
07.	Quantum	Information	Theory	(QIT),	Part	I.	

Physical	examples:
- The	state	of	a	mechanical	on/off	switch.
- The	state	of	an	electronic	device	capable	of	distinguishing	a	voltage	difference.
- Must	be	capable	of	being	in	two	distinguishable	states	(in	physical	realizations,	
require	sufficiently	large	energy	barrier	to	separate	states).

Physical	example:
The	state	of	an	electron	in	a	spin	basis	(e.g.,|ℎ𝑎𝑟𝑑⟩,	|𝑠𝑜𝑓𝑡⟩,	or	𝑎|ℎ𝑎𝑟𝑑⟩ +	𝑏|𝑠𝑜𝑓𝑡⟩).

1.	C-bits	vs.	Qubits
• Classical	Information	Theory
C-bit	= a	state	of	a	classical 2-state	system.
- Represented	by	either	0	or 1.

• Quantum	Information	Theory
Qubit	= a	state	of	a	quantum 2-state	system.
- Represented	by	either	|0⟩,	|1⟩,	or 𝑎|0⟩ +	𝑏|1⟩.
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According	to	the	Eigenvalue-eigenvector	Rule
• |𝑄⟩ has	no	determinate	value	(of	Hardness,	say).
• It's	value	only	becomes	determinate	(0	or	1;	ℎ𝑎𝑟𝑑 or	𝑠𝑜𝑓𝑡)	when	we	measure	it.
• All	we	can	say	about	|𝑄⟩ is:
(a)	Pr(value	of |𝑄⟩ is	0)	=	|𝑎|2.
(b)	Pr(value	of |𝑄⟩ is	1)	=	|𝑏|2.

General	form	of	a	qubit
|𝑄⟩	=	𝑎|0⟩ +	𝑏|1⟩,			where	|𝑎|2+	|𝑏|2=	1

Common	Claim:	A	qubit	|𝑄⟩	=	𝑎|0⟩ +	𝑏|1⟩ encodes	an	arbitrarily	
large	amount	of	information,	but	at	most	only	one	classical	bit's	
worth	of	information	in	a	qubit	is	accessible.

Why?
- 𝑎 and	𝑏 encode	an	arbitrarily	large	amount	of	information.
- But	the	outcome	of	a	measurement	performed	on	|𝑄⟩ is	its	collapse	
to	either	|0⟩ or	|1⟩,	which	each	encode	just	one	classical	bit.
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2.	Transformations	on	Single	Qubits

• Let	|0⟩ and	|1⟩ be	given	the	matrix	representations:					| ⟩0 = 1
0 | ⟩1 = 0
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• Define	the	following	operators	that	act	on	|0⟩ and	|1⟩:

𝐼|0⟩ =	|0⟩
𝐼|1⟩ =	|1⟩

Identity

𝐼 = 1 0
0 1

𝑋|0⟩ =	|1⟩
𝑋|1⟩ =	|0⟩

Negation

𝑋 = 0 1
1 0

𝑌|0⟩ =	−|1⟩
𝑌|1⟩ =	|0⟩

Negation/Phase-change

𝑌 = 0 1
−1 0

𝑍|0⟩ =	|0⟩
𝑍|1⟩ =	−|1⟩

Phase-change

𝑍 = 1 0
0 −1

Takes a basis qubit and 
outputs a superposition

Hadamard	operator

ℌ = ½ ½
½ − ½

ℌ|0⟩ =	 ½ (|0⟩ +	|1⟩)

ℌ|1⟩ =	 ½ (|0⟩ − |1⟩)
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3.	Transformations	on	Multiple	Qubits

• Let	{|0⟩1, |1⟩1},	{|0⟩2, |1⟩2}	be	bases	for	the	single	qubit	state	spaces	ℋ(1),ℋ(2).

