05. Multiparticle Systems

I. 2-Particle Product Spaces

- <u>Suppose</u>: Particle₁ and particle₂ are represented by vector spaces V and W.
- *Then*: The composite 2-particle system is represented by a *product vector space* $V \otimes W$.

Let V and W be n-dim and m-dim vector spaces. The **product vector space** $V \otimes W$ is an $(n \times m)$ -dim vector space with the following property:

For any $|v\rangle \in V$, $|w\rangle \in W$, one can form a vector $|\psi\rangle \in V \otimes W$ *via* the "tensor product" $|v\rangle \otimes |w\rangle$, which satisfies:

(i)
$$(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle$$

(ii)
$$|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle$$

(iii)
$$\alpha(|v\rangle \otimes |w\rangle) = \alpha|v\rangle \otimes |w\rangle = |v\rangle \otimes \alpha|w\rangle$$
, for any scalar α .

Instead of " $|v\rangle \otimes |w\rangle$ ", we can alternatively write " $|v\rangle |w\rangle$ " or " $|vw\rangle$ ".

Further characteristics of the 2-particle product space $V \otimes W$

 $V \otimes W$ inherits an inner-product, bases, and operators from V and W:

- 1. An **inner-product** on $V \otimes W$ is defined by the following: For any $|\psi\rangle = |vw\rangle, |\phi\rangle = |tu\rangle \in V \otimes W$, with $|v\rangle, |t\rangle \in V$ and $|w\rangle, |u\rangle \in W$, $\langle \psi | \phi \rangle \equiv \langle v | t \rangle \langle w | u \rangle$
- 2. If $\{|v_1\rangle, |v_2\rangle, ..., |v_n\rangle\}$ and $\{|w_1\rangle, |w_2\rangle, ..., |w_m\rangle\}$ are bases for V and W, then a **basis** for $V \otimes W$ is given by

$$\{|v_1w_1\rangle, |v_1w_2\rangle, ..., |v_1w_m\rangle, |v_2w_1\rangle, ..., |v_nw_m\rangle\}$$

3. Any vector $|\psi\rangle$ in $V \otimes W$ can be *expanded* in this basis:

$$|\psi\rangle = a_{11}|v_1w_1\rangle + a_{12}|v_1w_2\rangle + \dots + a_{21}|v_2w_1\rangle + \dots + a_{nm}|v_nw_m\rangle$$

4. Let *A* and *B* be operators on *V* and *W* such that

$$A|v\rangle = a|v\rangle, B|w\rangle = b|w\rangle, \text{ where } |v\rangle \in V, |w\rangle \in W.$$

Then there is an **operator** $A \otimes B$ on $V \otimes W$ such that

$$(A \otimes B)|vw\rangle = ab|vw\rangle$$

Extension to multiparticle (multi-partite) systems

- ullet A product vector space ${\cal H}$ may be formed from the tensor product of more than two lower-dim vector spaces.
- ullet A product vector space ${\mathcal H}$ may admit more than one decomposition into lower-dim vector spaces.

 \underline{Ex} . Let \mathcal{H} be a 16-dim vector space.

<u>Then</u>: One can always find 2-dim vector spaces V_1 , V_2 , V_3 , V_4 such that

$$\mathcal{H} = V_1 \otimes V_2 \otimes V_3 \otimes V_4$$

<u>And</u>: One can always find 4-dim vector spaces W_1 , W_2 such that

$$\mathcal{H} = W_1 \otimes W_2$$

- *Note*: A "factor" vector space must have dim > 1.
- \underline{So} : As long as the dimension n of a vector space isn't a *prime number*, it will admit at least one decomposition into the tensor product of lower-dim vector spaces.
- *And*: How many it will admit depends on the *prime factorization* of *n*.

