05. Multiparticle Systems

I. 2-Particle Product Spaces

- Suppose: Particle $_{1}$ and particle ${ }_{2}$ are represented by vector spaces V and W.
- Then: The composite 2-particle system is represented by a product vector space $V \otimes W$.

Let V and W be n-dim and m-dim vector spaces. The product vector space $V \otimes W$ is an $(n \times m)$-dim vector space with the following property:
For any $|v\rangle \in V,|w\rangle \in W$, one can form a vector $|\psi\rangle \in V \otimes W$ via the "tensor product" $|v\rangle \otimes|w\rangle$, which satisfies:
(i) $\quad\left(\left|v_{1}\right\rangle+\left|v_{2}\right\rangle\right) \otimes|w\rangle=\left|v_{1}\right\rangle \otimes|w\rangle+\left|v_{2}\right\rangle \otimes|w\rangle$
(ii) $\quad|v\rangle \otimes\left(\left|w_{1}\right\rangle+\left|w_{2}\right\rangle\right)=|v\rangle \otimes\left|w_{1}\right\rangle+|v\rangle \otimes\left|w_{2}\right\rangle$
(iii) $\alpha(|v\rangle \otimes|w\rangle)=\alpha|v\rangle \otimes|w\rangle=|v\rangle \otimes \alpha|w\rangle$, for any scalar α.

$V \otimes W$ inherits an inner-product, bases, and operators from V and W :

1. An inner-product on $V \otimes W$ is defined by the following: For any $|\psi\rangle=|v w\rangle,|\phi\rangle=|t u\rangle \in V \otimes W$, with $|v\rangle,|t\rangle \in V$ and $|w\rangle,|u\rangle \in W$, $\langle\psi \mid \phi\rangle \equiv\langle v \mid t\rangle\langle w \mid u\rangle$
2. If $\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$ and $\left\{\left|w_{1}\right\rangle,\left|w_{2}\right\rangle, \ldots,\left|w_{m}\right\rangle\right\}$ are bases for V and W, then a basis for $V \otimes W$ is given by

$$
\left\{\left|v_{1} w_{1}\right\rangle,\left|v_{1} w_{2}\right\rangle, \ldots,\left|v_{1} w_{m}\right\rangle,\left|v_{2} w_{1}\right\rangle, \ldots,\left|v_{n} w_{m}\right\rangle\right\}
$$

3. Any vector $|\psi\rangle$ in $V \otimes W$ can be expanded in this basis:

$$
|\psi\rangle=a_{11}\left|v_{1} w_{1}\right\rangle+a_{12}\left|v_{1} w_{2}\right\rangle+\cdots+a_{21}\left|v_{2} w_{1}\right\rangle+\cdots+a_{n m}\left|v_{n} w_{m}\right\rangle
$$

4. Let A and B be operators on V and W such that
$A|v\rangle=a|v\rangle, B|w\rangle=b|w\rangle, \quad$ where $|v\rangle \in V,|w\rangle \in W$.
Then there is an operator $A \otimes B$ on $V \otimes W$ such that
$(A \otimes B)|v w\rangle=a b|v w\rangle$

Extension to multiparticle (multi-partite) systems

- A product vector space \mathcal{H} may be formed from the tensor product of more than two lower-dim vector spaces.
- A product vector space \mathcal{H} may admit more than one decomposition into lower-dim vector spaces.
$\underline{\text { Ex }}$. Let \mathcal{H} be a 16 -dim vector space.
Then: One can always find 2-dim vector spaces $V_{1}, V_{2}, V_{3}, V_{4}$ such that

$$
\mathcal{H}=V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{4}
$$

And: One can always find 4-dim vector spaces W_{1}, W_{2} such that

$$
\mathcal{H}=W_{1} \otimes W_{2}
$$

- Note: A "factor" vector space must have dim > 1 .
- So: As long as the dimension n of a vector space isn't a prime number, it will admit at least one decomposition into the tensor product of lower-dim vector spaces.