• Then:	A	basis	for	the	2-qubit	state	space	ℋ(1)⊗ℋ(2) is	given	by
{|0⟩1|0⟩2,	|0⟩1|1⟩2,	|1⟩1|0⟩2,	|1⟩1|1⟩2}

• Aside:	Another basis	for	ℋ(1)⊗ℋ(2) is	given	by
{|Ψ+⟩,	|Ψ−⟩,	|Φ+⟩,	|Φ−⟩},

where:
|Ψ+⟩	=	 ½ (|0⟩1|0⟩2+	|1⟩1|1⟩2)

|Ψ−⟩	=	 ½ (|0⟩1|0⟩2− |1⟩1|1⟩2)
|Φ+⟩	=	 ½ (|1⟩1|0⟩2+	|0⟩1|1⟩2)

|Φ−⟩	=	 ½ (−|1⟩1|0⟩2+	|0⟩1|1⟩2)

The "Bell basis" for ℋ(1)⊗ℋ(2).
Each basis vector is an entangled state!
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• Let	|0⟩1|0⟩2,	|0⟩1|1⟩2,	|1⟩1|0⟩2,	|1⟩1|1⟩2 be	given	the	matrix	representations:

|0⟩1|0⟩2=	
1
0
0
0

|0⟩1|1⟩2=	
0
1
0
0

|1⟩1|0⟩2=	
0
0
1
0

|1⟩1|1⟩2=	
0
0
0
1

𝐶𝑁𝑂𝑇|0⟩1|0⟩2=	|0⟩1|0⟩2
𝐶𝑁𝑂𝑇|0⟩1|1⟩2=	|0⟩1|1⟩2
𝐶𝑁𝑂𝑇|1⟩1|0⟩2=	|1⟩1|1⟩2
𝐶𝑁𝑂𝑇|1⟩1|1⟩2=	|1⟩1|0⟩2

Acts on two qubits:
- Changes the second if the first is |1⟩.
- Leaves the second unchanged otherwise.

• Define	the	2-qubit	"Controlled-NOT"	operator	by:

𝐶𝑁𝑂𝑇=	
1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0
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4.	The	No-Cloning	Theorem

Claim:	Unknown	qubits	cannot	be	"cloned".
• In	particular,	there	is	no	(unitary,	linear)	operator	𝑈 such	that

𝑈|𝑣⟩1|0⟩2=	|𝑣⟩1|𝑣⟩2,			where	|𝑣⟩1 is	an	unknown	qubit.

• Note:	Known qubits	(like	|1⟩1)	can be	cloned	(ex:	𝐶𝑁𝑂𝑇|1⟩1|0⟩2=	|1⟩1|1⟩2).

Proof:		Suppose	there	is	such	a	𝑈.
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- Then:	𝑈|𝑎⟩1|0⟩2=	|𝑎⟩1|𝑎⟩2 and 𝑈|𝑏⟩1|0⟩2=	|𝑏⟩1|𝑏⟩2,	for	unknown	qubits	|𝑎⟩1,	|𝑏⟩1.
- Let:	|𝑐⟩1=	𝛼|𝑎⟩1+	𝛽|𝑏⟩1,	where	|𝛼|2+	|𝛽|2=	1

- Then:	𝑈|𝑐⟩1|0⟩2 =	𝑈(𝛼|𝑎⟩1|0⟩2+	𝛽|𝑏⟩1|0⟩2)

=	(𝛼𝑈|𝑎⟩1|0⟩2+	𝛽𝑈|𝑏⟩1|0⟩2), since	𝑈 is	linear

=	𝛼|𝑎⟩1|𝑎⟩2+	𝛽|𝑏⟩1|𝑏⟩2
- But:	By	definition,	𝑈 acts	on	|𝑐⟩1 according	to:

𝑈|𝑐⟩1|0⟩2 =	|𝑐⟩1|𝑐⟩2
=	(𝛼|𝑎⟩1+	𝛽|𝑏⟩1)(𝛼|𝑎⟩2+	𝛽|𝑏⟩2)
=	𝛼2|𝑎⟩1|𝑎⟩2+	𝛼𝛽|𝑎⟩1|𝑏⟩2+	𝛽𝛼|𝑏⟩1|𝑎⟩2+	𝛽2|𝑏⟩1|𝑏⟩2.

- So:	There	can	be	no	such	𝑈.



5.	Quantum	Cryptography
Cryptography	Basics
• Plaintext=message	to	be	encoded.	(Private)
• Cryptotext= encoded	message.	(Public)
• Encoding/decoding	procedure	= procedure	used	to	encode	plaintext	and	decode	
cryptotext.	(Public)

• Key= device	required	to	implement	encoding/decoding	procedure.	(Private)
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Example:	One-time	pad	(Vernam	1917)

• Technical	Result	(Shannon	1949):	One-time	pad	is	guaranteed	secure,	
as	long	as	the	key	is	completely	random,	has	same	length	as	plaintext,	
is	never	reused,	and	is	not	intercepted	by	a	third	party.

alphanumeric	
convention

Encoding/decoding	procedure	(public)
Add	plaintext	to	key	and	take	remainder	after	division	by	30.