Two-particle example

- *Let*: *V*, *W* be the 2-dim spin state spaces for two electrons.
 - Combined 2-particle spin space is given by 4-dim $V \otimes W$.
- *Suppose*:

```
\{|hard\rangle_1, |soft\rangle_1\} is a basis for V.
\{|hard\rangle_2, |soft\rangle_2\} is a basis for W.
```

- <u>Then</u>: A basis for $V \otimes W$ is given by $\{|hard\rangle_1|hard\rangle_2, |hard\rangle_1|soft\rangle_2, |soft\rangle_1|hard\rangle_2, |soft\rangle_1|soft\rangle_2\}$
- <u>And</u>: Any 2-particle state $|A\rangle$ in $V \otimes W$ can be expanded in this basis:

$$|A\rangle = a_{11}|hard\rangle_{1}|hard\rangle_{2} + a_{12}|hard\rangle_{1}|soft\rangle_{2}$$
$$+ a_{21}|soft\rangle_{1}|hard\rangle_{2} + a_{22}|soft\rangle_{1}|soft\rangle_{2}$$

II. Entangled States

An **entangled state** in a product vector space \mathcal{H} with respect to a decomposition $\mathcal{H} = V_1 \otimes \cdots \otimes V_n$ is a vector $|\psi\rangle$ that *cannot* be written as a product of n terms,

$$|\psi\rangle = |v_1\rangle \otimes \cdots \otimes |v_n\rangle$$
, where $|v_i\rangle \in V_i$

Erwin Schrödinger (1887-1961)

- What this means: An entangled n-particle state cannot be written as a product of a particle₁ state, and a particle₂ state, and a particle₃ state, etc.
 - In an entangled n-particle state, the states of all n particles are "entangled with each other": they cannot be separated out.

Two initial observations

- 1. Nothing about this mathematical definition tells us what the notion of "entangled with each other" means physically.
- 2. Entanglement is a *relative* property!
 - A vector in \mathcal{H} can be entangled with respect to one decomposition of \mathcal{H} , but not entangled with respect to another decomposition of \mathcal{H} .

Examples:

- Entangled: $|\Psi^{+}\rangle = \sqrt{\frac{1}{2}} \{|hard\rangle_{1}|hard\rangle_{2} + |soft\rangle_{1}|soft\rangle_{2}\}$
- Nonentangled (Separable):

$$\begin{split} |A\rangle &= \sqrt{\frac{1}{4}}\{|hard\rangle_1|hard\rangle_2 + |hard\rangle_1|soft\rangle_2 + |soft\rangle_1|hard\rangle_2 + |soft\rangle_1|soft\rangle_2\} \\ &= \sqrt{\frac{1}{4}}\{|hard\rangle_1 + |soft\rangle_1\}\{|hard\rangle_2 + |soft\rangle_2\} \end{split}$$

$$|B\rangle = \sqrt{\frac{1}{2}} \left\{ |hard\rangle_1 |hard\rangle_2 + |soft\rangle_1 |hard\rangle_2 \right\} = \sqrt{\frac{1}{2}} \left\{ |hard\rangle_1 + |soft\rangle_1 \right\} |hard\rangle_2$$

$$|C\rangle = |hard\rangle_1 |hard\rangle_2$$

According to the Eigenvalue-Eigenvector Rule:

- In states $|\Psi^+\rangle$ and $|A\rangle$, both electrons have no determinate Hardness value, but the combined system *as a whole* does have a determinate value of some other property.*
- In state $|B\rangle$, electron₁ has no determinate Hardness value, but electron₂ *does* (*i.e.*, *hard*), and the combined system as a whole has a determinate value of some other property.*
- In state $|C\rangle$, both electrons have determinate Hardness values, and the combined system as a whole has a determinate value of some other property.*

^{*} *General fact*: Any vector is the eigenvector of some operator.

