07. QIT, Part II.

1. Quantum Dense Coding

- Goal: To use one qubit to transmit two classical bits.
- But: One qubit (supposedly) only contains one classical bit's worth of information!
- So: How can we send 2 classical bits using just one qubit?
- Answer: Use entangled states!

Set-Up:

- Prepare two qubits $Q 1, Q 2$ in an entangled state $\left|\Psi^{+}\right\rangle=\sqrt{1 / 2}\left(|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}\right)$
- Alice gets Q1, Bob gets Q2.
- Alice manipulates her $Q 1$ so that it steers Bob's Q2 into a state from which he can read off the 2 classical bits Alice desires to send. All he needs to do this is the post-manipulated $Q 1$ that Alice sends to him.

Protocol

1. Alice has a pair of classical bits: either $00,01,10$, or 11 .

She first encodes the pair in $Q 1$ by acting on $Q 1$ with one of $\{I, X, Y, Z\}$ according to:

$\frac{\text { pair }}{00}$	$\frac{\text { transform }}{\left(I_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle}$	$\left.\frac{\text { new state }}{\sqrt{1 / 2}\left(\|0\rangle_{1}\|0\rangle_{2}\right.}+\|1\rangle_{1}\|1\rangle_{2}\right)=\left\|\Psi^{+}\right\rangle$
01	$\left(X_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|1\rangle_{1}\|0\rangle_{2}+\|0\rangle_{1}\|1\rangle_{2}\right)=\left\|\Phi^{+}\right\rangle$
10	$\left(Y_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(-\|1\rangle_{1}\|0\rangle_{2}+\|0\rangle_{1}\|1\rangle_{2}\right)=\left\|\Phi^{-}\right\rangle$
11	$\left(Z_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}\|0\rangle_{2}-\|1\rangle_{1}\|1\rangle_{2}\right)=\left\|\Psi^{-}\right\rangle$

- Let Q1 and Q2 be electrons in Hardness states.
- Let $|0\rangle$ be \mid soft \rangle and $|1\rangle$ be |hard \rangle.

2. Alice now sends $Q 1$ to Bob.
3. After reception of $Q 1$, Bob first applies a $C_{N O T}$ transformation to both $Q 1$ and $Q 2$:

pair	$\frac{\text { transform }}{}$	$\frac{\text { new state }}{}$	$\underline{\text { Apply } C_{\text {NoT }}}$
00	$\left(I_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}\|0\rangle_{2}+\|1\rangle_{1}\|1\rangle_{2}\right)=\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}+\|1\rangle_{1}\right)\|0\rangle_{2}$
01	$\left(X_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|1\rangle_{1}\|0\rangle_{2}+\|0\rangle_{1}\|1\rangle_{2}\right)=\left\|\Phi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|1\rangle_{1}+\|0\rangle_{1}\right)\|1\rangle_{2}$
10	$\left(Y_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(-\|1\rangle_{1}\|0\rangle_{2}+\|0\rangle_{1}\|1\rangle_{2}\right)=\left\|\Phi^{-}\right\rangle$	$\sqrt{1 / 2}\left(-\|1\rangle_{1}+\|0\rangle_{1}\right)\|1\rangle_{2}$
11	$\left(Z_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}\|0\rangle_{2}-\|1\rangle_{1}\|1\rangle_{2}\right)=\left\|\Psi^{-}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}-\|1\rangle_{1}\right)\|0\rangle_{2}$

According to the Eigenvalue-Eigenvector Rule, Q1 still has no definite value, but Q2 now does!