Key	(private)
15

Cryptotext	(public)

??

S H A K E N N O T S T I R R E D
18 07 00 10 04 13 29 13 14 19 29 18 19 08 17 17 04 03

Plaintext	(private)

15 04 28 13 14 06 21 11 23 18 09 11 14 01 19 05 22 07

03 11 28 23 18 19 20 24 07 07 08 29 03 09 06 22 26 10

A B C D E ⋯ X Y Z ? , .
00 01 02 03 04 ⋯ 23 24 25 26 27 28 29
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Quantum	Key	Distribution	via	Non-orthogonal	States

• Goal:	To	transmit	a	private	key	on	possibly	insecure	channels.

• Set-up: Alice	and	Bob	communicate	through	2	public	(insecure)	channels:
(i) A	2-way	classical	channel through	which	they	exchange	classical	bits.
(ii) A	1-way	quantum	channel through	which	Alice	sends	Bob	qubits.

Alice

classical	channel

quantum	channel

Eve

Bob
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Alice

classical	channel

quantum	channel
Eve

Bob

Protocol:

(b) Alice	then	generates	a	private	list	of	the	value of	each	electron	and	the	correponding	
bit,	and	a	public	list	of	just	the	property of	each	electron.

Alice's	private	list
electron	1:	ℎ𝑎𝑟𝑑,	0
electron	2:	𝑏𝑙𝑎𝑐𝑘,	0
etc...

Alice's	public	list
electron	1:	definite	𝐻-value
electron	2:	definite	𝐶-value
etc...

Public	encryption	chart
Hardness Color
|ℎ𝑎𝑟𝑑⟩	⇔ 0	 |𝑏𝑙𝑎𝑐𝑘⟩		⇔ 0
|𝑠𝑜𝑓𝑡⟩		⇔ 1 |𝑤ℎ𝑖𝑡𝑒⟩		⇔ 1

1. (a) Alice	encodes	a	random sequence	of	bits	as	the	Color or	Hardness states	of	
electrons:	For	each	electron,	she	randomly picks	a	Color or	Hardness box	to	put	it	
through,	and	then	selects	the	bit	according	to	a	public	encryption	chart.

𝐻

𝐶

•Random	
choice!

(c) Alice	then	sends	her	electrons	to	Bob	via the	quantum	channel.
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Bob's	private	list
electron	1:	𝑤ℎ𝑖𝑡𝑒
electron	2:	𝑏𝑙𝑎𝑐𝑘
etc...

Bob's	public	list
electron	1:	definite	𝐶-value
electron	2:	definite	𝐶-value
etc...

(b) Bob	then	generates	a	private	list	of	the	value	of	each	electron	received;	and	a	public	
list	of	the	property	of	each	electron	received.

Alice

classical	channel

quantum	channel
Eve

Bob

2. (a) Upon	reception	of	an	electron,	Bob	randomly picks	a	Color box	or	a	Hardness box	to	
send	it	through.

Protocol:

Random	
choice!

𝐻

𝐶

Random	
choice!

𝐻

𝐶

• •
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Bob's	public	list
electron	1:	definite	𝐶-value
electron	2:	definite	𝐶-value
etc...

Alice

classical	channel

quantum	channel
Eve

Bob

3. After	all	electrons	have	been	transmitted,	Alice	and	Bob	use	the	classical	channel	to	
exchange	the	Encryption	chart	and	their	public records.

Protocol:

Alice's	public	list
electron	1:	definite	𝐻-value
electron	2:	definite	𝐶-value
etc...

4. (a) Alice	and	Bob	use	their	public	records	to	identify	those	electrons	that	did	not	get	
their	properties	disrupted	by	Bob.

Public	encryption	chart
Hardness Color
|ℎ𝑎𝑟𝑑⟩	⇔ 0	 |𝑏𝑙𝑎𝑐𝑘⟩		⇔ 0
|𝑠𝑜𝑓𝑡⟩		⇔ 1 |𝑤ℎ𝑖𝑡𝑒⟩		⇔ 1

Bob's	private	list
electron	1:	𝑤ℎ𝑖𝑡𝑒
electron	2:	𝑏𝑙𝑎𝑐𝑘
etc...