- <u>So:</u> According to the EE Rule, in any 2-particle state, either particle may or may not have well-defined properties.
- <u>But:</u> According to EE, the combined 2-particle system as a whole will always have well-defined properties!
- <u>Why?</u> Because, again, any vector in a vector space (including $V \otimes W$) is an eigenvector of some (Hermitian) operator on that space.
 - So there exist 2-particle operators with eigenvectors $|\Psi^+\rangle$, $|A\rangle$, $|B\rangle$ and $|C\rangle$ that represent properties of the 2-particle system *as a whole*.

<u>2-Particle "Holistic" Properties</u>

Suppose:
$$|Q\rangle = \sqrt{\frac{1}{2}} \{|5\rangle_1 |7\rangle_2 + |9\rangle_1 |11\rangle_2 \}$$

 $|5\rangle_1$ is an eigenvector of the position operator $X^{(1)}$ the position operator $X^{(2)}$

- If we only want to measure P1's position (and not P2's), we must use the 2-particle operator $X^{(1)} \otimes I^{(2)}$, where $I^{(2)} = identity$ operator on W.
- If we only want to measure P2's position (and not P1's), we must use the 2-particle operator $I^{(1)} \otimes X^{(2)}$, where $I^{(1)} = identity$ operator on V.
- The *difference in the positions* of P1 and P2 is a property of the 2-particle system represented by the 2-particle operator $(I^{(1)} \otimes X^{(2)}) (X^{(1)} \otimes I^{(2)})$.

Claim:
$$|Q\rangle$$
 is an eigenstate of $(I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)})$ but *not* of $X^{(1)} \otimes I^{(2)}$ or $I^{(1)} \otimes X^{(2)}!$

• <u>So</u>: According to the EE Rule, P1 and P2 have no definite position in the 2-particle state $|Q\rangle$, but the difference in their positions *is* a definite property of the 2-particle state as a whole!

Claim: $|Q\rangle$ is an eigenstate of $(I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)})$ but *not* of $X^{(1)} \otimes I^{(2)}$ or $I^{(1)} \otimes X^{(2)}!$

Check:

(a) $|Q\rangle$ is an eigenstate of $(I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)})$:

$$\{(I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)})\}|Q\rangle = (I^{(1)} \otimes X^{(2)})|Q\rangle - (X^{(1)} \otimes I^{(2)})|Q\rangle$$

$$= (I^{(1)} \otimes X^{(2)})\sqrt{\frac{1}{2}}\{|5\rangle_{1}|7\rangle_{2} + |9\rangle_{1}|11\rangle_{2}\} - (X^{(1)} \otimes I^{(2)})\sqrt{\frac{1}{2}}\{|5\rangle_{1}|7\rangle_{2} + |9\rangle_{1}|11\rangle_{2}\}$$

$$= \sqrt{\frac{1}{2}}\{7|5\rangle_{1}|7\rangle_{2} + 11|9\rangle_{1}|11\rangle_{2}\} - \sqrt{\frac{1}{2}}\{5|5\rangle_{1}|7\rangle_{2} + 9|9\rangle_{1}|11\rangle_{2}\}$$

$$= \sqrt{\frac{1}{2}}\{2|5\rangle_{1}|7\rangle_{2} + 2|9\rangle_{1}|11\rangle_{2}\} = 2|Q\rangle$$
In the state represented by $|Q\rangle$, the value of the difference-in-position operator is 2; i.e., P1 and P2 differ in position by 2.

(b) $|Q\rangle$ is not an eigenstate of $X^{(1)} \otimes I^{(2)}$ or $I^{(1)} \otimes X^{(2)}$:

$$X^{(1)} \otimes I^{(2)} |Q\rangle = (X^{(1)} \otimes I^{(2)}) \sqrt{\frac{1}{2}} \{|5\rangle_1 |7\rangle_2 + |9\rangle_1 |11\rangle_2\}$$
$$= \sqrt{\frac{1}{2}} \{5|5\rangle_1 |7\rangle_2 + 9|9\rangle_1 |11\rangle_2\}$$
$$\neq \lambda |Q\rangle, \text{ for any value of } \lambda.$$

• Similarly for $I^{(1)} \bigotimes X^{(2)}$.

