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e Suppose: Particle; and particle, are represented by vector spaces V and W,

e Then: The composite 2-particle system is represented by a product vector space
Vew.

Let V and W be n-dim and m-dim vector spaces. The product vector space
V®W is an (n X m)-dim vector space with the following property:

For any |v) € V, |w) € W, one can form a vector |Y)) € V@ W via the "tensor
product” |v) ® |w), which satisfies:

@) (v + [v2)) B|w) = |[v)) @ |w) + |v,) @ |w)

(i) [v)®(lwy) + [wy)) =) ®|wy) + [v) B |w,)

(iii) a(|v)®|w)) = a|v)® |w) = |v) @ a|w), for any scalar a. 7




Further characteristics of the 2-particle product space V @ W

V' @ W inherits an inner-product, bases, and operators from V and W:

1. Aninner-producton V® W is defined by the following: For any
|W) = |vw), @) = |tu) € VW, with |v), [t) € V and |w), |u) € W,

(Ylop) = (v|t)(w|u)
2. If{|vy), |vy) ..., |v)} and {|wy), |Wy),.., |W,,)} are bases for V and W, then
a basis for IV @ W is given by

Uvawa), [0aW2), o [V1W), [V,W1), oy [V, W)}

3. Any vector |[Y) in V@ W can be expanded in this basis:

[Y) = ay|vwy) + agp|lviwy) + - + ay|vwy) + - + a,|lvws)

4. Let A and B be operators on VV and W such that
A|v) = a|v), B|w) = b|lw), where |v)EV,|Ww)eEW.
Then there is an operator AQ B on V@ W such that
(AQ B)|vw) = ab|vw)




Extension to multiparticle (multi-partite) systems

e A product vector space H may be formed from the tensor product of more
than two lower-dim vector spaces.

e A product vector space H may admit more than one decomposition into
lower-dim vector spaces.

Ex. Let H be a 16-dim vector space. .

Then: One can always find 2-dim vector spaces V', V,, V5, VV, such that
H=VQV,QV;QV,

And: One can always find 4-dim vector spaces W,, W, such that
H=W,QW,

i
- So: Aslong as the dimension n of a vector space isn't a prime number, it will |
admit at least one decomposition into the tensor product of lower-dim :
vector spaces. i
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Two-particle example

e Let: V, W be the 2-dim spin state spaces for two electrons.
- Combined 2-particle spin space is given by 4-dimV QW.

e Suppose:
{|hard), |soft),} is a basis for V.

{|hard),, |soft),} is a basis for W.

e Then: A basis for VQW is given by
{lhard),|hard),, |hard),|soft),, |soft),|hard),, |soft),|soft),}

e And: Any 2-particle state |A) in V@ W can be expanded in this basis:
|A) = a,;|hard),|hard), + a,,| hard)|soft),
+ ayi|soft),| hard), + ay,|soft),|soft),



2. Entangled States

respect to a decomposition H =V, Q---Q V. is a vector
|Y) that cannot be written as a product of n terms,

W) =1v) @ &Q|v,),  where|v) €V,

Erwin Schrodinger
_______________________________________________ (1887-1961)

e What this means: An entangled n-particle state cannot be written as a product
of a particle, state, and a particle, state, and a particle, state, etc.

- In an entangled n-particle state, the states of all n particles are "entangled with each
other": they cannot be separated out.

Two initial observations k

1. Nothing about this mathematical definition tells us what the
notion of "entangled with each other” means physically.
2. Entanglement is a relative property!
- A vector in H can be entangled with respect to one decomposition of

H, but not entangled with respect to another decomposition of H.