And: How many it will admit depends on the prime factorization of n.

Two-particle example

- Let: V, W be the 2-dim spin state spaces for two electrons.
- Combined 2-particle spin space is given by 4-dim $V \otimes W$.
- Suppose:
$\{\mid \text { hard }\rangle_{1}, \mid$ soft $\left.\rangle_{1}\right\}$ is a basis for V.
$\left.\left\{|\operatorname{hard}\rangle_{2}, \mid \text { soft }\right\rangle_{2}\right\}$ is a basis for W.
- Then: A basis for $V \otimes W$ is given by $\{\mid \text { hard }\rangle_{1} \mid$ hard \rangle_{2}, \mid hard $\rangle_{1} \mid$ soft \rangle_{2}, \mid soft $\rangle_{1} \mid$ hard \rangle_{2}, \mid soft $\rangle_{1} \mid$ soft $\left.\rangle_{2}\right\}$
- And: Any 2-particle state $|A\rangle$ in $V \otimes W$ can be expanded in this basis:

$$
\begin{aligned}
&\left.\left.\left.\left.|A\rangle=a_{11} \mid \text { hard }\right\rangle_{1} \mid \text { hard }\right\rangle_{2}+a_{12} \mid \text { hard }\right\rangle_{1} \mid \text { soft }\right\rangle_{2} \\
&\left.\left.\left.\left.+a_{21} \mid \text { soft }\right\rangle_{1} \mid \text { hard }\right\rangle_{2}+a_{22} \mid \text { soft }\right\rangle_{1} \mid \text { sof } t\right\rangle_{2}
\end{aligned}
$$

II. Entangled States

An entangled state in a product vector space \mathcal{H} with

 respect to a decomposition $\mathcal{H}=V_{1} \otimes \cdots \otimes V_{n}$ is a vector $|\psi\rangle$ that cannot be written as a product of n terms,$$
|\psi\rangle=\left|v_{1}\right\rangle \otimes \cdots \otimes\left|v_{n}\right\rangle, \quad \text { where }\left|v_{i}\right\rangle \in V_{i}
$$

Erwin Schrödinger (1887-1961)

- What this means: An entangled n-particle state cannot be written as a product of a particle ${ }_{1}$ state, and a particle e_{2} state, and a particle ${ }_{3}$ state, etc.
- In an entangled n-particle state, the states of all n particles are "entangled with each other": they cannot be separated out.

Two initial observations

1. Nothing about this mathematical definition tells us what the notion of "entangled with each other" means physically.
2. Entanglement is a relative property!

- A vector in \mathcal{H} can be entangled with respect to one decomposition of \mathcal{H}, but not entangled with respect to another decomposition of \mathcal{H}.

Examples:

- Entangled: $\left|\Psi^{+}\right\rangle=\sqrt{1 / 2}\{\mid \text { hard }\rangle_{1} \mid$ hard $\rangle_{2}+\mid$ soft $\rangle_{1} \mid$ soft $\left.\rangle_{2}\right\}$
- Nonentangled (Separable):

$$
\begin{aligned}
|A\rangle & \left.\left.\left.\left.\left.\left.\left.\left.=\sqrt{1 / 4}\{\mid \text { hard }\rangle_{1} \mid \text { hard }\right\rangle_{2}+\mid \text { hard }\right\rangle_{1} \mid \text { soft }\right\rangle_{2}+\mid \text { soft }\right\rangle_{1} \mid \text { hard }\right\rangle_{2}+\mid \text { soft }\right\rangle_{1} \mid \text { soft }\right\rangle_{2}\right\} \\
& \left.\left.\left.\left.=\sqrt{1 / 4}\{\mid \text { hard }\rangle_{1}+\mid \text { soft }\right\rangle_{1}\right\}\{\mid \text { hard }\rangle_{2}+\mid \text { soft }\right\rangle_{2}\right\} \\
|B\rangle & \left.\left.\left.\left.\left.\left.\left.=\sqrt{1 / 2}\{\mid \text { hard }\rangle_{1} \mid \text { hard }\right\rangle_{2}+\mid \text { soft }\right\rangle_{1} \mid \text { hard }\right\rangle_{2}\right\}=\sqrt{1 / 2}\{\mid \text { hard }\rangle_{1}+\mid \text { soft }\right\rangle_{1}\right\} \mid \text { hard }\right\rangle_{2} \\
|C\rangle & \left.=\mid \text { hard }\rangle_{1} \mid \text { hard }\right\rangle_{2}
\end{aligned}
$$