III. Born Rule for 2-Particle States

1. Suppose a 2-particle system is in a state represented by $|k\rangle$, and suppose we measure properties of *both* P1 and P2 represented by operators $A^{(1)}$ and $B^{(2)}$. The probability that the value of $A^{(1)}$ is a_i and the value of $B^{(2)}$ is b_i is:

 $\Pr(\text{value of } A^{(1)} \text{ is } a_i \text{ and value of } B^{(2)} \text{ is } b_i \text{ in state } |k\rangle) \equiv |\langle a_i b_i | k\rangle|^2$

where $|a_ib_i\rangle$ is an eigenvector of the 2-particle operator $A^{(1)} \otimes B^{(2)}$

2. Suppose a 2-particle system is in a state represented by $|k\rangle$, and only the property of P1, represented by $A^{(1)}$, is measured. <u>Then</u>: The probability that the value of $A^{(1)}$ is a_i is:

$$\Pr(\text{value of } A^{(1)} \text{ is } a_i \text{ in state } |k\rangle) \equiv |\langle a_i \ell_1 | k \rangle|^2 + \dots + |\langle a_i \ell_N | k \rangle|^2$$

where $|a_i\ell_j\rangle$, j=1,...,N, are eigenvectors of the 2-particle operator $A^{(1)} \otimes L^{(2)}$, for any P2 property represented by $L^{(2)}$

<u>Motivation (Law of Total Probability)</u>: The probability that the value of $A^{(1)}$ is a_i is equal to the sum of the probabilities of *all* the different ways in which the value of $A^{(1)}$ could be a_i .

IV. 2-Particle Projection Postulate

- <u>Suppose</u>: A 2-particle system is in a state represented by $|D\rangle$, and a property of P1 represented by $A^{(1)}$ is measured with the resulting value a_i .
- *Then*: $|D\rangle$ collapses to the state given by the following:
- (a) Expand $|D\rangle$ in eigenvectors of the 2-particle operator $A^{(1)} \otimes L^{(2)}$, for *any* arbitrary operator $L^{(2)}$:

$$|D\rangle = d_{11}|a_1\ell_1\rangle + \dots + d_{1N}|a_1\ell_N\rangle + d_{21}|a_2\ell_1\rangle + \dots + d_{NN}|a_N\ell_N\rangle$$

(b) Throw out all terms other than ones with a_i . Then divide by an appropriate normalization term Λ to make sure the result is a vector with unit length:

$$|D\rangle \xrightarrow{collapse} \frac{d_{i1}|a_i\ell_1\rangle + d_{i2}|a_i\ell_2\rangle + \cdots}{\Lambda}$$

Example 1 (collapse of separable state)

- <u>Suppose</u>: $|D\rangle = |q_3\rangle |m_4\rangle$ is an eigenvector of $Q^{(1)} \otimes M^{(2)}$.
- <u>Now</u>: Suppose the property represented by $A^{(1)}$ is measured with the resulting value a_5 .
- What happens to $|D\rangle$?
 - *First*: Expand $|D\rangle$ in the eigenvectors of $A^{(1)} \otimes L^{(2)}$, for *any* arbitrary $L^{(2)}$.
 - *Note*: The P2 part of $|D\rangle$ already is an eigenvector of $M^{(2)}$.
 - <u>So</u>: Use eigenvectors of $A^{(1)} \otimes M^{(2)}$ for simplicity.

$$|D\rangle = |q_3 m_4\rangle$$

= $d_1 |a_1 m_4\rangle + d_2 |a_2 m_4\rangle + \dots + d_N |a_N m_4\rangle$

- *Next*: Throw out all terms other than ones with a_5 , and normalize the result.
- This just leaves $d_5|a_5m_4\rangle$.
- To normalize it, divide by its length, which is just d_5 .
- *So*:

$$|D\rangle \xrightarrow{collapse} |a_5\rangle |m_4\rangle$$

No change to state of P2.

