
• Suppose:	Particle1 and	particle2 are	represented	by	vector	spaces	𝑉 and	𝑊.
• Then:	The	composite	2-particle	system	is	represented	by	a	product	vector	space	
𝑉⊗𝑊.

05.	Multiparticle	Systems
I.	2-Particle	Product	Spaces

Instead	of	"|𝑣⟩⊗|𝑤⟩",	we	can	alternatively	write	"|𝑣⟩|𝑤⟩"	or	"|𝑣𝑤⟩".

Let	𝑉 and	𝑊 be	𝑛-dim	and	𝑚-dim	vector	spaces.	The	product	vector	space	
𝑉⊗𝑊 is	an	(𝑛×𝑚)-dim	vector	space	with	the	following	property:
For	any	|𝑣⟩ ∈ 𝑉, |𝑤⟩	∈ 𝑊,	one	can	form	a	vector	|𝜓⟩	∈ 𝑉⊗𝑊 via the	"tensor	
product"	|𝑣⟩⊗|𝑤⟩,	which	satisfies:

(i) (|𝑣1⟩ +	|𝑣2⟩)⊗|𝑤⟩ =	|𝑣1⟩⊗|𝑤⟩ +	|𝑣2⟩⊗|𝑤⟩
(ii) |𝑣⟩⊗(|𝑤1⟩ +	|𝑤2⟩)	=	|𝑣⟩⊗|𝑤1⟩ +	|𝑣⟩⊗|𝑤2⟩
(iii) 𝛼(|𝑣⟩⊗|𝑤⟩)	=	𝛼|𝑣⟩⊗|𝑤⟩ =	|𝑣⟩⊗𝛼|𝑤⟩,			for	any	scalar	𝛼.
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1. An	inner-product	on 𝑉⊗𝑊 is	defined	by	the	following:	For	any	
|𝜓⟩	=	|𝑣𝑤⟩,	|𝜙⟩	=	|𝑡𝑢⟩ ∈ 𝑉⊗𝑊,	with	|𝑣⟩,	|𝑡⟩ ∈ 𝑉 and	|𝑤⟩,	|𝑢⟩ ∈ 𝑊,

⟨𝜓|𝜙⟩ ≡ ⟨𝑣|𝑡⟩⟨𝑤|𝑢⟩

Further	characteristics	of	the	2-particle	product	space	𝑉⊗𝑊
𝑉⊗𝑊 inherits	an	inner-product,	bases,	and	operators	from	𝑉 and	𝑊:

3. Any	vector	|𝜓⟩ in 𝑉⊗𝑊 can	be	expanded in	this	basis:

|𝜓⟩ =	𝑎11|𝑣1𝑤1⟩ +	𝑎12|𝑣1𝑤2⟩ +	⋯ +	𝑎21|𝑣2𝑤1⟩ +	⋯ +	𝑎𝑛𝑚|𝑣𝑛𝑤𝑚⟩

2. If	{|𝑣1⟩,	|𝑣2⟩,	...,	|𝑣𝑛⟩} and	{|𝑤1⟩,	|𝑤2⟩,...,	|𝑤𝑚⟩} are	bases	for	𝑉 and	𝑊,	then	
a	basis for	𝑉⊗𝑊 is	given	by
{|𝑣1𝑤1⟩,	|𝑣1𝑤2⟩, ...,	|𝑣1𝑤𝑚⟩, |𝑣2𝑤1⟩,	...,	|𝑣𝑛𝑤𝑚⟩}

4. Let	𝐴 and	𝐵 be	operators	on	𝑉 and	𝑊 such	that

𝐴|𝑣⟩ =	𝑎|𝑣⟩,	𝐵|𝑤⟩ =	𝑏|𝑤⟩,						where	|𝑣⟩ ∈ 𝑉,	|𝑤⟩ ∈𝑊.

Then	there	is	an	operator 𝐴⊗𝐵 on	𝑉⊗𝑊 such	that
(𝐴⊗𝐵)|𝑣𝑤⟩ =	𝑎𝑏|𝑣𝑤⟩
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Extension	to	multiparticle	(multi-partite)	systems

• A	product	vector	space	ℋmay	be	formed	from	the	tensor	product	of	more	
than	two	lower-dim	vector	spaces.

