 and Q2:
[N

pair transform new_state Apply Cyor
00 (I ® )W) V% (10)1]0)2 + [1)1]1)2) = [¥F) VT2 (10); + [1)1)]0),

01 X1 @ )W) V% (|1)1]0); + |0)1]1),) = [@*) V¥4 (|1)1 + [0)1)[1),
10 (Y1 Q@ I)|WH) V% (—|1)41]0), + [0)1]1),) = |P~) V% (—[1); + [0)1)]1),

11 (Z1 @ )I¥Y) V% (10)1]0); — [1)1]1)) =1¥7) V¥ (10)1 = [1)1)]0),

According to the Eigenvalue-Eigenvector Rule, Q1 still has no definite value, but Q2 now does!



Protocol

4. Bob now applies a Hadamard transformation to Q1:

pair
00

01
10

11

transform new state Apply Cyor
(I @ )W) V%2 (]0)1]0), + [1)1]1)2) = ¥+ V2 (|0); + [1)1)]0),

X1 @ )W) V¥ (|114]0)2 + [0)1]1),) =[*) VI (11)1 +0)1)[1),
(Y1 @ I)|PH) V¥ (=[1)1]0)2 + [0)1]1),) = [7) V4 (=[1)1 +0)1)[1);
(Z1 @ IDI¥*) V% (10)1]0), — [1)1]1)2) = [¥7) V¥ (10)1 — [1)1)]0),

10)1]0)-

10)4]1)2
11)1]1)2

11)1]0)2

According to the EE Rule, Q1 and Q2 now both have definite values.

5. Bob now measures Q1 and Q2 to determine the number Alice sent!

(a) (Q1=0,Q2=0)= 00
() (Q1=0,0Q2=1)=01
(© (Q1=1,02=1)=10
(d (Q1=1,02=0)=>11




Question: How are the 2 classical bits transferred from Alice to Bob?

e Not transferred via the single qubit.
e Transferred by the correlations present in the 2-qubit entangled state |\W™).

e Inorder to convey information between Alice and Bob, it need not be physically
transported from Alice to Bob across the intervening spatial distance.

e The only thing required to convey information is to set up a correlation between
the sender's data and the receiver's data.
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2. Quantum Teleportation

e Goal: To transmit an unknown quantum state using classical bits and to
reconstruct the exact quantum state at the receiver.
e But: How can this avoid the No-Cloning Theorem?

e Answer: Use entangled states!



Set-Up:
e Alice has an unknown QO0, |Q), = a|0), + b|1), and wants to send it to Bob.

e Q1 and Q2 are prepared in an entangled state |¥*+) =+/% (|0),|0), + |1)4|1),).
Alice gets Q1, Bob gets Q2.

e Alice manipulates Q0 and Q1 so that they steer Bob's Q2 into a form from which

he can reconstruct the unknown state of Q0. All Bob needs to do this are 2
classical bits sent by Alice.
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Protocol

1. Alice starts with a 3-qubit system (Q0, Q1, Q2) in the state:

Q)| ¥*) = V% (a]0)]0)1]0); + a|0)o|1)1]1), + b|1)|0)1|0); + b|1)o|1);]1),)

Alice now applies Cyyron Q0 & Q1, and then a Hadamard transformation on QO:

First Cyoron Q0 & Q1:

(Crnory, ®1)|Q)|PH) = V% (a|0)o]0)1]0), + a|0)|1)1]1); + b|1)o|1)1]0), + b|1)|0)1|1))

Then $ on QO:

(Do @RI (") = ¥2[0)0|0)1(a|0); + b|1);) + ¥2|0)o[1)1(al1); + b[0),)
+ %2|1)0|0)1(al0); — b[1);) + %2|1)0[1)1(all); — b]|0);)

2. Alice now measures Q0 and Q1:

If measurement outcome is:

10)0[0)1
10)0/1)1
11)0l0)1
[1)ol 1)

..02 is now in state:

al0); + b|1),
a|l), + b|0),
al0); — b|1),

al1l), — b[0), 7

AN

EE Rule: Each of the terms
represents a state in which

Q0 and Q1 have definite
values, but Q2 does not.



Protocol
If measurement outcome is: ..Q2 is now in state:
10)0/0)4 al0); + b[1),
10)l1)1 a|1); + b|0);
11)0|0)1 al0); — b[1),
|1)0l1)4 a|1l); — b[0),

3. Alice sends the result of her measurement to Bob in the form of 2 classical bits:
00,01,10,0or 11.

4. Depending on what he receives, Bob performs one of {/, X, Y, Z} on Q2.

This allows him to turn it into (reconstruct) the unknown Q0.