According to the Eigenvalue-Eigenvector Rule:

- In states $\left|\Psi^{+}\right\rangle$and $|A\rangle$, both electrons have no determinate Hardness value, but the combined system as a whole does have a determinate value of some other property.*
- In state $|B\rangle$, electron ${ }_{1}$ has no determinate Hardness value, but electron ${ }_{2}$ does (i.e., hard), and the combined system as a whole has a determinate value of some other property.*
- In state $|C\rangle$, both electrons have determinate Hardness values, and the combined system as a whole has a determinate value of some other property.*
- So: According to the EE Rule, in any 2-particle state, either particle may or may not have well-defined properties.
- But: According to EE, the combined 2-particle system as a whole will always have well-defined properties!
- Why? Because, again, any vector in a vector space (including $V \otimes W$) is an eigenvector of some (Hermitian) operator on that space.
- So there exist 2-particle operators with eigenvectors $\left|\Psi{ }^{+}\right\rangle,|A\rangle,|B\rangle$ and $|C\rangle$ that represent properties of the 2-particle system as a whole.

2-Particle "Holistic" Properties

Suppose: $\quad|Q\rangle=\sqrt{1 / 2}\left\{|5\rangle_{1}|7\rangle_{2}+|9\rangle_{1}|11\rangle_{2}\right\}$

- If we only want to measure P1's position (and not P2's), we must use the 2particle operator $X^{(1)} \otimes I^{(2)}$, where $I^{(2)}=$ identity operator on W.
- If we only want to measure P2's position (and not P1's), we must use the 2particle operator $I^{(1)} \otimes X^{(2)}$, where $I^{(1)}=$ identity operator on V.
- The difference in the positions of P1 and P2 is a property of the 2-particle system represented by the 2-particle operator $\left(I^{(1)} \otimes X^{(2)}\right)-\left(X^{(1)} \otimes I^{(2)}\right)$.

```
Claim: }|Q\rangle\mathrm{ is an eigenstate of (I(1)}\otimes\mp@subsup{X}{}{(2)})-(\mp@subsup{X}{}{(1)}\otimes\mp@subsup{I}{}{(2)}
    but not of }\mp@subsup{X}{}{(1)}\otimes\mp@subsup{I}{}{(2)}\mathrm{ or I I')}\otimes\mp@subsup{X}{}{(2)!
```

- So: According to the EE Rule, P1 and P2 have no definite position in the 2-particle state $|Q\rangle$, but the difference in their positions is a definite property of the 2-particle state as a whole!

Claim: $|Q\rangle$ is an eigenstate of $\left(I^{(1)} \otimes X^{(2)}\right)-\left(X^{(1)} \otimes I^{(2)}\right)$ but not of $X^{(1)} \otimes I^{(2)}$ or $I^{(1)} \otimes X^{(2)}$!