• A	product	vector	space	ℋmay	admit	more	than	one	decomposition	into	
lower-dim	vector	spaces.

Ex.	Let	ℋ be	a	16-dim	vector	space.

- Note:	A	"factor"	vector	space	must	have	dim	>	1.
- So:	As	long	as	the	dimension	𝑛 of	a	vector	space	isn't	a	prime	number,	it	will	
admit	at	least	one	decomposition	into	the	tensor	product	of	lower-dim	
vector	spaces.

- And:	How	many	it	will	admit	depends	on	the	prime	factorization	of	𝑛.

Then:	One	can	always	find	2-dim	vector	spaces	𝑉1,	𝑉2,	𝑉3,	𝑉4 such	that
ℋ	=	𝑉1⊗𝑉2⊗𝑉3⊗𝑉4

And:	One	can	always	find	4-dim	vector	spaces	𝑊1,	𝑊2 such	that
ℋ	=	𝑊1⊗𝑊2
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Two-particle	example
• Let:	𝑉,	𝑊 be	the	2-dim	spin	state	spaces	for	two	electrons.

- Combined	2-particle	spin	space	is	given	by	4-dim	𝑉⊗𝑊.

• And:	Any	2-particle	state	|𝐴⟩ in 𝑉⊗𝑊 can	be	expanded	in	this	basis:

|𝐴⟩ =	𝑎11|ℎ𝑎𝑟𝑑⟩1|ℎ𝑎𝑟𝑑⟩2 +	𝑎12|ℎ𝑎𝑟𝑑⟩1|𝑠𝑜𝑓𝑡⟩2
+	𝑎21|𝑠𝑜𝑓𝑡⟩1|ℎ𝑎𝑟𝑑⟩2 +	𝑎22|𝑠𝑜𝑓𝑡⟩1|𝑠𝑜𝑓𝑡⟩2

• Then:	A	basis	for	𝑉⊗𝑊 is	given	by

{|ℎ𝑎𝑟𝑑⟩1|ℎ𝑎𝑟𝑑⟩2,	|ℎ𝑎𝑟𝑑⟩1|𝑠𝑜𝑓𝑡⟩2,	|𝑠𝑜𝑓𝑡⟩1|ℎ𝑎𝑟𝑑⟩2,	|𝑠𝑜𝑓𝑡⟩1|𝑠𝑜𝑓𝑡⟩2}

• Suppose:

{|ℎ𝑎𝑟𝑑⟩1,	|𝑠𝑜𝑓𝑡⟩1}	is	a	basis	for	𝑉.

{|ℎ𝑎𝑟𝑑⟩2,	|𝑠𝑜𝑓𝑡⟩2}	is	a	basis	for	𝑊.
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II.	Entangled	States

An	entangled	state	in	a	product	vector	space	ℋwith	
respect	to	a	decomposition	ℋ	=	𝑉1⊗⋯	⊗ 𝑉𝑛 is	a	vector	
|𝜓⟩ that	cannot be	written	as	a	product	of	𝑛 terms,

|𝜓⟩ =	|𝑣1⟩ ⊗⋯	⊗ |𝑣𝑛⟩,										where	|𝑣𝑖⟩ ∈ 𝑉𝑖
Erwin	Schrödinger
(1887-1961)

• What	this	means:	An	entangled	𝑛-particle	state	cannot	be	written	as	a	product	
of	a	particle1 state,	and	a	particle2 state,	and	a	particle3 state,	etc.
- In	an	entangled	𝑛-particle	state,	the	states	of	all	𝑛 particles	are	"entangled	with	each	
other":	they	cannot	be	separated	out.

Two	initial	observations
1. Nothing	about	this	mathematical	definition	tells	us	what	the	

notion	of	"entangled	with	each	other"	means	physically.
2. Entanglement	is	a	relative property!

- A	vector	in	ℋ can	be	entangled	with	respect	to	one	decomposition	of	
ℋ,	but	not	entangled	with	respect	to	another	decomposition	of	ℋ.
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According	to	the	Eigenvalue-Eigenvector	Rule:
• In	states	|Ψ+⟩ and	|𝐴⟩, both	electrons	have	no	determinate	Hardness	value,	but	the	
combined	system	as	a	whole does	have	a	determinate	value	of	some	other	property.*

*General	fact:	Any	vector	is	the	eigenvector	of	some	operator.

