05. Multiparticle Systems

1. 2-Particle Product Spaces

- 1. 2-Particle Product Spaces
- 2. Entangled States
- 3. Born Rule for 2-Particle States
- 4. 2-Particle Projection Postulate
- 5. 2-Path Experiment Again
- *Suppose*: Particle₁ and particle₂ are represented by vector spaces *V* and *W*.
- <u>Then</u>: The composite 2-particle system is represented by a *product vector space* $V \otimes W$.

Let *V* and *W* be *n*-dim and *m*-dim vector spaces. The **product vector space** $V \otimes W$ is an $(n \times m)$ -dim vector space with the following property:

For any $|v\rangle \in V$, $|w\rangle \in W$, one can form a vector $|\psi\rangle \in V \otimes W$ via the "tensor product" $|v\rangle \otimes |w\rangle$, which satisfies:

- (i) $(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle$
- (ii) $|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle$
- (iii) $\alpha(|v\rangle \otimes |w\rangle) = \alpha |v\rangle \otimes |w\rangle = |v\rangle \otimes \alpha |w\rangle$, for any scalar α .

Instead of " $|v\rangle \otimes |w\rangle$ ", we can alternatively write " $|v\rangle |w\rangle$ " or " $|vw\rangle$ ".

Further characteristics of the 2*-particle product space* $V \otimes W$

 $V \otimes W$ inherits an inner-product, bases, and operators from V and W:

- 1. An **inner-product** on $V \otimes W$ is defined by the following: For any $|\psi\rangle = |vw\rangle, |\phi\rangle = |tu\rangle \in V \otimes W$, with $|v\rangle, |t\rangle \in V$ and $|w\rangle, |u\rangle \in W$, $\langle \psi | \phi \rangle \equiv \langle v | t \rangle \langle w | u \rangle$
- 2. If $\{|v_1\rangle, |v_2\rangle, ..., |v_n\rangle$ and $\{|w_1\rangle, |w_2\rangle, ..., |w_m\rangle$ are bases for *V* and *W*, then a **basis** for $V \otimes W$ is given by

 $\{|v_1w_1\rangle, |v_1w_2\rangle, \dots, |v_1w_m\rangle, |v_2w_1\rangle, \dots, |v_nw_m\rangle\}$

- 3. Any vector $|\psi\rangle$ in $V \otimes W$ can be *expanded* in this basis: $|\psi\rangle = a_{11}|v_1w_1\rangle + a_{12}|v_1w_2\rangle + \dots + a_{21}|v_2w_1\rangle + \dots + a_{nm}|v_nw_m\rangle$
- 4. Let *A* and *B* be operators on *V* and *W* such that $A|v\rangle = a|v\rangle, B|w\rangle = b|w\rangle, \text{ where } |v\rangle \in V, |w\rangle \in W.$ Then there is an **operator** $A \otimes B$ on $V \otimes W$ such that $(A \otimes B)|vw\rangle = ab|vw\rangle$

Extension to multiparticle (multi-partite) systems

- A product vector space \mathcal{H} may be formed from the tensor product of more than two lower-dim vector spaces.
- A product vector space \mathcal{H} may admit more than one decomposition into lower-dim vector spaces.

<u>Ex</u>. Let \mathcal{H} be a 16-dim vector space. <u>Then</u>: One can always find 2-dim vector spaces V_1, V_2, V_3, V_4 such that $\mathcal{H} = V_1 \otimes V_2 \otimes V_3 \otimes V_4$ <u>And</u>: One can always find 4-dim vector spaces W_1, W_2 such that $\mathcal{H} = W_1 \otimes W_2$

- *Note*: A "factor" vector space must have dim > 1.

 <u>So</u>: As long as the dimension n of a vector space isn't a prime number, it will admit at least one decomposition into the tensor product of lower-dim vector spaces.

- And: How many it will admit depends on the *prime factorization* of n.