If bits received are ..then Q2 _is now in state ...S0 to reconstruct Q0, use
00 a|0), + b|1), I,
01 a|l), + b|0), X,
10 al0); — b[1), Z,
11 all), — b|0) Y
2 2 2 7




Question 1: Does Bob violate the No-Cloning Theorem? Doesn't he construct a copy
of the unknown Q07?

e No violation occurs.

» Bob does construct a copy: Q2 has become an exact duplicate of Q0.

e But: After Alice is through transforming Q0 and Q1, the original Q0 has now
collapsed to either |0), or |1),!

- Alice destroys QO in the process of conveying the information contained in it to Bob!

_, unknown Q0
reconstructed

unkown QO ---» | Encoder
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2 classical bits sent

W) = V¥ (10)110); + [1)4]1),)
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Question 2: How does Bob reconstruct the unknown QO (that encodes an
arbitrarily large amount of information) from just 2 classical bits?

e Information to reconstruct QO is transferred by the correlations present in the
entangled state |W*), in addition to the 2 classical bits.

e The 2 classical bits are used simply to determine the appropriate trans-
formation on Q2, after it has been "steered” into the appropriate state by Alice.

_, unknown Q0
reconstructed

unkown QO ---» | Encoder

2 classical bits sent

W) = V¥ (10)110); + [1)4]1),)
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3. Quantum Computation.

e General Goal: To use the inaccessible arbitrarily large amount of information
encoded in qubits to perform computations in "quantum parallel” (i.e., in record
time!).

e [nitial (modest) Goal: To compute all possible values of a function f in a single
computation.

e First Question: Can classical computations be done using qubits instead of
classical bits?

- Can transformations on qubits be defined that reproduce the transformations on
bits that are needed to implement a classical computer.

12



Classical Computation Using Bits

To implement a classical computer; it suffices to have an AND transformation and a
NOT transformation on classical bits defined by the following:

0ANDO =0 NOTO0 =1
- AND takes two input bits and
0AND1=0 NOT1=0 produces one output bit.
1AND O =0 - NOT takes one input bit and
produces one output bit.
1AND1=1

e [nitial problem: Transformations on qubits are reversible: the number of input

qubits always must equal the number of output qubits.

i Why? Qubit transformations are operators on vector spaces. And an
: operator defined on an n-dim vector space (e.g., n-qubit space) that
] \ acts on n-dim vectors (e.g., n qubits) can only spit out n-dim vectors.

13



Solution: The Controlled-controlled-NOT, CCy,;, operator.

e Changes the third target qubit if the first two qubits are |1)|1), and
leaves it unchanged otherwise.

CCror|0)]0)[0) = 10)]|0)|0)
CCrnor|0)[0)[1) = 10)|0)|1)
CCror|0)[1)]0) = 10)|1)|0)

CCnor =

1
(o
0

0
0

0
\0
0

QOO OO O O

O OO OO RO O

S OO OFr OO O

O OO RO OO O

O ORrRr OO OO O

OO OO0 OO O

CCror|0)[1)[1) = 10)|1)|1)
CCrnor|1)10)[0) = [1)]0)|0)

CCrnor|1)[0)[1) = [1)]0)|1)

10)/0}[0) =

A

, 10)]0)|1) =

Y

e Claim: CCy,yr implements AND and NOT on qubits.

- To implement AND, act with CCy oy
on a 3-qubit state in which the last
qubit is |0):

CCrorlx)|¥)|0) = |x)|y}|x AND y)

"

Y

CCrnorl1)11)]0) = [1)|1)|1)
CCrnorl1)11)11) = |1)|1)]0)

s [ DI =

- To implement NOT, act with CCy oy
on a 3-qubit state in which the first
two qubits are |1)|1):

CCrnor|1)11)|x) = [1)[1)|NOT x)

14



So: Any classical computation can be done using qubits instead of bits.

e In particular: Any classical function that takes n input bits and produces k

output bits can be implemented using arrays of primitive CC,; "gates".

How to Construct a Qubit-Based Function Calculator

Let |x), represent n input qubits that encode the number x.
- Example: |1)|1)|0) represents 6.

Let [0) 4, represent k |0) qubits (the output register).

Let | f(x))« represent k output qubits that encode the number f(x).

Define an operator U, that acts on (n+k) qubits in the following way:

Urlx) (| 0oy = [y | f D iy

Result: A superposition of all possible values of the function in a single
computation!

Now: Feed U a superposition of all possible numbers x it can take as input.

