
07. Quantum Information Theory (QIT), Part I. 

Physical examples:

- The state of a mechanical on/off switch.

- The state of an electronic device capable of distinguishing a voltage difference.

- Must be capable of being in two distinguishable states (in physical realizations, 

require sufficiently large energy barrier to separate states).

Physical example:

The state of an electron in a spin basis (e.g.,|ℎ𝑎𝑟𝑑⟩, |soft⟩, or 𝑎|ℎ𝑎𝑟𝑑⟩ + 𝑏|soft⟩).

1. C-bits vs. Qubits

• Classical Information Theory

 Bit = a state of a classical 2-state system.

- Represented by either 0 or 1.

• Quantum Information Theory

 Qubit = a state of a quantum 2-state system.

- Represented by either |0⟩, |1⟩, or 𝑎|0⟩ + 𝑏|1⟩.
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According to the Eigenvalue-eigenvector Rule

• |𝑄⟩ has no determinate value (of Hardness, say).

• It's value only becomes determinate (0 or 1; ℎ𝑎𝑟𝑑 or soft) when we measure it.

• All we can say about |𝑄⟩ is:

(a) Pr(value of |𝑄⟩ is 0) = |𝑎|2.

(b) Pr(value of |𝑄⟩ is 1) = |𝑏|2.

General form of a qubit

|𝑄⟩ = 𝑎|0⟩ + 𝑏|1⟩,   where |𝑎|2 + |𝑏|2 = 1

Common Claim: A qubit |𝑄⟩ = 𝑎|0⟩ + 𝑏|1⟩ encodes an arbitrarily 

large amount of information, but at most only one classical bit's 

worth of information in a qubit is accessible.

Why?

- 𝑎 and 𝑏 encode an arbitrarily large amount of information.

- But the outcome of a measurement performed on |𝑄⟩ is its collapse 

to either |0⟩ or |1⟩, which each encode just one classical bit.
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2. Single Qubit Transformations

• Let |0⟩ and |1⟩ be given the matrix representations:     | ⟩0 =
1
0

     | ⟩1 =
0
1

• Define the following operators that act on |0⟩ and |1⟩:

𝐼|0⟩ = |0⟩

𝐼|1⟩ = |1⟩

Identity

𝐼 =
1 0
0 1

𝑋|0⟩ = |1⟩

𝑋|1⟩ = |0⟩

Negation

𝑋 =
0 1
1 0

𝑌|0⟩ = −|1⟩

𝑌|1⟩ = |0⟩

Negation/Phase-change

𝑌 =
0 1

−1 0

𝑍|0⟩ = |0⟩

𝑍|1⟩ = −|1⟩

Phase-change

𝑍 =
1 0
0 −1

Takes a basis qubit and 

outputs a superposition

Hadamard operator

ℌ =
½ ½

½ − ½ 

ℌ|0⟩ = ½ (|0⟩ + |1⟩)

ℌ|1⟩ = ½ (|0⟩ − |1⟩)
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3. Multi-Qubits Transformations

• Let {|0⟩1, |1⟩1}, {|0⟩2, |1⟩2} be bases for the single qubit state spaces ℋ(1), ℋ(2).

• Then: A basis for the 2-qubit state space ℋ(1) ⊗ ℋ(2) is given by

  {|0⟩1|0⟩2, |0⟩1|1⟩2, |1⟩1|0⟩2, |1⟩1|1⟩2}

• Aside: Another basis for ℋ(1) ⊗ ℋ(2) is given by

  {|Ψ+⟩, |Ψ−⟩, |Φ+⟩, |Φ−⟩},

 where:

 |Ψ+⟩ = ½ (|0⟩1|0⟩2 + |1⟩1|1⟩2)

 |Ψ−⟩ = ½ (|0⟩1|0⟩2 − |1⟩1|1⟩2)

 |Φ+⟩ = ½ (|1⟩1|0⟩2 + |0⟩1|1⟩2)

 |Φ−⟩ = ½ (−|1⟩1|0⟩2 + |0⟩1|1⟩2)

The "Bell basis" for ℋ(1) ⊗ ℋ(2).