<u>Two-particle example</u>

- *Let*: *V*, *W* be the 2-dim spin state spaces for two electrons.
 - Combined 2-particle spin space is given by 4-dim $V \otimes W$.
- <u>Suppose</u>:

 $\{|hard\rangle_1, |soft\rangle_1\}$ is a basis for *V*. $\{|hard\rangle_2, |soft\rangle_2\}$ is a basis for *W*.

- <u>Then</u>: A basis for $V \otimes W$ is given by { $|hard\rangle_1 |hard\rangle_2$, $|hard\rangle_1 |soft\rangle_2$, $|soft\rangle_1 |hard\rangle_2$, $|soft\rangle_1 |soft\rangle_2$ }
- <u>And</u>: Any 2-particle state $|A\rangle$ in $V \otimes W$ can be expanded in this basis:

$$\begin{split} |A\rangle &= a_{11} |hard\rangle_1 |hard\rangle_2 + a_{12} |hard\rangle_1 |soft\rangle_2 \\ &+ a_{21} |soft\rangle_1 |hard\rangle_2 + a_{22} |soft\rangle_1 |soft\rangle_2 \end{split}$$

2. Entangled States

An **entangled state** in a product vector space \mathcal{H} with respect to a decomposition $\mathcal{H} = V_1 \otimes \cdots \otimes V_n$ is a vector $|\psi\rangle$ that *cannot* be written as a product of *n* terms,

 $|\psi\rangle = |v_1\rangle \otimes \cdots \otimes |v_n\rangle$, where $|v_i\rangle \in V_i$

Erwin Schrödinger (1887-1961)

- <u>What this means</u>: An entangled *n*-particle state cannot be written as a product of a particle₁ state, and a particle₂ state, and a particle₃ state, *etc*.
 - In an entangled n-particle state, the states of all n particles are "entangled with each other": they cannot be separated out.

<u>Two initial observations</u>

- 1. Nothing about this mathematical definition tells us what the notion of "entangled with each other" means physically.
- 2. Entanglement is a *relative* property!
 - A vector in H can be entangled with respect to one decomposition of H, but not entangled with respect to another decomposition of H.

Examples:

- Entangled: $|\Psi^+\rangle = \sqrt{\frac{1}{2}} \{|hard\rangle_1 |hard\rangle_2 + |soft\rangle_1 |soft\rangle_2 \}$
- Nonentangled (Separable):
 - $$\begin{split} |A\rangle &= \sqrt{\frac{1}{4}} \{|hard\rangle_{1} |hard\rangle_{2} + |hard\rangle_{1} |soft\rangle_{2} + |soft\rangle_{1} |hard\rangle_{2} + |soft\rangle_{1} |soft\rangle_{2} \} \\ &= \sqrt{\frac{1}{4}} \{|hard\rangle_{1} + |soft\rangle_{1} \} \{|hard\rangle_{2} + |soft\rangle_{2} \} \end{split}$$

 $|B\rangle = \sqrt{\frac{1}{2}} \{|hard\rangle_1 |hard\rangle_2 + |soft\rangle_1 |hard\rangle_2 \} = \sqrt{\frac{1}{2}} \{|hard\rangle_1 + |soft\rangle_1 \} |hard\rangle_2$

 $|C\rangle = |hard\rangle_1 |hard\rangle_2$

<u>According to the Eigenvalue-Eigenvector Rule</u>:

- In states |Ψ⁺⟩ and |A⟩, both electrons have no determinate Hardness value, but the combined system *as a whole* does have a determinate value of some other property.*
- In state |B>, electron₁ has no determinate Hardness value, but electron₂ does (*i.e.*, hard), and the combined system as a whole has a determinate value of some other property.*
- In state |C>, both electrons have determinate Hardness values, and the combined system as a whole has a determinate value of some other property.*

**General fact*: Any vector is the eigenvector of some operator.

- <u>So:</u> According to the EE Rule, in any 2-particle state, either particle may or may not have well-defined properties.
- <u>But:</u> According to EE, the combined 2-particle system as a whole will always have well-defined properties!
- <u>Why?</u> Because, again, any vector in a vector space (including $V \otimes W$) is an eigenvector of some (Hermitian) operator on that space.
 - So there exist 2-particle operators with eigenvectors $|\Psi^+\rangle$, $|A\rangle$, $|B\rangle$ and $|C\rangle$ that represent properties of the 2-particle system *as a whole*.