Protocol

4. Bob now applies a Hadamard transformation to $Q 1$:

$\underline{\text { pair }}$	$\frac{\text { transform }}{00}$	$\frac{\text { new state }}{}$	$\underline{\text { Apply } C_{\text {NoT }}}$	Apply \mathfrak{S}_{1}
$\left(I_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}\|0\rangle_{2}+\|1\rangle_{1}\|1\rangle_{2}\right)=\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}+\|1\rangle_{1}\right)\|0\rangle_{2}$	$\|0\rangle_{1}\|0\rangle_{2}$	
01	$\left(X_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|1\rangle_{1}\|0\rangle_{2}+\|0\rangle_{1}\|1\rangle_{2}\right)=\left\|\Phi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|1\rangle_{1}+\|0\rangle_{1}\right)\|1\rangle_{2}$	$\|0\rangle_{1}\|1\rangle_{2}$
10	$\left(Y_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(-\|1\rangle_{1}\|0\rangle_{2}+\|0\rangle_{1}\|1\rangle_{2}\right)=\left\|\Phi^{-}\right\rangle$	$\sqrt{1 / 2}\left(-\|1\rangle_{1}+\|0\rangle_{1}\right)\|1\rangle_{2}$	$\|1\rangle_{1}\|1\rangle_{2}$
11	$\left(Z_{1} \otimes I_{2}\right)\left\|\Psi^{+}\right\rangle$	$\sqrt{1 / 2}\left(\|0\rangle_{1}\|0\rangle_{2}-\|1\rangle_{1}\|1\rangle_{2}\right)=\left\|\Psi^{-}\right\rangle$	$\sqrt{1 / 22}\left(\|0\rangle_{1}-\|1\rangle_{1}\right)\|0\rangle_{2}$	$\|1\rangle_{1}\|0\rangle_{2}$

According to the EE Rule, Q1 and Q2 now both have definite values.
5. Bob now measures $Q 1$ and $Q 2$ to determine the number Alice sent!
(a) $(Q 1=0, Q 2=0) \Rightarrow 00$
(c) $(Q 1=1, Q 2=1) \Rightarrow 10$
(b) $(Q 1=0, Q 2=1) \Rightarrow 01$
(d) $(Q 1=1, Q 2=0) \Rightarrow 11$

Question: How are the 2 classical bits transferred from Alice to Bob?

- Not transferred via the single qubit.
- Transferred by the correlations present in the 2-qubit entangled state $\left|\Psi{ }^{+}\right\rangle$.
- In order to convey information between Alice and Bob, it need not be physically transported from Alice to Bob across the intervening spatial distance.
- The only thing required to convey information is to set up a correlation between the sender's data and the receiver's data.

2. Quantum Teleportation

- Goal: To transmit an unknown quantum state using classical bits and to reconstruct the exact quantum state at the receiver.
- But: How can this avoid the No-Cloning Theorem?
- Answer: Use entangled states!

Set-Up:

- Alice has an unknown $Q 0,|Q\rangle_{0}=a|0\rangle_{0}+b|1\rangle_{0}$, and wants to send it to Bob.
- $Q 1$ and $Q 2$ are prepared in an entangled state $\left|\Psi \Psi^{+}\right\rangle=\sqrt{1 / 2}\left(|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}\right)$. Alice gets $Q 1$, Bob gets $Q 2$.
- Alice manipulates $Q 0$ and $Q 1$ so that they steer Bob's $Q 2$ into a form from which he can reconstruct the unknown state of $Q 0$. All Bob needs to do this are 2 classical bits sent by Alice.

Protocol

1. Alice starts with a 3-qubit system $(Q 0, Q 1, Q 2)$ in the state:

$$
|Q\rangle_{0}\left|\Psi^{+}\right\rangle=\sqrt{1 / 2}\left(a|0\rangle_{0}|0\rangle_{1}|0\rangle_{2}+a|0\rangle_{0}|1\rangle_{1}|1\rangle_{2}+b|1\rangle_{0}|0\rangle_{1}|0\rangle_{2}+b|1\rangle_{0}|1\rangle_{1}|1\rangle_{2}\right)
$$

Alice now applies $C_{N O T}$ on $Q 0 \& Q 1$, and then a Hadamard transformation on $Q 0$:
First $_{\text {NOT }}$ on $Q 0 \& Q 1$:

$$
\left(C_{N O T_{01}} \otimes I_{2}\right)|Q\rangle_{0}\left|\Psi^{+}\right\rangle=\sqrt{1 / 2}\left(a|0\rangle_{0}|0\rangle_{1}|0\rangle_{2}+a|0\rangle_{0}|1\rangle_{1}|1\rangle_{2}+b|1\rangle_{0}|1\rangle_{1}|0\rangle_{2}+b|1\rangle_{0}|0\rangle_{1}|1\rangle_{2}\right)
$$