Each basis vector is an entangled state!
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• Let |0⟩1|0⟩2, |0⟩1|1⟩2, |1⟩1|0⟩2, |1⟩1|1⟩2 be given the matrix representations:

 |0⟩1|0⟩2 = 

1
0
0
0

     |0⟩1|1⟩2 = 

0
1
0
0

     |1⟩1|0⟩2 = 

0
0
1
0

     |1⟩1|1⟩2 = 

0
0
0
1

𝐶𝑁𝑂𝑇|0⟩1|0⟩2 = |0⟩1|0⟩2

𝐶𝑁𝑂𝑇|0⟩1|1⟩2 = |0⟩1|1⟩2

𝐶𝑁𝑂𝑇|1⟩1|0⟩2 = |1⟩1|1⟩2

𝐶𝑁𝑂𝑇|1⟩1|1⟩2 = |1⟩1|0⟩2

Acts on two qubits:

- Changes the second if the first is |1⟩.

- Leaves the second unchanged otherwise.

• Define the 2-qubit "Controlled-NOT" operator by:

𝐶𝑁𝑂𝑇 = 

1
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0
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4. The No-Cloning Theorem

Claim: Unknown qubits cannot be "cloned".

• In particular, there is no (unitary, linear) operator 𝑈 such that

  𝑈|𝑣⟩1|0⟩2 = |𝑣⟩1|𝑣⟩2,   where |𝑣⟩1 is an unknown qubit.

• Note: Known qubits (like |1⟩1) can be cloned (ex: 𝐶𝑁𝑂𝑇|1⟩1|0⟩2 = |1⟩1|1⟩2).

Proof:  Suppose there is such a 𝑈.
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- Then: 𝑈|𝑎⟩1|0⟩2 = |𝑎⟩1|𝑎⟩2 and 𝑈|𝑏⟩1|0⟩2 = |𝑏⟩1|𝑏⟩2, for unknown qubits |𝑎⟩1, |𝑏⟩1.

- Let: |𝑐⟩1 = 𝛼|𝑎⟩1 + 𝛽|𝑏⟩1, where |𝛼|2 + |𝛽|2 = 1

- Then: 𝑈|𝑐⟩1|0⟩2 = 𝑈(𝛼|𝑎⟩1|0⟩2 + 𝛽|𝑏⟩1|0⟩2)

  = (𝛼𝑈|𝑎⟩1|0⟩2 + 𝛽𝑈|𝑏⟩1|0⟩2),     since 𝑈 is linear

  = 𝛼|𝑎⟩1|𝑎⟩2 + 𝛽|𝑏⟩1|𝑏⟩2

- But: By definition, 𝑈 acts on |𝑐⟩1 according to:

       𝑈|𝑐⟩1|0⟩2 = |𝑐⟩1|𝑐⟩2

  = (𝛼|𝑎⟩1 + 𝛽|𝑏⟩1)(𝛼|𝑎⟩2 + 𝛽|𝑏⟩2)

  = 𝛼2|𝑎⟩1|𝑎⟩2 + 𝛼𝛽|𝑎⟩1|𝑏⟩2 + 𝛽𝛼|𝑏⟩1|𝑎⟩2 + 𝛽2|𝑏⟩1|𝑏⟩2.

- So: There can be no such 𝑈.



5. Quantum Cryptography

Cryptography Basics

• Plaintext = message to be encoded. (Private)

• Cryptotext = encoded message. (Public)

• Encoding/decoding procedure = procedure used to encode plaintext and decode 

cryptotext. (Public)

• Key = device required to implement encoding/decoding procedure. (Private)
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Example: One-time pad   (Vernam 1917)

• Technical Result (Shannon 1949): One-time pad is guaranteed secure, 

as long as the key is completely random, has same length as plaintext, 

is never reused, and is not intercepted by a third party.

alphanumeric 
convention

Encoding/decoding procedure (public)

Add plaintext to key and take remainder after division by 30.