15



Two Steps:

1. Prepare as input a superposition of all possible numbers x that can be encoded
in n bits:
(i) Start with an n-qubit state |0),|0),--+|0),,

(ii) Now apply a Hadamard transformation to each qubit:

(551®52® "‘®55n)|0>1|0>2"'|0>n
= (V%) " {(10); + |1)D(0)5 + |1)2)-(|0),, + [1),)}

= (V#2) " {10)110)5-+[0),, 4 10)1]0)5+++| 1), + -+ + [1)1]1)5++[1),}

\( J %{J
The first term encodes The last term encodes
the binary number for Each term in between is the the binary number for
0, or [0) e binary number for each 2"=1, or [2"-1)

number between 0 and 2"-1.

2n—1

n
= (V%) z %))
x=0 i So the entire sum is a

superposition that encodes all
numbers x such that 0 < x < 2™,

16



Two Steps:
2. Now attach a k-qubit output register |0}, and apply U

2"-1 2"-1
n n
U (V¥2) 2 Xm0}y = (V¥2) z Usl2)ny10)cry
x=0 x=0
2"-1

= (VIE)" ) )G

N

A superposition of all possible values
“““““““““““““““““““““““ ! f(x), for 0 < x < 2", of the function f.
: The Catch: None of these values of f is

1
' accessible until we make a measurement!

And we've effectively calculated them

all with just a single application of U ¢.

. . LN
The Task for Quantum Algorithm construction

Given a problem, first construct an appropriate superposition
of solutions; and then manipulate the superposition so that
the relevant terms aquire high probability.

17



Two Steps:

2. Now attach a k-qubit output register |0}, and apply U
2M—1 2™-1

U (V%) 2 )09 = (V)" z Usl2) |0}
x=0 x=0

2n—1

= (V)" ) 0wl FG

N

A superposition of all possible values

Example: Let f(x) =x*,n=2,k=4 F(x), for 0 < x < 2n, of the function f.

(V%) Z X)) %)y = ¥{(10)]0))(10)]0)]0}]0)) + (10)[1))(10)[0)[0)[1)) +
(IDI0Y)I0I1I0)0)) + (DI 1I0)0)1)]

v

- A superposition of all possible values of x2, for 0 < x < 4.
- Takes the form of an entangled 6-qubit state: Input 2-qubit
State is in a superposition, output 4-qubit state is in a

superposition, and both superpositions are entangled.
17



Example: Shor's Factorization Algorithm (1994 )

e Factors large integers into primes in polynomial time.

________________________________________________________________________

- Exponential time: The number of steps required to complete the algorithm for
a given input is of the order c*, ¢ > 1, where n is the complexity of the input.

e Current classical algorithms require exponential times.

Why is fast prime factorization important?
e Classical RSA Encryption (Rivest, Shamir & Adleman 1978).
- public encryption key = product pq of two (very large) primes.

- private decryption key = p, q separately

- Thus: Factorizing pq (in your lifetime) would let you break RSA
encryption (standard encryption for web transactions).

18



(i) Factorizing a large integer is equivalent to determining the period r of
an associated periodic function f(x+71) = f(x).

(ii) A discrete Fourier transform maps a function g(x) of period r on the
domain (0, 2"— 1) to a function G(c) which has approximately non-
zero values only at multiples of 2"/7.

Two essential facts underlie Shor's algorithm: P\

Protocol

e By Fact (i), to factorize a given large integer, suppose we've determined

that we need to find the period r of an appropriate periodic function f(x).

Step 1
e Construct a superposition of all possible solutions of f(x) for 0 < x < 2™

21 211

U (VE)" Y |0 = (V)" Y 0 FG)G,

V% R

] M torms! superposition superposition
Our Good Friend ' of 2" terms of 2™ terms
the qubit-based \ v J

' /
function calculator’ input and output are entangled!

19



Step 2
e Measure f(x); i.e., compute one value of it, say f(x,).

(V)" D 10wl () ———C D g@Kamlf o
x=0'\¢ '§ x=0 /171 ‘§

superposition superposition Sl;lgir/pro?tlon single term
of 2™ terms of 2™ terms 0 erms

where g(x) = 1 for x = x, + kr, and zero otherwise (for k an integer).

e The output register has collapsed to a single term | f (x)) .

e The input register |x),, is still in a superposition of all those values of x
for which f(x) = f(x,).

- Initially there were 2" input terms; now there are 2"/r.

e Also: g(x) has the same period 7 as f(x), since g(x) = g(x, + kr).

So: To find the period of f (x), we now need to find the period of g(x).

20



Step 3
e Act on the input register with a quantum Fourier transformation:

2n—1

2M—1
€ ) 90w )y~ € D GOl f (o))go
x=0 /l/1 c=0 '§
superposition Still a superposition of 2™ /r
of 2™ [r terms

terms, but now ¢ = j2"/r
terms are "favorably"” weighted

where G(c¢) is the discrete Fourier transform of g(x).

e By Fact (ii), G(c¢) is approximately non-zero only for ¢ = j2"/r, for integer j.

e Which means: The input superposition has now been "favorably"” weighted
to produce values of ¢ = j2"/r when measured.

e Which means: If we measure the input register, we will most likely geta
value for j2™/r. From this value, we can extract a value for 7.