Then \mathfrak{H} on $Q 0$:

$$
\begin{aligned}
&\left(\mathfrak{H}_{0} \otimes I_{1} \otimes I_{2}\right)(" \prime \prime)=1 / 2|0\rangle_{0}|0\rangle_{1}\left(a|0\rangle_{2}+b|1\rangle_{2}\right)+1 / 2|0\rangle_{0}|1\rangle_{1}\left(a|1\rangle_{2}+b|0\rangle_{2}\right) \\
&+1 / 2|1\rangle_{0}|0\rangle_{1}\left(a|0\rangle_{2}-b|1\rangle_{2}\right)+1 / 2|1\rangle_{0}|1\rangle_{1}\left(a|1\rangle_{2}-b|0\rangle_{2}\right)
\end{aligned}
$$

2. Alice now measures $Q 0$ and $Q 1$:

Ifmeasurement outcome is:	$\ldots . Q 2$ is now in state:
$\|0\rangle_{0}\|0\rangle_{1}$	$a\|0\rangle_{2}+b\|1\rangle_{2}$
$\|0\rangle_{0}\|1\rangle_{1}$	$a\|1\rangle_{2}+b\|0\rangle_{2}$
$\|1\rangle_{0}\|0\rangle_{1}$	$a\|0\rangle_{2}-b\|1\rangle_{2}$
$\|1\rangle_{0}\|1\rangle_{1}$	$a\|1\rangle_{2}-b\|0\rangle_{2}$

Protocol

If measurement outcome is:	$\ldots . . Q 2$ is now in state:
$\|0\rangle_{0}\|0\rangle_{1}$	$a\|0\rangle_{2}+b\|1\rangle_{2}$
$\|0\rangle_{0}\|1\rangle_{1}$	$a\|1\rangle_{2}+b\|0\rangle_{2}$
$\|1\rangle_{0}\|0\rangle_{1}$	$a\|0\rangle_{2}-b\|1\rangle_{2}$
$\|1\rangle_{0}\|1\rangle_{1}$	$a\|1\rangle_{2}-b\|0\rangle_{2}$

3. Alice sends the result of her measurement to Bob in the form of 2 classical bits: $00,01,10$, or 11 .
4. Depending on what he receives, Bob performs one of $\{I, X, Y, Z\}$ on $Q 2$. This allows him to turn it into (reconstruct) the unknown $Q 0$.

If bits received are		..then $Q 2$ is now in state	\cdots
00	$a\|0\rangle_{2}+b\|1\rangle_{2}$	I_{2}	
01	$a\|1\rangle_{2}+b\|0\rangle_{2}$	X_{2}	
10	$a\|0\rangle_{2}-b\|1\rangle_{2}$	Z_{2}	
11	$a\|1\rangle_{2}-b\|0\rangle_{2}$	Y_{2}	

Question 1: Does Bob violate the No-Cloning Theorem? Doesn't he construct a copy of the unknown $Q 0$?

- No violation occurs.
- Bob does construct a copy: $Q 2$ has become an exact duplicate of $Q 0$.
- But: After Alice is through transforming $Q 0$ and $Q 1$, the original $Q 0$ has now collapsed to either $|0\rangle_{0}$ or $|1\rangle_{0}$!
- Alice destroys Q0 in the process of conveying the information contained in it to Bob!

Question 2: How does Bob reconstruct the unknown $Q 0$ (that encodes an arbitrarily large amount of information) from just 2 classical bits?

- Information to reconstruct $Q 0$ is transferred by the correlations present in the entangled state $\left|\Psi^{+}\right\rangle$, in addition to the 2 classical bits.
- The 2 classical bits are used simply to determine the appropriate transformation on $Q 2$, after it has been "steered" into the appropriate state by Alice.

3. Quantum Computation.

- General Goal: To use the inaccessible arbitrarily large amount of information encoded in qubits to perform computations in "quantum parallel" (i.e., in record time!).
- Initial (modest) Goal: To compute all possible values of a function f in a single computation.
- First Question: Can classical computations be done using qubits instead of classical bits?
- Can transformations on qubits be defined that reproduce the transformations on bits that are needed to implement a classical computer.