2-Particle "Holistic" Properties

Suppose:
$$|Q\rangle = \sqrt{\frac{1}{2}} \{|5\rangle_1 |7\rangle_2 + |9\rangle_1 |11\rangle_2 \}$$
 $|5\rangle_1$ is an eigenvector of
the position operator $X^{(1)}$ $|11\rangle_2$ is an eigenvector of
the position operator $X^{(2)}$

- If we only want to measure P1's position (and not P2's), we must use the 2-particle operator $X^{(1)} \otimes I^{(2)}$, where $I^{(2)}$ = identity operator on W.
- If we only want to measure P2's position (and not P1's), we must use the 2-particle operator $I^{(1)} \otimes X^{(2)}$, where $I^{(1)} =$ identity operator on V.
- The *difference in the positions* of P1 and P2 is a property of the 2-particle system represented by the 2-particle operator $(I^{(1)} \otimes X^{(2)}) (X^{(1)} \otimes I^{(2)})$.

$$\begin{array}{ll} \underline{Claim}: & |Q\rangle \text{ is an eigenstate of } (I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)}) \\ & \text{but } not \text{ of } X^{(1)} \otimes I^{(2)} \text{ or } I^{(1)} \otimes X^{(2)}! \end{array}$$

 <u>So</u>: According to the EE Rule, P1 and P2 have no definite position in the 2-particle state |Q>, but the difference in their positions *is* a definite property of the 2-particle state as a whole! $\underline{Claim}: |Q\rangle \text{ is an eigenstate of } (I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)})$ but *not* of $X^{(1)} \otimes I^{(2)}$ or $I^{(1)} \otimes X^{(2)}!$

<u>Check</u>:

(a) $|Q\rangle$ is an eigenstate of $(I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)})$:

 $\{(I^{(1)} \otimes X^{(2)}) - (X^{(1)} \otimes I^{(2)})\}|Q\rangle = (I^{(1)} \otimes X^{(2)})|Q\rangle - (X^{(1)} \otimes I^{(2)})|Q\rangle$

 $= (I^{(1)} \otimes X^{(2)})\sqrt{\frac{1}{2}} \{|5\rangle_1 |7\rangle_2 + |9\rangle_1 |11\rangle_2 \} - (X^{(1)} \otimes I^{(2)})\sqrt{\frac{1}{2}} \{|5\rangle_1 |7\rangle_2 + |9\rangle_1 |11\rangle_2 \}$

 $=\sqrt{\frac{1}{2}} \{7|5\rangle_1|7\rangle_2 + 11|9\rangle_1|11\rangle_2\} - \sqrt{\frac{1}{2}} \{5|5\rangle_1|7\rangle_2 + 9|9\rangle_1|11\rangle_2\}$

$$=\sqrt{\frac{1}{2}}\left\{2|5\rangle_{1}|7\rangle_{2}+2|9\rangle_{1}|11\rangle_{2}\right\}=2|Q\rangle$$

In the state represented by $|Q\rangle$, the value of the difference-in-position operator is 2; i.e., P1 and P2 differ in position by 2.

(b) $|Q\rangle$ is not an eigenstate of $X^{(1)} \otimes I^{(2)}$ or $I^{(1)} \otimes X^{(2)}$:

$$\begin{aligned} X^{(1)} \otimes I^{(2)} |Q\rangle &= (X^{(1)} \otimes I^{(2)}) \sqrt{\frac{1}{2}} \{|5\rangle_1 |7\rangle_2 + |9\rangle_1 |11\rangle_2 \} \\ &= \sqrt{\frac{1}{2}} \{5|5\rangle_1 |7\rangle_2 + 9|9\rangle_1 |11\rangle_2 \} \\ &\neq \lambda |Q\rangle, \text{ for any value of } \lambda. \end{aligned}$$

• Similarly for $I^{(1)} \otimes X^{(2)}$.