Key (private)

15

Cryptotext (public)

??

S H A K E N N O T S T I R R E D

18 07 00 10 04 13 29 13 14 19 29 18 19 08 17 17 04 03

Plaintext (private)

15 04 28 13 14 06 21 11 23 18 09 11 14 01 19 05 22 07

03 11 28 23 18 19 20 24 07 07 08 29 03 09 06 22 26 10

A B C D E ⋯ X Y Z ? , .

00 01 02 03 04 ⋯ 23 24 25 26 27 28 29
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Quantum Key Distribution via Non-orthogonal States

• Goal: To transmit a private key on possibly insecure channels.

• Set-up: Alice and Bob communicate through 2 public (insecure) channels:

 (i) A 2-way classical channel through which they exchange classical bits.

 (ii) A 1-way quantum channel through which Alice sends Bob qubits.

Alice

classical channel

quantum channel

Eve

Bob
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Alice

classical channel

quantum channel

Eve
Bob

Protocol:

(b) Alice then generates a private list of the value of each electron and the correponding 

bit, and a public list of just the property of each electron.

Alice's private list

electron 1: ℎ𝑎𝑟𝑑, 0

electron 2: 𝑏𝑙𝑎𝑐𝑘, 0

etc...

Alice's public list

electron 1: definite 𝐻-value

electron 2: definite 𝐶-value

etc...

Public encryption chart

Hardness Color

|ℎ𝑎𝑟𝑑⟩ ⇔ 0 |𝑏𝑙𝑎𝑐𝑘⟩  ⇔ 0

|𝑠𝑜𝑓𝑡⟩  ⇔ 1 |𝑤ℎ𝑖𝑡𝑒⟩  ⇔ 1

1. (a) Alice encodes a random sequence of bits as the Color or Hardness states of 

electrons: For each electron, she randomly picks a Color or Hardness box to put it 

through, and then selects the bit according to a public encryption chart.

𝐻

𝐶

•
Random 
choice!

(c) Alice then sends her electrons to Bob via the quantum channel.
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Bob's private list

electron 1: 𝑤ℎ𝑖𝑡𝑒

electron 2: 𝑏𝑙𝑎𝑐𝑘

etc...

Bob's public list

electron 1: definite 𝐶-value

electron 2: definite 𝐶-value

etc...

(b) Bob then generates a private list of the value of each electron received; and a public 

list of the property of each electron received.

Alice

classical channel

quantum channel

Eve
Bob

2. (a) Upon reception of an electron, Bob randomly picks a Color box or a Hardness box to 

send it through.

Protocol:

Random 
choice!

𝐻

𝐶

Random 
choice!

𝐻

𝐶

• •
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Bob's public list

electron 1: definite 𝐶-value

electron 2: definite 𝐶-value

etc...

Alice

classical channel

quantum channel

Eve
Bob

3. After all electrons have been transmitted, Alice and Bob use the classical channel to 

exchange the Encryption chart and their public records.

Protocol:

Alice's public list

electron 1: definite 𝐻-value

electron 2: definite 𝐶-value

etc...

4. (a) Alice and Bob use their public records to identify those electrons that did not get 

their properties disrupted by Bob.

Public encryption chart

Hardness Color

|ℎ𝑎𝑟𝑑⟩ ⇔ 0 |𝑏𝑙𝑎𝑐𝑘⟩  ⇔ 0

|𝑠𝑜𝑓𝑡⟩  ⇔ 1 |𝑤ℎ𝑖𝑡𝑒⟩  ⇔ 1

Bob's private list

electron 1: 𝑤ℎ𝑖𝑡𝑒

electron 2: 𝑏𝑙𝑎𝑐𝑘

etc...