Check:

(a) $|Q\rangle$ is an eigenstate of $\left(I^{(1)} \otimes X^{(2)}\right)-\left(X^{(1)} \otimes I^{(2)}\right)$:

$$
\begin{aligned}
\left\{\left(I^{(1)} \otimes X^{(2)}\right)\right. & \left.-\left(X^{(1)} \otimes I^{(2)}\right)\right\}|Q\rangle=\left(I^{(1)} \otimes X^{(2)}\right)|Q\rangle-\left(X^{(1)} \otimes I^{(2)}\right)|Q\rangle \\
= & \left(I^{(1)} \otimes X^{(2)}\right) \sqrt{1 / 2}\left\{|5\rangle_{1}|7\rangle_{2}+|9\rangle_{1}|11\rangle_{2}\right\}-\left(X^{(1)} \otimes I^{(2)}\right) \sqrt{1 / 2}\left\{|5\rangle_{1}|7\rangle_{2}+|9\rangle_{1}|11\rangle_{2}\right\} \\
= & \sqrt{1 / 2}\left\{7|5\rangle_{1}|7\rangle_{2}+11|9\rangle_{1}|11\rangle_{2}\right\}-\sqrt{1 / 2}\left\{5|5\rangle_{1}|7\rangle_{2}+9|9\rangle_{1}|11\rangle_{2}\right\} \\
= & \sqrt{1 / 2}\left\{2|5\rangle_{1}|7\rangle_{2}+2|9\rangle_{1}|11\rangle_{2}\right\}=2|Q\rangle \leftarrow \begin{array}{l}
\text { In the state represented by }|Q\rangle, \text { the } \\
\text { value of the difference-in-position } \\
\text { operato is } 2 ; \text { i.e., } \mathrm{P} 1 \text { and } \mathrm{P} 2 \text { differ in } \\
\text { position by } 2 .
\end{array}
\end{aligned}
$$

(b) $|Q\rangle$ is not an eigenstate of $X^{(1)} \otimes I^{(2)}$ or $I^{(1)} \otimes X^{(2)}$:

$$
\begin{aligned}
X^{(1)} \otimes I^{(2)}|Q\rangle & =\left(X^{(1)} \otimes I^{(2)}\right) \sqrt{1 / 2}\left\{|5\rangle_{1}|7\rangle_{2}+|9\rangle_{1}|11\rangle_{2}\right\} \\
& =\sqrt{1 / 2}\left\{5|5\rangle_{1}|7\rangle_{2}+9|9\rangle_{1}|11\rangle_{2}\right\} \\
& \neq \lambda|Q\rangle, \text { for any value of } \lambda .
\end{aligned}
$$

- Similarly for $I^{(1)} \otimes X^{(2)}$.

III. Born Rule for 2-Particle States

1. Suppose a 2-particle system is in a state represented by $|k\rangle$, and suppose we measure properties of both P1 and P2 represented by operators $A^{(1)}$ and $B^{(2)}$. Then: The probability that the value of $A^{(1)}$ is a_{i} and the value of $B^{(2)}$ is b_{i} is:
$\operatorname{Pr}\left(\right.$ value of $A^{(1)}$ is a_{i} and value of $B^{(2)}$ is b_{i} in state $\left.|k\rangle\right) \equiv\left|\left\langle a_{i} b_{i} \mid k\right\rangle\right|^{2}$
where $\left|a_{i} b_{i}\right\rangle$ is an eigenvector of the 2-particle operator $A^{(1)} \otimes B^{(2)}$
2. Suppose a 2-particle system is in a state represented by $|k\rangle$, and only the property of P 1 , represented by $A^{(1)}$, is measured.
Then: The probability that the value of $A^{(1)}$ is a_{i} is:
$\operatorname{Pr}\left(\right.$ value of $A^{(1)}$ is a_{i} in state $\left.|k\rangle\right) \equiv\left|\left\langle a_{i} \ell_{1} \mid k\right\rangle\right|^{2}+\cdots+\left|\left\langle a_{i} \ell_{N} \mid k\right\rangle\right|^{2}$
where $\left|a_{i} \ell_{j}\right\rangle, j=1, \ldots, N$, are eigenvectors of the 2-particle operator $A^{(1)} \otimes L^{(2)}$, for any P 2 property represented by $L^{(2)}$

> Motivation (Law of Total Probability): The probability that the value of $A^{(1)}$ is a_{i} is equal to the sum of the probabilities of all the different ways in which the value of $A^{(1)}$ could be a_{i}.