Examples: N

- Entangled: |W+) =% {|hard),|hard), + |soft)|soft),}
- Nonentangled (Separable):
|A) =Y{|hard),|hard), + |hard),|soft), + |soft),|hard), + |soft),|soft),}
= V¥{|hard), + |soft)}{|hard), + |soft),}
B) =% {|hard)|hard), + |soft);|hard),} = V¥% {|hard), + |soft),}|hard),
|C) = |hard),|hard),

According to the Eigenvalue-Eigenvector Rule:

In states |W*) and |A), both electrons have no determinate Hardness value, but the

combined system as a whole does have a determinate value of some other property.*

In state |B), electron; has no determinate Hardness value, but electron, does (i.e., hard),

and the combined system as a whole has a determinate value of some other property.*

In state |C), both electrons have determinate Hardness values, and the combined system

as a whole has a determinate value of some other property.*

*General fact: Any vector is the eigenvector of some operator.




e So: According to the EE Rule, in any 2-particle state, either particle may or may
not have well-defined properties.

e But: According to EE, the combined 2-particle system as a whole will always have
well-defined properties!

o Why? Because, again, any vector in a vector space (including V ® W) is an
eigenvector of some (Hermitian) operator on that space.

- So there exist 2-particle operators with eigenvectors |¥*), |4), |B) and |C)
that represent properties of the 2-particle system as a whole.



2-Particle "Holistic"” Properties

Suppose:  |Q) = M{|5>1|7)2 + [9)1111),}
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|5) is an eigenvector of |11), is an eigenvector of
the position operator XV the position operator X (%)

e [f we only want to measure P1's position (and not P2's), we must use the 2-
particle operator XD ® 1(2), where I(®) = identity operator on W.

e [f we only want to measure P2's position (and not P1's), we must use the 2-
particle operator /(D ® X(), where I(V) = identity operator on V.

e The difference in the positions of P1 and P2 is a property of the 2-particle
system represented by the 2-particle operator (/(D® X®?)) — (X(DQ [(),

but not of XMW R 1@ or O X!

Claim: |Q) is an eigenstate of [V ®X®) — (XD 1(2))J

e So: According to the EE Rule, P1 and P2 have no definite position in
the 2-particle state |Q), but the difference in their positions is a
definite property of the 2-particle state as a whole!



Claim: |Q) is an eigenstate of /(D@ X @) — (XD R [(2)
but not of X I[@ or D& X@!

Check:
(a) |Q)isan eigenstate of /(D@ X)) — (XD [):

{TDQX®) — (XDIEN}Q) = IDQXH)|Q) — (XD IP)|Q)
= (IO X)W {|5)117), + |91111),} — XD RIOWY2 {|5)1]7), + [9)1]11),}
= V% {7|5)117)2 + 11]9)1]11),} = V%2 {515)1|7), + 9|9)1|11),}
=V {2(5)1]7); + 2|9)1|11)} = 2|Q) < " Inthe state represented by |Q), the

value of the difference-in-position
operator is 2; i.e., P1 and P2 differ in

position by 2.
(b) |Q) is not an eigenstate of X(D@ [ or IV Q X(2):

XDRID|Q) = (XDR®ID)W2 {|5)1]7), + [9)1]11)2)
= V% {5[5)1|7), + 9(9)|11),}
+ A|Q), for any value of A.

e Similarly for IO& X,



3. Born Rule for 2-Particle States
1. Suppose a 2-particle system is in a state represented by |k), and suppose we

measure properties of both P1 and P2 represented by operators A and B®,

Then: The probability that the value of A is a; and the value of B@®is b, is:

Pr(value of A® is a; and value of B@ is b, in state |k)) = |{a;b;|k)|?

where |a;b;) is an eigenvector of the 2-particle operator A() Q@ B(?)

2. Suppose a 2-particle system is in a state represented by |k), and only the
property of P1, represented by A, is measured.

Then: The probability that the value of A is q; is:

Pr(value of A® is q; in state |k)) = |[{a/{|k)|* + - + |{afy|k)|?

where |a;f;), j = 1, .., N, are eigenvectors of the 2-particle operator AV ® L%,
for any P2 property represented by L(?)