Alice's private list

electron 1: ℎ𝑎𝑟𝑑, 0

electron 2: 𝑏𝑙𝑎𝑐𝑘, 0

etc...

(b) They then use the Encrpytion chart, and their private charts, to identify the bits 

associated with these electrons. These bits are used to construct a key.

Example:

electron 1: no matchup!

electron 2: matchup!

Bob and Alice now privately share a "0" bit!
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Claim: Any attempt by Eve to intercept the key will be detectable.

• So: Without Eve present, Pr(Bob gets electron1 right) = ½.

Case 1: No Eve

𝑏𝑙𝑎𝑐𝑘1

• Suppose: Electron 1 sent by Alice is black.

• What's the probability that Bob measures it as black?

𝐻

𝐶

•

½

½

Pr(ℎ𝑎𝑟𝑑1) = ¼ 

Pr(𝑠𝑜𝑓𝑡1) = ¼

Ex: Pr(ℎ𝑎𝑟𝑑1) = Pr(𝑏𝑙𝑎𝑐𝑘1 measured for Hardness) × Pr(𝑏𝑙𝑎𝑐𝑘1 is ℎ𝑎𝑟𝑑 | 𝑏𝑙𝑎𝑐𝑘1 measured for Hardness)

 = ½ × ½ = ¼

½ 

½

Pr(𝑏𝑙𝑎𝑐𝑘1) = ½

• The probability that Bob measures its Color is ½; and when a black electron is 

measured for Color, it will register as black (of course).

1
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Case 2: Eve Present

𝑏𝑙𝑎𝑐𝑘1

Claim: Any attempt by Eve to intercept the key will be detectable.

• With Eve, Pr(Bob gets electron1 right) = Τ1
16 + Τ1

16 + Τ1
4 = Τ3
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𝐻

𝐶

•

Pr(ℎ𝑎𝑟𝑑1) = ¼ 

Pr(𝑠𝑜𝑓𝑡1) = ¼

Pr(𝑏𝑙𝑎𝑐𝑘1) = ½

½

½

½

½

1

𝐻

𝐶

•

Pr(ℎ𝑎𝑟𝑑1) = Τ1
8

Pr(𝑠𝑜𝑓𝑡1) = Τ1
8

Pr(𝑏𝑙𝑎𝑐𝑘1) = Τ1
4 

½

½

½

½

1

𝐻

𝐶

•
Pr(𝑏𝑙𝑎𝑐𝑘1) = Τ1

16

Pr(𝑤ℎ𝑖𝑡𝑒1) = Τ1
16

Pr(𝑠𝑜𝑓𝑡1) = Τ1
8½

½
½

½

1

𝐻

𝐶

•
Pr(𝑏𝑙𝑎𝑐𝑘1) = Τ1

16

Pr(𝑤ℎ𝑖𝑡𝑒1) = Τ1
16

Pr(ℎ𝑎𝑟𝑑1) = Τ1
8½

½
½

½

1
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Claim: With Eve, Bob gets wrong 1/4 of the electrons he got right without Eve.

To detect Eve:

• Alice and Bob randomly choose half of the electrons Bob got right and now 

compare their values of Color/Hardness (recorded in their private lists).

• If these values all agree, then the probability that Eve is present is extremely low. 

They can now use the other electrons Bob got right as the key.

• If these values do not all agree, then Eve is present and is disrupting the flow.

Check:  Suppose Alice sends 𝑛 electrons.

- Without Eve, Bob gets 𝑛/2 right, and 𝑛/2 wrong.

- With Eve, Bob gets 3𝑛/8 right, and 5𝑛/8 wrong.

- So: With Eve, Bob gets (𝑛/2 − 3𝑛/8) = 𝑛/8 more 

electrons wrong than without Eve.

- And: 𝑛/8 = 1/4 × 𝑛/2.
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