21



Two Interpretive Issues

(1) How are quantum computers different from classical computers?

\N

Claim: Apart from hardware differences (quantum 2-state
systems vs. classical 2-state systems), the essential difference
between a quantum computer and a classical computer is
that the former are ideally much more efficient than the latter.

e A quantum computer can compute anything that a classical computer can.

- Recall: Any computation implemented using bits can be implemented using qubits.

e A classical computer can compute anything that a quantum computer can.

- Any computation implemented using qubits can be implemented using bits and a
probabilistic algorithm.

- Intuitively: There are probabilistic classical 2-state systems that can simulate the
output of quantum 2-state systems, (although perhaps not as efficiently).

22



(2) Is quantum information different from classical information?

Claim: No fundamental difference between classical and
quantum information: just a difference in types of sources.

' source that is required to be reproducible at the receiver
' if the transmission is to be counted a success.

23



Two Types of Information Source

\N

- Abstractly: Produces letters from a set {x;, x,, ..., x,,} with probabilities p;, = p(x,).

I. Classical information source

- Messages = sequences of letters. Ex: x;x3x4...
- Concretely: Produces physical systems (e.g., on-off switches) in classical states

{x1,%9, .0 X}

- Output = sequence of classical states. Ex: x-x3X,...

[I(a). Quantum information, Non-Entanglement Source LN

- Produces physical systems (e.g., electrons) in non-entangled

quantum states {[11), [2), ..., [Pn) ;-
- Output = sequence of quantum pure states. Ex: [Y,)|W3)|[W,)...

Timpson, C. (2008) "Philosophical Aspects of Quantum Information Theory", in D.
Rickles (ed.) The Ashgate Companion to the New Philosophy of Physics, Ashgate.

24



[I(b). Quantum information, Entanglement Source &

- Produces physical systems (i.e., electrons) in entangled quantum states which
include other systems inaccessible to the source.

- Output = sequence of quantum entangled states.

E B ={B;, B,, ...} = {electrons produced by source}

A ={A,, A,,..} = {electrons entangled with source electrons}
: C ={C,, Cy, ..} ={"target"” electrons at receiver}

- Suppose: Electron B; is produced at source in entangled state |i), z with electron 4.
- Goal: To reproduce this entangled state at receiver, but between A4; and C;: |Y),,

- In general: If source produces sequence of states

W) as ¥V a0 ) a5

then successful transmission occurs if receiver reproduces sequence of states

[V ac ¥V ac | aco -

25



Measures of information, depending on source

e The Shannon Entropy:

H(X) = —Zipilogzpi < Specifies the minimal number of
bits required to encode the
- X = {x4, .., x,}, where x; is a state output of a classical information
produced by a classical information source (Shannon 1948).

source, and p; is a probability
distribution over such states.

26



Aside!
Ex:LetX ={A, B, C, D}

e To encode X, need 2 bits per letter.

A=00, B=01,
i c=10, D=11
e So: Need 2N bits to encode an N-letter message.
e Suppose: We have a probability distribution over X.
- Ex: pa=1/2, pp=1/4, pc=pp=1/8
, , \N
Claim 1: There are 2V7(¥) possible N-letter messages.
log # possible N-letter | | N!  NH(X "log,x = y"
2| messages = 1082 AN (psN)! (peN)! (ppN)!) — (X) means "x = 27

.

Number of ways to arrange N distinct letters into
4 bins with capacities p,N, pgN, o N, ppN.

Claim 2: 2* messages require x bits to encode them.

e So: Instead of 2N bits, we only need NH(X) bits, where
1 1.1 1.1 1.1 1
NH(X) = =N (E log, 5 + 7 logz 7 + clogy o + £ logy §) = 1.75N

27



Measures of information, depending on source

e The Shannon Entropy:

H(X) = —Zipilogzpi < Specifies the minimal number of

- X ={xy, .., x,}, where x; is a state
produced by a classical information
source, and p; is a probability
distribution over such states.

e The von Neumann Entropy:

S(p) = —Tr(plog,p) = _Zipilogzpi

- p = 2 pilY) (il ,where [1);) is a vector
state produced by a quantum information

source, and p; is a probability distribution
over such states.

bits required to encode the
output of a classical information
source (Shannon 1948).

<« Specifies the minimal number of
qubits required to encode the
output of a quantum information
source (Schumacher 1995).
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