Alice's	private	list
electron	1:	ℎ𝑎𝑟𝑑,	0
electron	2:	𝑏𝑙𝑎𝑐𝑘,	0
etc...

(b) They	then	use	the	Encrpytion	chart,	and	their	private	charts,	to	identify	the	bits	
associated	with	these	electrons.	These	bits	are	used	to	construct	a	key.

Example:
electron	1: no	matchup!
electron	2:matchup!
Bob	and	Alice	now	privately	share	a	"0"	bit! 12



Claim:	Any	attempt	by	Eve	to	intercept	the	key	will	be	detectable.

• So:	Without	Eve	present,	Pr(Bob	gets	electron1 right)	=	½.

Case	1:	No	Eve

𝑏𝑙𝑎𝑐𝑘1

• Suppose:	Electron	1	sent	by	Alice	is	black.
• What's	the	probability	that	Bob	measures	it	as	black?

𝐻

𝐶

•
½

½

Pr(ℎ𝑎𝑟𝑑1)	=	¼

Pr(𝑠𝑜𝑓𝑡1)	=	¼

Ex:	Pr(ℎ𝑎𝑟𝑑1) =	Pr(𝑏𝑙𝑎𝑐𝑘1measured	for	Hardness)	× Pr(𝑏𝑙𝑎𝑐𝑘1 is ℎ𝑎𝑟𝑑 | 𝑏𝑙𝑎𝑐𝑘1measured	for	Hardness)
=	½	×½	=	¼

½

½

Pr(𝑏𝑙𝑎𝑐𝑘1)	=	½

• The	probability	that	Bob	measures	its	Color	is	½;	and	when	a	black	electron	is	
measured	for	Color,	it	will	register	as	black	(of	course).

1
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Case	2:	Eve	Present

𝑏𝑙𝑎𝑐𝑘1

Claim:	Any	attempt	by	Eve	to	intercept	the	key	will	be	detectable.

• With	Eve,	Pr(Bob	gets	electron1 right)	=	 ⁄A AB +	 ⁄A AB +	 ⁄A C =	 ⁄D E

𝐻

𝐶

•

Pr(ℎ𝑎𝑟𝑑1)	=	¼	

Pr(𝑠𝑜𝑓𝑡1)	=	¼

Pr(𝑏𝑙𝑎𝑐𝑘1)	=	½

½

½

½

½

1

𝐻

𝐶

•

Pr(ℎ𝑎𝑟𝑑1)	=	 ⁄! "

Pr(𝑠𝑜𝑓𝑡1)	=	 ⁄! "

Pr(𝑏𝑙𝑎𝑐𝑘1)	= ⁄! #

½

½

½

½

1

𝐻

𝐶

•
Pr(𝑏𝑙𝑎𝑐𝑘1)	= ⁄! !$

Pr(𝑤ℎ𝑖𝑡𝑒1)	=	 ⁄! !$

Pr(𝑠𝑜𝑓𝑡1)	=	 ⁄! "½

½
½

½

1

𝐻

𝐶

•
Pr(𝑏𝑙𝑎𝑐𝑘1)	= ⁄! !$

Pr(𝑤ℎ𝑖𝑡𝑒1)	=	 ⁄! !$

Pr(ℎ𝑎𝑟𝑑1)	=	 ⁄! "½

½
½

½

1
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Claim:	With	Eve,	Bob	gets	wrong	1/4 of	the	electrons he	got	right	without	Eve.

To	detect	Eve:
• Alice	and	Bob	randomly	choose	half	of	the	electrons	Bob	got	right	and	now	
compare	their	values of	Color/Hardness	(recorded	in	their	private	lists).

• If	these	values	all	agree,	then	the	probability	that	Eve	is	present	is	extremely	low.	
They	can	now	use	the	other	electrons	Bob	got	right	as	the	key.

• If	these	values	do	not	all	agree,	then	Eve	is	present	and	is	disrupting	the	flow.

Check:		Suppose	Alice	sends	𝑛 electrons.
- Without	Eve,	Bob	gets	𝑛/2 right,	and	𝑛/2wrong.
- With	Eve,	Bob	gets	3𝑛/8 right,	and	5𝑛/8wrong.
- So:	With	Eve,	Bob	gets	(𝑛/2	− 3𝑛/8)	=	𝑛/8more	
electrons	wrong	than	without	Eve.

- And:	𝑛/8	=	1/4	× 𝑛/2.
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