Classical Computation Using Bits

To implement a classical computer, it suffices to have an AND transformation and a NOT transformation on classical bits defined by the following:

0 AND $0=0$	NOT $0=1$	
0 AND $1=0$	NOT $1=0$	- AND takes two input bits and
produces one output bit.		
1 AND $0=0$		- NOT takes one input bit and
1 AND $1=1$		
produces one output bit.		

- Initial problem: Transformations on qubits are reversible: the number of input qubits always must equal the number of output qubits.

Solution: The Controlled-controlled-NOT, $C C_{N O T}$, operator.

- Changes the third target qubit if the first two control qubits are $|1\rangle|1\rangle$, and leaves it unchanged otherwise.

$$
\begin{aligned}
& C C_{\text {NOT }}|0\rangle|0\rangle|0\rangle=|0\rangle|0\rangle|0\rangle \quad C C_{\text {NOT }}|0\rangle|1\rangle|1\rangle=|0\rangle|1\rangle|1\rangle \quad C C_{\text {NOT }}|1\rangle|1\rangle|0\rangle=|1\rangle|1\rangle|1\rangle \\
& C C_{\text {NOT }}|0\rangle|0\rangle|1\rangle=|0\rangle|0\rangle|1\rangle \quad C C_{\text {NOT }}|1\rangle|0\rangle|0\rangle=|1\rangle|0\rangle|0\rangle \quad C C_{\text {NOT }}|1\rangle|1\rangle|1\rangle=|1\rangle|1\rangle|0\rangle \\
& C C_{\text {NOT }}|0\rangle|1\rangle|0\rangle=|0\rangle|1\rangle|0\rangle \quad C C_{\text {NOT }}|1\rangle|0\rangle|1\rangle=|1\rangle|0\rangle|1\rangle \\
& C C_{\text {NOT }}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \quad|0\rangle|0\rangle|0\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right),|0\rangle|0\rangle|1\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \cdots,|1\rangle|1\rangle|1\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

- Claim: $C C_{\text {NOT }}$ implements $A N D$ and NOT on qubits.
- To implement $A N D$, act with $C C_{N O T}$ on a 3-qubit state in which the last qubit is $|0\rangle$:

$$
\left.C C_{N O T}|x\rangle|y\rangle|0\rangle=|x\rangle|y\rangle \mid x \text { AND } y\right\rangle
$$

- To implement NOT, act with $C C_{N O T}$ on a 3 -qubit state in which the first two qubits are $|1\rangle|1\rangle$:

$$
C C_{N O T}|1\rangle|1\rangle|x\rangle=|1\rangle|1\rangle|N O T x\rangle
$$

So: Any classical computation can be done using qubits instead of bits.

- In particular: Any classical function that takes n input bits and produces k output bits can be implemented using arrays of primitive $C C_{N O T}$ "gates".

How to Construct a Qubit-Based Function Calculator

- Let $|x\rangle_{(n)}$ represent n input qubits that encode the number x.
- Example: $|1\rangle|1\rangle|0\rangle$ represents 6.
- Let $|0\rangle_{(k)}$ represent k qubits $|0\rangle$ (the output register).
- Let $|f(x)\rangle_{(k)}$ represent k output qubits that encode the number $f(x)$.
- Define an operator U_{f} that acts on $(n+k)$ qubits in the following way:

$$
U_{f}|x\rangle_{(n)}|0\rangle_{(k)}=|x\rangle_{(n)}|f(x)\rangle_{(k)}
$$

- Now: Feed U_{f} a superposition of all possible numbers x it can take as input.
- Result: A superposition of all possible values of the function in a single computation!