3. Born Rule for 2-Particle States

Suppose a 2-particle system is in a state represented by |k⟩, and suppose we measure properties of *both* P1 and P2 represented by operators A⁽¹⁾ and B⁽²⁾.
 <u>Then</u>: The probability that the value of A⁽¹⁾ is a_i and the value of B⁽²⁾ is b_i is:

 $\Pr(\text{value of } A^{(1)} \text{ is } a_i \text{ and value of } B^{(2)} \text{ is } b_i \text{ in state } |k\rangle) \equiv |\langle a_i b_i |k\rangle|^2$

where $|a_i b_i\rangle$ is an eigenvector of the 2-particle operator $A^{(1)} \otimes B^{(2)}$

2. Suppose a 2-particle system is in a state represented by |k⟩, and *only* the property of P1, represented by A⁽¹⁾, is measured.
<u>Then</u>: The probability that the value of A⁽¹⁾ is a_i is:

 $\Pr(\text{value of } A^{(1)} \text{ is } a_i \text{ in state } |k\rangle) \equiv |\langle a_i \ell_1 | k \rangle|^2 + \dots + |\langle a_i \ell_N | k \rangle|^2$

where $|a_i \ell_j\rangle$, j = 1, ..., N, are eigenvectors of the 2-particle operator $A^{(1)} \otimes L^{(2)}$, for any P2 property represented by $L^{(2)}$

Motivation (Law of Total Probability): The probability that the value of $A^{(1)}$ is a_i is equal to the sum of the probabilities of *all* the different ways in which the value of $A^{(1)}$ could be a_i .

4. 2-Particle Projection Postulate

- Suppose: A 2-particle system is in a state represented by |D⟩, and a property of P1 represented by A⁽¹⁾ is measured with the resulting value a_i.
- <u>*Then*</u>: $|D\rangle$ collapses to the state given by the following:
 - (a) Expand $|D\rangle$ in eigenvectors of the 2-particle operator $A^{(1)} \otimes L^{(2)}$, for *any* arbitrary operator $L^{(2)}$:

$$|D\rangle = d_{11}|a_1\ell_1\rangle + \dots + d_{1N}|a_1\ell_N\rangle + d_{21}|a_2\ell_1\rangle + \dots + d_{NN}|a_N\ell_N\rangle$$

(b) Throw out all terms other than ones with a_i . Then divide by an appropriate normalization term Λ to make sure the result is a vector with unit length:

$$|D\rangle \xrightarrow[collapse]{collapse} \frac{d_{i1}|a_i\ell_1\rangle + d_{i2}|a_i\ell_2\rangle + \cdots}{\Lambda}$$

Example 1 (collapse of separable state)

- <u>Suppose</u>: $|D\rangle = |q_3\rangle |m_4\rangle$ is an eigenvector of $Q^{(1)} \otimes M^{(2)}$.
- <u>Now</u>: Suppose the property represented by $A^{(1)}$ is measured with the resulting value a_5 .

- What happens to |D)?

- *<u>First</u>*: Expand $|D\rangle$ in the eigenvectors of $A^{(1)} \otimes L^{(2)}$, for *any* arbitrary $L^{(2)}$.
- <u>Note</u>: The P2 part of $|D\rangle$ already is an eigenvector of $M^{(2)}$.
- <u>So</u>: Use eigenvectors of $A^{(1)} \otimes M^{(2)}$ for simplicity.

$$|D\rangle = |q_3 m_4\rangle$$

= $d_1 |a_1 m_4\rangle + d_2 |a_2 m_4\rangle + \dots + d_N |a_N m_4\rangle$

- <u>Next</u>: Throw out all terms other than ones with a_5 , and normalize the result.
- This just leaves $d_5|a_5m_4\rangle$.
- To normalize it, divide by its length, which is just d_5 .

• So:

$$|D\rangle \longrightarrow |a_5\rangle |m_4\rangle$$

collapse $|a_5\rangle |m_4\rangle$ No change to state of P2.