IV. 2-Particle Projection Postulate

- Suppose: A 2-particle system is in a state represented by $|D\rangle$, and a property of P1 represented by $A^{(1)}$ is measured with the resulting value a_{i}.
- Then: $|D\rangle$ collapses to the state given by the following:
(a) Expand $|D\rangle$ in eigenvectors of the 2-particle operator $A^{(1)} \otimes L^{(2)}$, for any arbitrary operator $L^{(2)}$:

$$
|D\rangle=d_{11}\left|a_{1} \ell_{1}\right\rangle+\cdots+d_{1 N}\left|a_{1} \ell_{N}\right\rangle+d_{21}\left|a_{2} \ell_{1}\right\rangle+\cdots+d_{N N}\left|a_{N} \ell_{N}\right\rangle
$$

(b) Throw out all terms other than ones with a_{i}. Then divide by an appropriate normalization term Λ to make sure the result is a vector with unit length:

$$
|D\rangle \xrightarrow[\text { collapse }]{ } \frac{d_{i 1}\left|a_{i} \ell_{1}\right\rangle+d_{i 2}\left|a_{i} \ell_{2}\right\rangle+\cdots}{\Lambda}
$$

Example 1 (collapse of separable state)

- Suppose: $|D\rangle=\left|q_{3}\right\rangle\left|m_{4}\right\rangle$ is an eigenvector of $Q^{(1)} \otimes M^{(2)}$.
- Now: Suppose the property represented by $A^{(1)}$ is measured with the resulting value a_{5}.
- What happens to $|D\rangle$?
- First: Expand $|D\rangle$ in the eigenvectors of $A^{(1)} \otimes L^{(2)}$, for any arbitrary $L^{(2)}$.
- Note: The P2 part of $|D\rangle$ already is an eigenvector of $M^{(2)}$.
- So: Use eigenvectors of $A^{(1)} \otimes M^{(2)}$ for simplicity.

$$
\begin{aligned}
|D\rangle & =\left|q_{3} m_{4}\right\rangle \\
& =d_{1}\left|a_{1} m_{4}\right\rangle+d_{2}\left|a_{2} m_{4}\right\rangle+\cdots+d_{N}\left|a_{N} m_{4}\right\rangle
\end{aligned}
$$

- Next: Throw out all terms other than ones with a_{5}, and normalize the result. - This just leaves $d_{5}\left|a_{5} m_{4}\right\rangle$.
- To normalize it, divide by its length, which is just d_{5}.
- So:

$$
|D\rangle \xrightarrow[\text { collapse }]{ }\left|a_{5}\right\rangle\left|m_{4}\right\rangle
$$

$\sqrt{ } \sqrt{ }$ No change to state of P2.

Example 2 (collapse of entangled state)

- Suppose: $|D\rangle=\sqrt{1 / 2}\left\{\left|a_{4} \ell_{7}\right\rangle+\left|a_{5} \ell_{24}\right\rangle\right\}$
- Now: Suppose the property represented by $A^{(1)}$ is measured with the resulting value a_{5}.
- What happens to $|D\rangle$? Note: The P1 part of $|D\rangle$ is already in an eigenvector basis of $A^{(1)}$. So: Simply throw out all terms in $|D\rangle$ that don't contain a_{5}. Result: $|D\rangle=\left|a_{5} \ell_{24}\right\rangle$
- So:

$$
|D\rangle \xrightarrow[\text { collapse }]{ }\left|a_{5}\right\rangle\left|\ell_{24}\right\rangle
$$

V. 2-Path Experiment Again.

Without Barrier:---

- At t_{1}, the electron's state is: \mid white $\rangle\left|x_{1}, y_{1}\right\rangle=\sqrt{1 / 2}\{\mid$ hard $\rangle\left|x_{1}, y_{1}\right\rangle+\mid$ soft $\left.\rangle\left|x_{1}, y_{1}\right\rangle\right\}$

Definite
color state

Definite
position state

- One particle with two properties in a "two-property" state.
- Represented by product vector in a product vector space.
- Just like a "2-particle" product vector for two particles, each with a single property.