• In	state	|𝐵⟩,	electron1 has	no	determinate	Hardness	value,	but	electron2 does (i.e.,	ℎ𝑎𝑟𝑑),	
and	the	combined	system	as	a	whole	has	a	determinate	value	of	some	other	property.*

• In	state	|𝐶⟩,	both	electrons	have	determinate	Hardness	values,	and	the	combined	system	
as	a	whole	has	a	determinate	value	of	some	other	property.*

Examples:

|𝐶⟩ =	|ℎ𝑎𝑟𝑑⟩1|ℎ𝑎𝑟𝑑⟩2

- Entangled: |Ψ+⟩	=	 ½ {|ℎ𝑎𝑟𝑑⟩1|ℎ𝑎𝑟𝑑⟩2 +	|𝑠𝑜𝑓𝑡⟩1|𝑠𝑜𝑓𝑡⟩2}

- Nonentangled	(Separable):
|𝐴⟩ =	 ¼{|ℎ𝑎𝑟𝑑⟩1|ℎ𝑎𝑟𝑑⟩2 +	|ℎ𝑎𝑟𝑑⟩1|𝑠𝑜𝑓𝑡⟩2 +	|𝑠𝑜𝑓𝑡⟩1|ℎ𝑎𝑟𝑑⟩2 +	|𝑠𝑜𝑓𝑡⟩1|𝑠𝑜𝑓𝑡⟩2}

=	 ¼{|ℎ𝑎𝑟𝑑⟩1 +	|𝑠𝑜𝑓𝑡⟩1}{|ℎ𝑎𝑟𝑑⟩2 +	|𝑠𝑜𝑓𝑡⟩2}

|𝐵⟩	=	 ½ {|ℎ𝑎𝑟𝑑⟩1|ℎ𝑎𝑟𝑑⟩2 +	|𝑠𝑜𝑓𝑡⟩1|ℎ𝑎𝑟𝑑⟩2}	=	 ½ {|ℎ𝑎𝑟𝑑⟩1 +	|𝑠𝑜𝑓𝑡⟩1}|ℎ𝑎𝑟𝑑⟩2
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• So: According	to	the	EE	Rule,	in	any	2-particle	state,	either	particle	may	or	may	
not	have	well-defined	properties.

• But: According	to	EE,	the	combined	2-particle	system	as	a	whole	will	always	have	
well-defined	properties!

• Why? Because,	again,	any	vector	in	a	vector	space	(including	𝑉⊗𝑊)	is	an	
eigenvector	of	some	(Hermitian)	operator	on	that	space.
- So	there	exist	2-particle	operators	with	eigenvectors	|Ψ+⟩,	|𝐴⟩,	|𝐵⟩ and	|𝐶⟩
that	represent	properties	of	the	2-particle	system	as	a	whole.
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2-Particle	"Holistic"	Properties

|5⟩1 is an eigenvector of 
the position operator 𝑋(1)

|11⟩2 is an eigenvector of 
the position operator 𝑋(2)

• If	we	only	want	to	measure	P1's	position	(and	not	P2's),	we	must	use	the	2-
particle	operator	𝑋(1)⊗𝐼(2),	where	𝐼(2) = identity	operator	on	𝑊.

• If	we	only	want	to	measure	P2's	position	(and	not	P1's),	we	must	use	the	2-
particle	operator	𝐼(1)⊗𝑋(2),	where	𝐼(1) = identity	operator	on	𝑉.

• The	difference	in	the	positions of	P1	and	P2	is	a	property	of	the	2-particle	
system	represented	by	the	2-particle	operator	(𝐼(1)⊗𝑋(2))	− (𝑋(1)⊗𝐼(2)).

Claim: |𝑄⟩ is	an	eigenstate	of	(𝐼(1)⊗𝑋(2))	− (𝑋(1)⊗𝐼(2))
but	not of	𝑋(1)⊗𝐼(2) or	𝐼(1)⊗𝑋(2)!

• So:	According	to	the	EE	Rule,	P1	and	P2	have	no	definite	position	in	
the	2-particle	state	|𝑄⟩,	but	the	difference	in	their	positions	is a	
definite	property	of	the	2-particle	state	as	a	whole!