Two Steps:

1. Prepare as input a superposition of all possible numbers x that can be encoded in n bits:
(i) Start with an n-qubit state $|0\rangle_{1}|0\rangle_{2} \cdots|0\rangle_{n}$
(ii) Now apply a Hadamard transformation to each qubit:

$$
\begin{aligned}
& \left(\mathfrak{S}_{1} \otimes \mathfrak{H}_{2} \otimes \cdots \otimes \mathfrak{S}_{n}\right)|0\rangle_{1}|0\rangle_{2} \cdots|0\rangle_{n} \\
& =(\sqrt{1 / 2})^{n}\left\{\left(|0\rangle_{1}+|1\rangle_{1}\right)\left(|0\rangle_{2}+|1\rangle_{2}\right) \cdots\left(|0\rangle_{n}+|1\rangle_{n}\right)\right\} \\
& =(\sqrt{1 / 2})^{n}\left\{|0\rangle_{1}|0\rangle_{2} \cdots|0\rangle_{n}+|0\rangle_{1}|0\rangle_{2} \cdots|1\rangle_{n}+\cdots+|1\rangle_{1}|1\rangle_{2} \cdots|1\rangle_{n}\right\} \\
& \text { The first term encodes } \\
& \text { the binary number for } \\
& 0 \text {, or }|0\rangle_{(n)} \\
& \text { Each term in between is the } \\
& \text { binary number for each } \\
& \text { number between } 0 \text { and } 2^{n}-1 \text {. } \\
& \text { The last term encodes } \\
& \text { the binary number for } \\
& 2^{n}-1 \text {, or }\left|2^{n}-1\right\rangle_{(n)} \\
& =(\sqrt{1 / 2})^{n} \sum_{x=0}^{2^{n}-1}|x\rangle_{(n)}
\end{aligned}
$$

Two Steps:

2. Now attach a k-qubit output register $|0\rangle_{(k)}$ and apply U_{f} :

$$
\begin{aligned}
& U_{f}(\sqrt{1 / 2})^{n} \sum_{x=0}^{2^{n}-1}|x\rangle_{(n)}|0\rangle_{(k)}=(\sqrt{1 / 2})^{n} \sum_{x=0}^{2^{n}-1} U_{f}|x\rangle_{(n)}|0\rangle_{(k)} \\
& =(\sqrt{1 / 2})^{n} \sum_{x=0}^{2^{n}-1}|x\rangle_{(n)}|f(x)\rangle_{(k)} \\
& \begin{array}{l}
\text { The Catch: None of these values of } f \text { is } \\
\text { accessible until we make a measurement }
\end{array} \\
& \text { A superposition of all possible values }
\end{aligned}
$$

The Task for Quantum Algorithm construction

Given a problem, first construct an appropriate superposition of solutions; and then manipulate the superposition so that the relevant terms aquire high probability.

Two Steps:

2. Now attach a k-qubit output register $|0\rangle_{(k)}$ and apply U_{f} :

$$
\begin{aligned}
& \begin{aligned}
U_{f}(\sqrt{1 / 2})^{n} \sum_{x=0}^{2^{n}-1}|x\rangle_{(n)}|0\rangle_{(k)} & =(\sqrt{1 / 2})^{n} \sum_{x=0}^{2^{n}-1} U_{f}|x\rangle_{(n)}|0\rangle_{(k)} \\
& =(\sqrt{1 / 2})^{n} \sum_{x=0}^{2^{n}-1}|x\rangle_{(n)}|f(x)\rangle_{(k)}
\end{aligned} \\
& \text { Example: Let } f(x)=x^{2}, n=2, k=4
\end{aligned} \quad \begin{aligned}
& \text { A superposition of all possible values } \\
& f(x), \text { for } 0 \leq x<2^{n}, \text { of the function } f
\end{aligned}
$$

$$
\begin{aligned}
(\sqrt{1 / 2})^{2} \sum_{x=0}^{3}|x\rangle_{(2)}\left|x^{2}\right\rangle_{(4)}= & \begin{array}{l}
1 / 2\{(|0\rangle|0\rangle)(|0\rangle|0\rangle|0\rangle|0\rangle)+(|0\rangle|1\rangle)(|0\rangle|0\rangle|0\rangle|1\rangle)+ \\
\\
\\
(|1\rangle|0\rangle)(|0\rangle|1\rangle|0\rangle|0\rangle)+(|1\rangle|1\rangle)(|1\rangle|0\rangle|0\rangle|1\rangle)\}
\end{array}
\end{aligned}
$$

- A superposition of all possible values of x^{2}, for $0 \leq x<4$.
- Takes the form of an entangled 6-qubit state: Input 2-qubit state is in a superposition, output 4-qubit state is in a superposition, and both superpositions are entangled.