V. 2-Path Experiment Again.

- At t_{1}, the electron's state is: \mid white $\rangle\left|x_{1}, y_{1}\right\rangle=\sqrt{1 / 2}\{\mid$ hard $\rangle\left|x_{1}, y_{1}\right\rangle+\mid$ soft $\left.\rangle\left|x_{1}, y_{1}\right\rangle\right\}$
- At t_{2}, the electron's state is: $\sqrt{1 / 2}\left\{|\operatorname{hard}\rangle\left|x_{2}, y_{2}\right\rangle+|\operatorname{sof} t\rangle\left|x_{3}, y_{1}\right\rangle\right\}$
- At t_{3}, the electron's state is: $\sqrt{1 / 2}\left\{|h a r d\rangle\left|x_{3}, y_{3}\right\rangle+|s o f t\rangle\left|x_{4}, y_{2}\right\rangle\right\}$
- At t_{4}, the electron's state is: $\sqrt{1 / 2}\{\mid$ hard $\rangle\left|x_{5}, y_{4}\right\rangle+\mid$ soft $\left.\rangle\left|x_{5}, y_{4}\right\rangle\right\}=\mid$ white $\rangle\left|x_{5}, y_{4}\right\rangle$
- $\operatorname{Pr}\left(\right.$ value of C is white in state at $\left.t_{4}\right)=\mid\left\langle\right.$ white, $\left.x_{5}, y_{4}\right|$ white, $\left.x_{5}, y_{4}\right\rangle\left.\right|^{2} \stackrel{\vee}{=} 1$

V. 2-Path Experiment Again.

With Barrier:
50% of exiting
electrons are white,
50% are black.

- At t_{4}, the electron's state is: $|k\rangle=\sqrt{1 / 2}\left\{|h a r d\rangle\left|x_{5}, y_{4}\right\rangle+|s o f t\rangle\left|x_{3}, y_{1}\right\rangle\right\}$
- To measure Color at t_{4}, expand $|k\rangle$ in Color basis:

$$
\begin{aligned}
|k\rangle & \left.\left.=(\sqrt{1 / 2})(\sqrt{1 / 2})\{\mid \text { black }\rangle+\mid \text { white }\rangle\}\left|x_{5}, y_{4}\right\rangle+(\sqrt{1 / 2})(\sqrt{1 / 2})\{\mid \text { black }\rangle-\mid \text { white }\right\rangle\right\}\left|x_{3}, y_{1}\right\rangle \\
& \left.\left.\left.\left.=1 / 2 \mid \text { black }\rangle\left|x_{5}, y_{4}\right\rangle+1 / 2 \mid \text { black }\right\rangle\left|x_{3}, y_{1}\right\rangle+1 / 2 \mid \text { white }\right\rangle\left|x_{5}, y_{4}\right\rangle-1 / 2 \mid \text { white }\right\rangle\right\}\left|x_{3}, y_{1}\right\rangle
\end{aligned}
$$

- $\operatorname{Pr}($ value of C is white in state $|k\rangle)=\mid\left.\left\langle\right.$ white, $\left.x_{5}, y_{4} \mid k\right\rangle\right|^{2}+\mid\left.\left\langle\right.$ white, $\left.x_{3}, y_{1} \mid k\right\rangle\right|^{2}$

$$
=|1 / 2|^{2}+|1 / 2|^{2} \stackrel{V}{=} 1 / 2
$$

