05. Multiparticle Systems
I. 2-Particle Product Spaces
e Suppose: Particle; and particle, are represented by vector spaces VV and W.

e Then: The composite 2-particle system is represented by a product vector space
VRW.

Let V and W be n-dim and m-dim vector spaces. The product vector space
V@ W is an (n X m)-dim vector space with the following property:

For any |v) € V, |w) € W, one can form a vector |Y) € VQ W via the "tensor
product” |v)& |w), which satisfies:

@B (v) + v |w) = [v) @ [w) + |v2)Q [w)

(i) [V} (w1) + [wy)) = [V} [w1) + [V) &) [w)
(iii) a(|Jv)Q|w)) = a|v)R |w) = |[v)Q a|w), for any scalar a.

i Instead of "|v)&® |w)", we can alternatively write "|v)|w)" or "|vw)". !




Further characteristics of the 2-particle product space VR W

V'@ W inherits an inner-product, bases, and operators from V and W:

1. Aninner-product on VQ W is defined by the following: For any
|Y) = |vw), |@P) = |[tu) € VR W, with |v), |t) € V and |w), |u) € W,

(Ylg) = (v[tKw|u)
2. It {|vy), |vy) .., [V,)} and {|wy), [W)),..., |[W,,)} are bases for IV and W, then
a basis for VQ I/ is given by

Uvwy), [viwy), o VW), [VoW1), ooy [VW0) )

3. Any vector |Y) in VQ W can be expanded in this basis:

1Y) = a1 |[viwy) + ap|viwy) + - + ax|vowy) + - + |V W)

4. Let A and B be operators on I/ and W such that
A|v) = a|v), Bl|w) = blw), where |v)€EV,|w)eW.
Then there is an operator AQ B on V@ W such that
(AQ B)|vw) = ab|vw)




Extension to multiparticle (multi-partite) systems

e A product vector space H may be formed from the tensor product of more
than two lower-dim vector spaces.

e A product vector space H may admit more than one decomposition into
lower-dim vector spaces.

Ex. Let H be a 16-dim vector space.

Then: One can always find 2-dim vector spaces V4, V,, V3, V, such that
H=V,QV,V;QV,

And: One can always find 4-dim vector spaces W, W, such that
H=W,Q W,

| |
| I
1 1
| - S0: As long as the dimension n of a vector space isn't a prime number, it will !
. admit at least one decomposition into the tensor product of lower-dim :
| vector spaces. :
| |
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Two-particle example

e Let: V, W be the 2-dim spin state spaces for two electrons.

- Combined 2-particle spin space is given by 4-dim VQ W.

e Suppose:
{|hard),, |soft),} is a basis for V.

{|hard),, |soft),} is a basis for W.

e Then: A basis for VQ W is given by
{lhard)|hard),, |hard)|soft),, [soft),|hard),, |soft)i|soft),}

e And: Any 2-particle state |4) in VQ W can be expanded in this basis:
|A) = a,1|hard),|hard), + a,;|hard),|soft),
+ ay|soft),|hard), + ay|soft)|soft),



I1. Entangled States

. An entangled state in a product vector space H with
| respect to a decomposition H =V, & --- Q V,, is a vector
|y) that cannot be written as a product of n terms,

W)y =1v)) @ Q|v,),  where|v) €V,

- - - - - - 1 Erwin Schrédinger
(1887-1961)

e What this means: An entangled n-particle state cannot be written as a product
of a particle, state, and a particle, state, and a particle; state, etc.

- In an entangled n-particle state, the states of all n particles are "entangled with each
other": they cannot be separated out.

Two initial observations k

1. Nothing about this mathematical definition tells us what the
notion of "entangled with each other"” means physically.
2. Entanglement is a relative property!
- A vector in H can be entangled with respect to one decomposition of

H, but not entangled with respect to another decomposition of H.