Suppose:						|𝑄⟩ =	 ½ {|5⟩1|7⟩2 +	|9⟩1|11⟩2}
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Check:
(a) |𝑄⟩ is	an	eigenstate	of	(𝐼(1)⊗𝑋(2))	− (𝑋(1)⊗𝐼(2)):

(b) |𝑄⟩ is	not	an	eigenstate	of	𝑋(1)⊗𝐼(2) or	𝐼(1)⊗𝑋(2):

• Similarly	for	𝐼(1)⊗𝑋(2).

In the state represented by |𝑄⟩, the 
value of the difference-in-position 
operator is 2; i.e., P1 and P2 differ in 
position by 2. 

Claim: |𝑄⟩ is	an	eigenstate	of	(𝐼(1)⊗𝑋(2))	− (𝑋(1)⊗𝐼(2))
but	not of	𝑋(1)⊗𝐼(2) or	𝐼(1)⊗𝑋(2)!

{(𝐼(1)⊗𝑋(2))	− (𝑋(1)⊗𝐼(2))}|𝑄⟩ =	(𝐼(1)⊗𝑋(2))|𝑄⟩	− (𝑋(1)⊗𝐼(2))|𝑄⟩

=	(𝐼(1)⊗𝑋(2)) ½ {|5⟩1|7⟩2+	|9⟩1|11⟩2}	− (𝑋(1)⊗𝐼(2)) ½ {|5⟩1|7⟩2+	|9⟩1|11⟩2}

=	 ½ {7|5⟩1|7⟩2+	11|9⟩1|11⟩2}	−	 ½ {5|5⟩1|7⟩2+	9|9⟩1|11⟩2}

=	 ½ {2|5⟩1|7⟩2+	2|9⟩1|11⟩2}	=	2|𝑄⟩

𝑋(1)⊗𝐼(2)|𝑄⟩ =	(𝑋(1)⊗𝐼(2)) ½ {|5⟩1|7⟩2+	|9⟩1|11⟩2}

=	 ½ {5|5⟩1|7⟩2+	9|9⟩1|11⟩2}

≠	𝜆|𝑄⟩,			for	any	value	of	𝜆.
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III.	Born	Rule	for	2-Particle	States
1. Suppose	a	2-particle	system	is	in	a	state	represented	by	|𝑘⟩,	and	suppose	we	

measure	properties	of	both P1	and	P2	represented	by	operators	𝐴(1) and	𝐵(2).
Then:	The	probability	that	the	value	of	𝐴(1) is	𝑎𝑖 and	the	value	of	𝐵(2) is	𝑏𝑖 is:

where	|𝑎𝑖𝑏𝑖⟩ is	an	eigenvector	of	the	2-particle	operator	𝐴(1)⊗𝐵(2)

Pr(value	of 𝐴(1) is 𝑎𝑖 and	value	of 𝐵(2) is 𝑏𝑖 in	state |𝑘⟩)	≡ |⟨𝑎𝑖𝑏𝑖|𝑘⟩|2

2. Suppose	a	2-particle	system	is	in	a	state	represented	by	|𝑘⟩,	and	
only the	property	of	P1,	represented	by	𝐴(1),	is	measured.
Then:	The	probability	that	the	value	of	𝐴(1) is	𝑎𝑖 is:

Pr(value	of 𝐴(1) is 𝑎𝑖 in	state |𝑘⟩)	≡ |⟨𝑎𝑖ℓ1|𝑘⟩|2 +	⋯ +	|⟨𝑎𝑖ℓ𝑁|𝑘⟩|2

Motivation	(Law	of	Total	Probability):	The	probability	that	the	
value	of	𝐴(1) is	𝑎𝑖 is	equal	to	the	sum	of	the	probabilities	of	all
the	different	ways	in	which	the	value	of	𝐴(1) could be	𝑎𝑖.

where	|𝑎𝑖ℓ𝑗⟩,	𝑗 =	1,	...,	𝑁,	are	eigenvectors	of	the	2-particle	operator	𝐴(1)⊗𝐿(2),	
for	any	P2 property	represented	by	𝐿(2)
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IV.	2-Particle	Projection	Postulate
• Suppose:	A	2-particle	system	is	in	a	state	represented	by	|𝐷⟩,	and	a	property	of	
P1	represented	by	𝐴(1) is	measured	with	the	resulting	value	𝑎𝑖.