Example 2 (collapse of entangled state)

- <u>Suppose</u>: $|D\rangle = \sqrt{\frac{1}{2}} \{ |a_4 \ell_7\rangle + |a_5 \ell_{24}\rangle \}$
- <u>Now</u>: Suppose the property represented by $A^{(1)}$ is measured with the resulting value a_5 .

- What happens to $|D\rangle$?

<u>Note</u>: The P1 part of $|D\rangle$ is already in an eigenvector basis of $A^{(1)}$. <u>So</u>: Simply throw out all terms in $|D\rangle$ that don't contain a_5 . <u>Result</u>: $|D\rangle = |a_5 \ell_{24}\rangle$

• So:

$$|D\rangle \longrightarrow |a_5\rangle |\ell_{24}\rangle$$
The state of the unmeasured P2 changes!

5. 2-Path Experiment Again Without Barrier: y_4 t_3 t_4 100% of exiting y_3 electrons are white. t_2 hard y_2 t_3 soft white y_1 t_1 Hardness Color t_2 x_1 x_2 x_3 $x_4 \quad x_5$ At t_1 , the electron's state is: $|white\rangle|x_1, y_1\rangle = \sqrt{\frac{1}{2}} \{|hard\rangle|x_1, y_1\rangle - |soft\rangle|x_1, y_1\rangle\}$ Definite Definite color state position state

- One particle with two properties in a "two-property" state.
- Represented by product vector in a product vector space.
- Just like a "2-particle" product vector for two particles, each
- with a single property.

• At t_1 , the electron's state is: $|white\rangle|x_1, y_1\rangle = \sqrt{\frac{1}{2}} \{|hard\rangle|x_1, y_1\rangle - |soft\rangle|x_1, y_1\rangle\}$

• At t_2 , the electron's state is: $\sqrt{\frac{1}{2}} \{ |hard\rangle |x_2, y_2\rangle - |soft\rangle |x_3, y_1\rangle \}$

entangled states!

- At t_3 , the electron's state is: $\sqrt{\frac{1}{2}} \{ |hard\rangle |x_3, y_3\rangle |soft\rangle |x_4, y_2\rangle \}$
- At t_4 , the electron's state is: $\sqrt{\frac{1}{2}} \{ |hard\rangle |x_5, y_4\rangle |soft\rangle |x_5, y_4\rangle \} = |white\rangle |x_5, y_4\rangle$
- Pr(value of C is white in state at t_4) = $|\langle white, x_5, y_4 | white, x_5, y_4 \rangle|^2 \stackrel{\checkmark}{=} 1$

• At t_4 , the electron's state is: $|k\rangle = \sqrt{\frac{1}{2}} \{|hard\rangle |x_5, y_4\rangle - |soft\rangle |x_3, y_1\rangle \}$

• To measure Color at t_4 , expand $|k\rangle$ in Color basis:

 $\begin{aligned} |k\rangle &= \left(\sqrt{\frac{1}{2}}\right)\left(\sqrt{\frac{1}{2}}\right)\{|black\rangle + |white\rangle\}|x_{5}, y_{4}\rangle - \left(\sqrt{\frac{1}{2}}\right)\left(\sqrt{\frac{1}{2}}\right)\{|black\rangle - |white\rangle\}|x_{3}, y_{1}\rangle \\ &= \frac{1}{2}|black\rangle|x_{5}, y_{4}\rangle - \frac{1}{2}|black\rangle|x_{3}, y_{1}\rangle + \frac{1}{2}|white\rangle|x_{5}, y_{4}\rangle + \frac{1}{2}|white\rangle\}|x_{3}, y_{1}\rangle \end{aligned}$

• Pr(value of C is white in state $|k\rangle$) = $|\langle white, x_5, y_4 | k \rangle|^2 + |\langle white, x_3, y_1 | k \rangle|^2$ = $|\frac{1}{2}|^2 + |\frac{1}{2}|^2 \stackrel{\checkmark}{=} \frac{1}{2}$