Examples: ™

- Entangled: |W*) =% {|hard),|hard), + |soft),|soft),}

- Nonentangled (Separable):

|4) = V%{|hard)|hard), + |hard)|soft), + |soft)i|hard), + |soft)i|soft),}
= Vi{|hard), + |soft);}{|hard), + |soft),}

|B) = V% {|hard),|hard), + |soft),|hard),} = V% {|hard), + |soft),}|hard),
|C) = |hard),|hard),

According to the Eigenvalue-Eigenvector Rule:

e In states |[W*) and |A), both electrons have no determinate Hardness value, but the

combined system as a whole does have a determinate value of some other property.*

e In state |B), electron; has no determinate Hardness value, but electron, does (i.e., hard),

and the combined system as a whole has a determinate value of some other property.*

e In state |C), both electrons have determinate Hardness values, and the combined system

as a whole has a determinate value of some other property.*

*General fact: Any vector is the eigenvector of some operator.




e So: According to the EE Rule, in any 2-particle state, either particle may or may
not have well-defined properties.

e But: According to EE, the combined 2-particle system as a whole will always have
well-defined properties!

» Why? Because, again, any vector in a vector space (including V& W) is an
eigenvector of some (Hermitian) operator on that space.

- So there exist 2-particle operators with eigenvectors |W+), |A), |B) and |C)
that represent properties of the 2-particle system as a whole.



2-Particle "Holistic" Properties

Suppose: Q) = V¥ {|5)1]7), + 19)1]11),}

2

|5)1 is an eigenvector of |11), is an eigenvector of
the position operator XV the position operator X%

e [f we only want to measure P1's position (and not P2's), we must use the 2-
particle operator XD 1(2), where 1(?) = identity operator on IW.

e [f we only want to measure P2's position (and not P1's), we must use the 2-
particle operator IO Q X2, where IV = identity operator on V.

e The difference in the positions of P1 and P2 is a property of the 2-particle
system represented by the 2-particle operator (I(D®Q X @) — (XD R 1(2),

Claim: |Q) is an eigenstate of (/D QX)) — (XD RQI2)
but not of XMW 12 or [(DR X @]

e So: According to the EE Rule, P1 and P2 have no definite position in
the 2-particle state |Q), but the difference in their positions is a
definite property of the 2-particle state as a whole!



but not of X(DQ [ or I(DQ X )

Claim: |Q) is an eigenstate of (/(DQX@) — (XD 1(2))J

Check:
(a) |Q)is an eigenstate of (I(DQ X)) — (XD RQ[@);

{IDQX®) = (XDRID)}HQ) = ([PRXD)|Q) — (XDRID)|Q)
= (IOQXOWW {|5)117)2 + |91111)2} = XDRQI®)VY {5)1]7)2 + [9)1]11),}
=V {7|5)117)2 + 11|9)1|11)2} — V2 {5/5)1]7)2 + 919)1|11)2}
= V% {2|5)1]7)2 + 2|901111)2} = 2|Q) «—___ S Inthe state represented by |Q), the

value of the difference-in-position
operator is 2, i.e., P1 and P2 differ in

position by 2.
(b) |Q) is not an eigenstate of XMW Q12 or IO QX (2);

XDORIANQ) = (XDQIOVY {|5)1]7)2 + 19)1111)2}
= V1% {55)1]7)2 + 919)1|11),}
+ A|Q), for any value of A.

e Similarly for (D& X @),



II1. Born Rule for 2-Particle States
1. Suppose a 2-particle system is in a state represented by |k), and suppose we

measure properties of both P1 and P2 represented by operators AW and B,

Then: The probability that the value of A® is a; and the value of B® is b is:

Pr(value of AM is a; and value of B@ is b; in state |k)) = |{a;b;|k)|?

where |a;b;) is an eigenvector of the 2-particle operator AV Q B(2)

2. Suppose a 2-particle system is in a state represented by | k), and
only the property of P1, represented by A, is measured.

Then: The probability that the value of A is q; is:

Pr(value of AM is a; in state |k)) = |{a;£1|k)|? + - + |{a;fy|k)|?

where |a;f;), j = 1, .., N, are eigenvectors of the 2-particle operator ADQ L),
for any P2 property represented by L(?)