(a) Expand	|𝐷⟩ in	eigenvectors	of	the	2-particle	operator	𝐴(1)⊗𝐿(2),	for	any
arbitrary	operator	𝐿(2):

|𝐷⟩ =	𝑑11|𝑎1ℓ1⟩ +	⋯ +	𝑑1𝑁|𝑎1ℓ𝑁⟩ +	𝑑21|𝑎2ℓ1⟩ +	⋯ +	𝑑𝑁𝑁|𝑎𝑁ℓ𝑁⟩

(b) Throw	out	all	terms	other	than	ones	with	𝑎𝑖.	Then	divide	by	an	appropriate	
normalization	term	Λ to	make	sure	the	result	is	a	vector	with	unit	length:

|𝐷⟩ ¾¾¾®
collapse

𝑑𝑖1|𝑎𝑖ℓ1⟩ +	𝑑𝑖2|𝑎𝑖ℓ2⟩ +	⋯
Λ

• Then:	|𝐷⟩ collapses	to	the	state	given	by	the	following:
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- First:	Expand	|𝐷⟩ in	the	eigenvectors	of	𝐴(1)⊗𝐿(2),	for	any arbitrary	𝐿(2).
- Note:	The	P2	part	of	|𝐷⟩ already	is	an	eigenvector	of	𝑀(2).
- So:	Use	eigenvectors	of	𝐴(1)⊗𝑀(2) for	simplicity.

|𝐷⟩ =	|𝑞3𝑚4⟩
=	𝑑1|𝑎1𝑚4⟩ +	𝑑2|𝑎2𝑚4⟩ +	⋯ +	𝑑𝑁|𝑎𝑁𝑚4⟩

- Next:	Throw	out	all	terms	other	than	ones	with	𝑎5,	and	normalize	the	result.
- This	just	leaves	𝑑5|𝑎5𝑚4⟩.
- To	normalize	it,	divide	by	its	length,	which	is	just	𝑑5.

Example	1	(collapse	of	separable	state)
- Suppose:			|𝐷⟩ =	|𝑞3⟩|𝑚4⟩ is	an	eigenvector	of	𝑄(1)⊗𝑀(2).
- Now:	Suppose	the	property	represented	by	𝐴(1) is	measured	
with	the	resulting	value	𝑎5.

- What	happens	to	|𝐷⟩?

|𝐷⟩ ¾¾¾®
collapse

|𝑎5⟩|𝑚4⟩• So:
No change to state of P2.
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Example	2	(collapse	of	entangled	state)

Note:	The	P1	part	of	|𝐷⟩ is	already in	an	eigenvector	basis	of	𝐴(1).
So:	Simply	throw	out	all	terms	in	|𝐷⟩ that	don't	contain	𝑎5 .

|𝐷⟩ ¾¾¾®
collapse

|𝑎5 ⟩|ℓ24⟩

• So:

- Suppose:			|𝐷⟩	=	 ½ {|𝑎4ℓ7⟩ +	|𝑎5ℓ24⟩}
- Now:	Suppose	the	property	represented	by	𝐴(1) is	
measured	with	the	resulting	value	𝑎5.

- What	happens	to	|𝐷⟩?

Result:			|𝐷⟩	=	|𝑎5ℓ24⟩

The state of the unmeasured
P2 changes!
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V.	2-Path	Experiment	Again.

Color Hardness

𝑤ℎ𝑖𝑡𝑒

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑦3

𝑡2

𝑦4

𝑦2

𝑦1
𝑡2𝑡1

𝑡3

𝑡3

𝑡4

𝑠𝑜𝑓𝑡

ℎ𝑎𝑟𝑑

Without	Barrier:
100% of	exiting	
electrons	are	white.

Definite 
color state

Definite 
position state

- One	particle	with	two	properties	in	a	"two-property"	state.
- Represented	by	product	vector	in	a	product	vector	space.
- Just	like	a	"2-particle"	product	vector	for	two	particles,	each	
with	a	single	property.