Example: Shor's Factorization Algorithm (1994)

- Factors large integers into primes in polynomial time.
- Polynomial time: The number of steps required to complete the algorithm for a given input is of the order $n^{c}, c>1$, where n is the complexity of the input. Exponential time: The number of steps required to complete the algorithm for a given input is of the order $c^{n}, c>1$, where n is the complexity of the input.
- Current classical algorithms require exponential times.

Why is fast prime factorization important?

- Classical RSA Encryption (Rivest, Shamir \& Adleman 1978).
- public encryption key = product pq of two (very large) primes.
- private decryption $k e y=p, q$ separately
- Thus: Factorizing $p q$ (in your lifetime) would let you break RSA encryption (standard encryption for web transactions).

Two essential facts underlie Shor's algorithm:
(i) Factorizing a large integer is equivalent to determining the period r of an associated periodic function $f(x+r)=f(x)$.
(ii) A discrete Fourier transform maps a function $g(x)$ of period r on the domain $\left(0,2^{n}-1\right)$ to a function $G(c)$ which has approximately nonzero values only at multiples of $2^{n} / r$.

Protocol

- By Fact (i), to factorize a given large integer, suppose we've determined that we need to find the period r of an appropriate periodic function $f(x)$.

Step 1

- Construct a superposition of all possible solutions of $f(x)$ for $0 \leq x<2^{n}$.

Step 2

- Measure $f(x)$; i.e., compute one value of it, say $f\left(x_{0}\right)$.

where $g(x)=1$ for $x=x_{0}+k r$, and zero otherwise (for k an integer).
- The output register has collapsed to a single term $\left|f\left(x_{0}\right)\right\rangle_{(k)}$.
- The input register $|x\rangle_{(n)}$ is still in a superposition of all those values of x for which $f(x)=f\left(x_{0}\right)$.
- Initially there were 2^{n} input terms; now there are $2^{n} / r$.
- Also: $g(x)$ has the same period r as $f(x)$, since $g(x)=g\left(x_{0}+k r\right)$.

So: To find the period of $f(x)$, we now need to find the period of $g(x)$.

Step 3

- Act on the input register with a quantum Fourier transformation:
where $G(c)$ is the discrete Fourier transform of $g(x)$.
- By Fact (ii), $G(c)$ is approximately non-zero only for $c=j 2^{n} / r$, for integer j.
- Which means: The input superposition has now been "favorably" weighted to produce values of $c=j 2^{n} / r$ when measured.
- Which means: If we measure the input register, we will most likely get a value for $j 2^{n} / r$. From this value, we can extract a value for r.

Two Interpretive Issues

(1) How are quantum computers different from classical computers?

Claim: Apart from hardware differences (quantum 2-state systems vs. classical 2-state systems), the essential difference between a quantum computer and a classical computer is that the former are ideally much more efficient than the latter.

- A quantum computer can compute anything that a classical computer can.
- Recall: Any computation implemented using bits can be implemented using qubits.
- A classical computer can compute anything that a quantum computer can.
- Any computation implemented using qubits can be implemented using bits and a probabilistic algorithm.
- Intuitively: There are probabilistic classical 2-state systems that can simulate the output of quantum 2-state systems, (although perhaps not as efficiently).
(2) Is quantum information different from classical information?

Claim: No fundamental difference between classical and quantum information: just a difference in types of sources.

Information $=$ What is produced by an information source that is required to be reproducible at the receiver if the transmission is to be counted a success.