Example 2 (collapse of entangled state)

- <u>Suppose</u>: $|D\rangle = \sqrt{\frac{1}{2}} \{ |a_4 \ell_7\rangle + |a_5 \ell_{24}\rangle \}$
- <u>Now</u>: Suppose the property represented by $A^{(1)}$ is measured with the resulting value a_5 .
- What happens to $|D\rangle$?

Note: The P1 part of $|D\rangle$ is *already* in an eigenvector basis of $A^{(1)}$.

<u>So</u>: Simply throw out all terms in $|D\rangle$ that don't contain a_5 .

Result: $|D\rangle = |a_5 \ell_{24}\rangle$

• <u>So</u>:

$$|D\rangle \xrightarrow{collapse} |a_5\rangle |\ell_{24}\rangle$$

The state of the unmeasured P2 changes!

V. 2-Path Experiment Again.

Without Barrier:

100% of exiting electrons are white.

• At t_1 , the electron's state is: $|white\rangle|x_1, y_1\rangle = \sqrt{\frac{1}{2}}\{|hard\rangle|x_1, y_1\rangle + |soft\rangle|x_1, y_1\rangle\}$

- One particle with two properties in a "two-property" state.
- Represented by product vector in a product vector space.
- Just like a "2-particle" product vector for two particles, each with a single property.

V. 2-Path Experiment Again.

<u>Without Barrier</u>:

100% of exiting electrons are white.

- At t_1 , the electron's state is: $|white\rangle|x_1, y_1\rangle = \sqrt{\frac{1}{2}}\{|hard\rangle|x_1, y_1\rangle + |soft\rangle|x_1, y_1\rangle\}$
- At t_2 , the electron's state is: $\sqrt{\frac{1}{2}}\{|hard\rangle|x_2,y_2\rangle+|soft\rangle|x_3,y_1\rangle\}$

• At t_3 , the electron's state is: $\sqrt{\frac{1}{2}}\{|hard\rangle|x_3,y_3\rangle+|soft\rangle|x_4,y_2\rangle\}$

entangled states!

- At t_4 , the electron's state is: $\sqrt{\frac{1}{2}}\{|hard\rangle|x_5,y_4\rangle+|soft\rangle|x_5,y_4\rangle\}=|white\rangle|x_5,y_4\rangle$
- Pr(value of C is white in state at t_4) = $|\langle white, x_5, y_4 | white, x_5, y_4 \rangle|^2 \stackrel{\checkmark}{=} 1$

V. 2-Path Experiment Again.

With Barrier:

50% of exiting electrons are white, 50% are black.

- At t_4 , the electron's state is: $|k\rangle = \sqrt{\frac{1}{2}} \{|hard\rangle|x_5, y_4\rangle + |soft\rangle|x_3, y_1\rangle\}$
- To measure Color at t_4 , expand $|k\rangle$ in Color basis:

$$|k\rangle = (\sqrt{\frac{1}{2}})(\sqrt{\frac{1}{2}})\{|black\rangle + |white\rangle\}|x_5, y_4\rangle + (\sqrt{\frac{1}{2}})(\sqrt{\frac{1}{2}})\{|black\rangle - |white\rangle\}|x_3, y_1\rangle$$
$$= \frac{1}{2}|black\rangle|x_5, y_4\rangle + \frac{1}{2}|black\rangle|x_3, y_1\rangle + \frac{1}{2}|white\rangle|x_5, y_4\rangle - \frac{1}{2}|white\rangle\}|x_3, y_1\rangle$$

• Pr(value of C is white in state
$$|k\rangle$$
) = $|\langle white, x_5, y_4|k\rangle|^2 + |\langle white, x_3, y_1|k\rangle|^2$
= $|\frac{1}{2}|^2 + |\frac{1}{2}|^2 = \frac{1}{2}$