Motivation (Law of Total Probability): The probability that the
value of AM is a; is equal to the sum of the probabilities of all
the different ways in which the value of A®D could be a,.
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IV. 2-Particle Projection Postulate

e Suppose: A 2-particle system is in a state represented by |D), and a property of
P1 represented by A is measured with the resulting value a;.

e Then: |D) collapses to the state given by the following:

(a) Expand |D) in eigenvectors of the 2-particle operator AV L), for any
arbitrary operator L(®:

|ID) =dqq|a€4) + -+ diylag €y) + dygla 1) + - + dyy|ayty)

(b) Throw out all terms other than ones with a,. Then divide by an appropriate
normalization term A to make sure the result is a vector with unit length:

D) >
collapse A

11



Example 1 (collapse of separable state) LN
- Suppose: |D) = |g3;)|m,) is an eigenvector of QD Q M),

- Now: Suppose the property represented by AM is measured
with the resulting value a:.

- What happens to |D)?

irst: Expand |D) in the eigenvectors of A(D® L), for any arbitrary L®),

=5

- Note: The P2 part of |D) already is an eigenvector of M2,
- So: Use eigenvectors of ADQ M for simplicity.
|D) = |g3ma)
= di|laimy) + dy|amy) + -+ + dy|aymy)

- Next: Throw out all terms other than ones with as, and normalize the result.

"0 | |D)

> |as)|my)
collapse Q No change to state of P2.
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Example 2 (collapse of entangled state) X
Suppose: |D) = {|a, ;) + |ast24)}

- Now: Suppose the property represented by AM is
measured with the resulting value a-.

- What happens to |D)?

Note: The P1 part of | D) is already in an eigenvector basis of A,
S0

|
1
|
o: Simply throw out all terms in |D) that don't contain as. :
1
|
I

————————————————————————————————————————————————————

D) > |a5>|£24/>J
collapse

W The state of the unmeasured
P2 changes!
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V. 2-Path Experiment Again.

Vi T

t3 t4 : 0 s
Y T / _______________ - : 100% of exiting

electrons are white.

white soft ;
Color t; |Hardness t,
1 1 | | | S
1 1 1 1 T [l
X1 X2 X3 Xy Xs

o Atty, the electron's state is: |white)|xy, y1) = VY2 {|hard)|x,, y1) + |soft)|xq, y1)}

N

Definite Definite
color state position state

- One particle with two properties in a "two-property" state.

- Just like a "2-particle" product vector for two particles, each
with a single property.

1
1
- Represented by product vector in a product vector space. :
:
1
1



V. 2-Path Experiment Again.

| |
! Without Barrier: !
YVa I .. I
y / s - s 1 100% of exiting .
< [ 4 1 ] 1
; ' electrons are white.
I e e e e e ————————
I .
| |
| h d |
ar |
Y2 t, : |t
| |
| |
| |
| |
| |
white soft :
Color t; |Hardness t,
1 1 | 1 1 S
1 1 1 1 T [l
X1 Xy X3 Xy Xsg

At t4, the electron's state is

At t,, the electron's state is: V% {|hard)|x,, V2) + |soft)|xs, y1)}

At t3, the electron's state is: V% {|hard)|xs, y3) + |soft)| x4, y2)}

. |white)|xy, y1) = V¥ {|hard)|xy, y1) + |soft)|x1, ¥1)}

entangled states!

At t,, the electron's state is: V% {|hard)|xs, V4) + |Soft)|xs, y4)} = |White)|xs, ya)

Pr(value of C is white in state at t,) = [{White, x5, y4|white, x5, y4)|? 41
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V. 2-Path Experiment Again.

1
1 With Barrier:
Vi T !

|

ts t, : 0 o |

vs T /.A _______________ - 50% of exiting E
|

i electrons are white,
! 50% are black.

white soft |
Vi T —_ —-———— - ———————//
Color t, |Hardness

v

o Att, the electron's state is: |k) = V% {|hard)|xs, y4) + |soft)|xs, y1)}
e To measure Color at t4, expand |k) in Color basis:
k) = (W% ) (V% ){|black) + |white)}|xs, y4) + (V% ) (V% ){|black) — |white)}|x3, y1)
= Ws|black)|xs, y4) + Y2|black)|xs, y1) + Y2|white)|xs, yv4) — Y2|white)}|xs, y1)
e Pr(value of C is white in state |k)) = [{(white, x5, y4|k)|?> + |(wWhite, x3, y1|k)|?

v
= 1%l + 1%l = %