• At 𝑡1,	the	electron's	state	is: |𝑤ℎ𝑖𝑡𝑒⟩|𝑥1,	𝑦1⟩	=	 ½ {|ℎ𝑎𝑟𝑑⟩|𝑥1,	𝑦1⟩	+	|𝑠𝑜𝑓𝑡⟩|𝑥1,	𝑦1⟩}
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• At 𝑡2,	the	electron's	state	is: ½ {|ℎ𝑎𝑟𝑑⟩|𝑥2,	𝑦2⟩	+	|𝑠𝑜𝑓𝑡⟩|𝑥3,	𝑦1⟩}

• At t3,	the	electron's	state	is: ½ {|ℎ𝑎𝑟𝑑⟩|𝑥3,	𝑦3⟩	+	|𝑠𝑜𝑓𝑡⟩|𝑥4,	𝑦2⟩}

• At t4,	the	electron's	state	is: ½ {|ℎ𝑎𝑟𝑑⟩|𝑥5,	𝑦4⟩	+	|𝑠𝑜𝑓𝑡⟩|𝑥5,	𝑦4⟩}	=	|𝑤ℎ𝑖𝑡𝑒⟩|𝑥5,	𝑦4⟩

entangled states!

V.	2-Path	Experiment	Again.

Color Hardness

𝑤ℎ𝑖𝑡𝑒

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑦3

𝑡2

𝑦4

𝑦2

𝑦1
𝑡2𝑡1

𝑡3

𝑡3

𝑡4

𝑠𝑜𝑓𝑡

ℎ𝑎𝑟𝑑

Without	Barrier:
100% of	exiting	
electrons	are	white.

• At 𝑡1,	the	electron's	state	is: |𝑤ℎ𝑖𝑡𝑒⟩|𝑥1,	𝑦1⟩	=	 ½ {|ℎ𝑎𝑟𝑑⟩|𝑥1,	𝑦1⟩	+	|𝑠𝑜𝑓𝑡⟩|𝑥1,	𝑦1⟩}

• Pr(value	of 𝐶 is	𝑤ℎ𝑖𝑡𝑒 in	state	at	t4)	=	|⟨𝑤ℎ𝑖𝑡𝑒,	𝑥5,	𝑦4|𝑤ℎ𝑖𝑡𝑒,	𝑥5,	𝑦4⟩|2=	1
✓
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With	Barrier:
50% of	exiting	
electrons	are	white,	
50% are	black.

• To	measure	Color	at t4,	expand	|𝑘⟩ in	Color	basis:

|𝑘⟩ =	 ½ ½ {|𝑏𝑙𝑎𝑐𝑘⟩	+	|𝑤ℎ𝑖𝑡𝑒⟩}|𝑥5,	𝑦4⟩	+	 ½ ½ {|𝑏𝑙𝑎𝑐𝑘⟩	−	|𝑤ℎ𝑖𝑡𝑒⟩}|𝑥3,	𝑦1⟩

=	½|𝑏𝑙𝑎𝑐𝑘⟩|𝑥5,	𝑦4⟩	+	½|𝑏𝑙𝑎𝑐𝑘⟩|𝑥3,	𝑦1⟩	+	½|𝑤ℎ𝑖𝑡𝑒⟩|𝑥5,	𝑦4⟩	−	½|𝑤ℎ𝑖𝑡𝑒⟩}|𝑥3,	𝑦1⟩

• At t4,	the	electron's	state	is:			|𝑘⟩	=	 ½ {|ℎ𝑎𝑟𝑑⟩|𝑥5,	𝑦4⟩	+	|𝑠𝑜𝑓𝑡⟩|𝑥3,	𝑦1⟩}

V.	2-Path	Experiment	Again.

Color Hardness

𝑤ℎ𝑖𝑡𝑒

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑦3

𝑡2

𝑦4

𝑦2

𝑦1
𝑡1

𝑡3

𝑡3

𝑡4

𝑠𝑜𝑓𝑡

ℎ𝑎𝑟𝑑

• Pr(value	of 𝐶 is	𝑤ℎ𝑖𝑡𝑒 in	state |𝑘⟩)	=	|⟨𝑤ℎ𝑖𝑡𝑒,	𝑥5,	𝑦4|𝑘⟩|2+	|⟨𝑤ℎ𝑖𝑡𝑒,	𝑥3,	𝑦1|𝑘⟩|2

=	|½|2+	|½|2=	½
✓
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