Motivation (Law of Total Probability): The probability that the
value of AD is a; is equal to the sum of the probabilities of all
the different ways in which the value of A™M could be a..
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4. 2-Particle Projection Postulate

e Suppose: A 2-particle system is in a state represented by |D), and a property of
P1 represented by A is measured with the resulting value a..

e Then: |D) collapses to the state given by the following:

(a) Expand |D) in eigenvectors of the 2-particle operator A ® L®), for any
arbitrary operator L®):

|ID) =dyqla€q) + -+ diylay fy) + dyg|lay £1) + - + dyylayty)

(b) Throw out all terms other than ones with a;. Then divide by an appropriate
normalization term A to make sure the result is a vector with unit length:

_ dyplady) +dplads) + -
D) >
collapse A
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Example 1 (collapse of separable state) [\
- Suppose: |D) = |q3)|m,) is an eigenvector of Q(VQ M@,

- Now: Suppose the property represented by AD is measured
with the resulting value a..

- What happens to |D)?

- First: Expand |D) in the eigenvectors of ADQ® L(2), for any arbitrary L,
- Note: The P2 part of |D) already is an eigenvector of M(2,
- So: Use eigenvectors of AW Q M for simplicity.
D) = [gzmy)
= dy|laymy) + dyla;my) + -+ + dylaymy)
- Next: Throw out all terms other than ones with as, and normalize the result.
- This justleaves ds|asm,).

- To normalize it, divide by its length, which is just d-.

B 1)

> |a=)|m
collapse [as)| 42J QNO change to state of P2.
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Example 2 (collapse of entangled state) X

- Suppose: D) = V2 {|a,t7) + |as€y.)}
- Now: Suppose the property represented by AD is
measured with the resulting value a-.

- What happens to |D)?

Note: The P1 part of | D) is already in an eigenvector basis of A,

I
|
E So: Slmply throw out all terms in |D) that don't contain a:.
|
I

D) > |a5>|f24y
collapse

The state of the unmeasured
P2 changes!
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5. 2-Path Experiment Again
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Color t1 |Hardness t,
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o Att,, the electron's state is: |white)|x,, y1) = V% {|hard)|xy, v1) — |soft)|x,, 1)}

S

Definite Definite
color state position state

- One particle with two properties in a "two-property" state.
- Represented by product vector in a product vector space.

- Justlike a "2-particle” product vector for two particles, each
with a single property.
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5. 2-Path Experiment Again

4

3

I ] . [
! Without Barrier: !
Vi + | ..
y / s L 1 100% of exiting :
s T T T s s I _ |
; | electrons are white.
.Y o ____ 1
I :
1 |
1 h d |
ar |
yz -T tz : | t3
1 1
1 1
1 |
1 |
1 |
white soft :
Vi T _______________//
Color t1 |Hardness t,
} } } — >
X1 X2 X3 Xy Xs

At t,, the electron's state is: |white)|xy, y,) = V¥ {|hard)|xy, ¥1) — |soft)|x,, 1)}

At t,, the electron's state is: V% {|hard)|x,, v,) — |soft)|xs, y1)}

entangled states!

At t;, the electron's state is: VY2 {|hard)|xs, y3) — |soft)|x4, V,)}

At t,, the electron's state is: V2 {|hard)|xs, y.) — |soft)|xs, v4)} = |White)|xs, y4)

Pr(value of C is white in state at t,) = |(White, Xs, y.|White, xs, Y,)|? 41
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5. 2-Path Experiment Again

A e em em em em em e m e e e e e e e

1
! With Barrier:
Vi =+

I

|

1

‘ t | 50% of exiti '

v+ /Ié_______f _______ - 4 1 50% of exiting E
:

|

E electrons are white,
' 50% are black.

y, 4+ t, hard

white soft !
Vi T+ —_— —————— ———————//
Color t; |Hardness

e Att, the electron's stateis: |k) = M{|hard)|x5, V4) — |soft)|x3, v1)}

e To measure Color at t,, expand |k) in Color basis:

k) = (V2 ) (V% ){|black) + |white)}|xs, yo) — (V2 ) (V% ){|black) — |white)}|xs, y,)
= Y2|black)|xs, y,) — V2|black)|xs, y,) + Ya|white)|xs, y,) + Y2|white)}|xs, y1)

e Pr(value of C is white in state |k)) = |(White, xs, y4|k)|? + |{White, x5, y,|k)|?

v
= [+ %) £ %
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