Two Types of Information Source

I. Classical information source

- Abstractly: Produces letters from a set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with probabilities $p_{i}=p\left(x_{i}\right)$.
- Messages $=$ sequences of letters. $\underline{E x}: x_{7} x_{3} x_{4} \cdots$
- Concretely: Produces physical systems (e.g., on-off switches) in classical states $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Output $=$ sequence of classical states. $\underline{E x}: x_{7} x_{3} x_{4} \ldots$

II(a). Quantum information, Non-Entangled Source

- Produces physical systems (e.g., electrons) in non-entangled quantum states $\left\{\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots,\left|\psi_{n}\right\rangle\right\}$.
- Output $=$ sequence of quantum pure states. $\underline{E x}:\left|\psi_{7}\right\rangle\left|\psi_{3}\right\rangle\left|\psi_{4}\right\rangle \ldots$

II(b). Quantum information, Entanglement Source

- Produces physical systems (i.e., electrons) in entangled quantum states which include other systems inaccessible to the source.
- Output $=$ sequence of quantum entangled states.

Example of II (b):
$B=\left\{B_{1}, B_{2}, \ldots\right\}=\{$ electrons produced by source $\}$
$A=\left\{A_{1}, A_{2}, \ldots\right\}=\{$ electrons entangled with source electrons $\}$
$C=\left\{C_{1}, C_{2}, \ldots\right\}=\{$ "target" electrons at receiver $\}$
Suppose: Electron B_{i} is produced at source in entangled state $|\psi\rangle_{A_{i} B_{i}}$ with electron A_{i}. Goal: To reproduce this entangled state at receiver, but between A_{i} and $C_{i}:|\psi\rangle_{A_{i} C_{i}}$
In general: If source produces sequence of states

$$
|\psi\rangle_{A_{i} B_{i}}\left|\psi^{\prime}\right\rangle_{A_{j} B_{j}}\left|\psi^{\prime \prime}\right\rangle_{A_{k} B_{k} \cdots},
$$

then successful transmission occurs if receiver reproduces sequence of states

$$
|\psi\rangle_{A_{i} C_{i}}\left|\psi^{\prime}\right\rangle_{A_{j} C_{j}}\left|\psi^{\prime \prime}\right\rangle_{A_{k} C_{k} \cdots}
$$

- The Shannon Entropy:

$$
H(X)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

- $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where x_{i} is a state produced by a classical information source, and p_{i} is a probability distribution over such states.
$\longleftarrow \quad S$ Specifies the minimal number of bits required to encode the output of a classical information source (Shannon 1948).

Aside!

$\underline{E x}$: Let $X=\{A, B, C, D\}$

- To encode X, need 2 bits per letter.

$$
\begin{array}{ll}
A=00, & B=01, \\
C=10, & D=11
\end{array}
$$

- So: Need $2 N$ bits to encode an N-letter message.
- Suppose: We have a probability distribution over X.
- EX: $p_{A}=1 / 2, p_{B}=1 / 4, \quad p_{C}=p_{D}=1 / 8$

Claim 1: There are $2^{N H(X)}$ possible N-letter messages.

$$
\log _{2}\binom{\# \text { possible } N \text {-letter }}{\text { messages }}=\log _{2}\left(\frac{N!}{\left(p_{A} N\right)!\left(p_{B} N\right)!\left(p_{C} N\right)!\left(p_{D} N\right)!}\right)=N H(X)
$$

$$
" \log _{2} x=y "
$$

$$
\text { means " } x=2^{y "}
$$

Claim 2: 2^{x} messages require x bits to encode them.

- So: Instead of $2 N$ bits, we only need $N H(X)$ bits, where
$N H(X)=-N\left(\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{8} \log _{2} \frac{1}{8}+\frac{1}{8} \log _{2} \frac{1}{8}\right)=1.75 N$

Measures of information, depending on source

- The Shannon Entropy:

$$
H(X)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

- $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where x_{i} is a state produced by a classical information source, and p_{i} is a probability distribution over such states.
- The von Neumann Entropy:
$S(\rho)=-\operatorname{Tr}\left(\rho \log _{2} \rho\right)=-\sum_{i} p_{i} \log _{2} p_{i} \quad \longleftarrow{ }^{\text {Specifies the minimal number of }}$ qubits required to encode the qubits required to encode the output of a quantum information source (Schumacher 1995).
$\longleftarrow S$ Specifies the minimal number of bits required to encode the output of a classical information source (Shannon 1948).
- $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, where $\left|\psi_{i}\right\rangle$ is a vector state produced by a quantum information source, and p_{i} is a probability distribution over such states.

