04. Five Principles of Quantum Mechanics

1. States are represented by vectors of length 1.

- The state space of a physical system is represented by a linear vector space (the space of all its possible states).

2. Properties are represented by operators.

- An operator O represents a property.
- Its eigenvectors $|\lambda\rangle$ represent the value states ("eigenstates") associated with the property.
- Its eigenvalues λ represent the (numerical) values of the property.

Eigenvector/Eigenvalue (EE) Rule:
A state possesses the value λ of a property represented by operator O if and only if that state is an eigenvector of O with eigenvalue λ.

Why is this helpful?

- Recall: Black electrons appear to have no determinate value of Hardness.
- Let's represent the value states of Hardness and Color as orthonormal basis vectors.
- Let's suppose the Hardness basis $\{|h a r d\rangle,|s o f t\rangle\}$ is rotated by 45° with respect to the Color basis $\{|w h i t e\rangle,|b l a c k\rangle\}$:

Then: \mid black $\rangle=\sqrt{1 / 2} \mid$ hard $\rangle+\sqrt{1 / 2} \mid$ soft \rangle

... is in a "superposition" of hard and soft vector states.
$\left\{\begin{array}{l}\text { So: Since an electron in the vector state } \mid \text { black }\rangle \text { cannot be } \\ \text { in either of the vector states } \mid \text { hard }\rangle, \mid \text { soft }\rangle \text {, the EE Rule } \\ \text { says it cannot be said to possess a value of Hardness. }\end{array}\right.$

Let's be a bit more precise...

- Represent the Hardness basis vectors by column vectors:

$$
\left.\mid \text { hard }\rangle \left.=\binom{1}{0} \quad \right\rvert\, \text { soft }\right\rangle=\binom{0}{1}
$$

- Define the Hardness operator by $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- Then: \mid hard \rangle and $|s o f t\rangle$ are eigenvectors of H :

Orthonormality check:
\langle hard $|$ soft $\rangle=(1,0)\binom{0}{1}=0$
\langle hard $|$ hard $\rangle=(1,0)\binom{1}{0}=1$
$\langle s o f t \mid s o f t\rangle=(0,1)\binom{0}{1}=1$
$\left.H|h a r d\rangle=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{0}=\binom{1}{0}=+1 \right\rvert\,$ hard \rangle
$H|s o f t\rangle=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{0}{1}=-\binom{0}{1}=-1|s o f t\rangle$

Stipulate: +1 is the number corresponding to the Hardness value hard.
-1 is the number corresponding to the Hardness value soft.
Thus: An electron in the vector state |hard \rangle has a Hardness value of hard. An electron in the vector state \mid soft \rangle has a Hardness value of soft.

- Represent the Color basis vectors by column vectors:

$$
\left.\mid \text { black }\rangle \left.=\binom{\sqrt{1 / 2}}{\sqrt{1 / 2}} \quad \right\rvert\, \text { white }\right\rangle=\binom{\sqrt{1 / 2}}{-\sqrt{1 / 2}}
$$

Check: Angle between |black \rangle and $|s o f t\rangle$ is 45° :

$$
\begin{aligned}
\langle\text { black }| \text { soft }\rangle & =\left(\sqrt{1 / 2}, \sqrt{1 / 2}\binom{0}{1}\right. \\
& =\sqrt{1 / 2}=1 \times 1 \times \cos 45^{\circ}
\end{aligned}
$$

Orthonormality check:
\langle black $|$ white $\rangle=(\sqrt{1 / 2}, \sqrt{1 / 2})\binom{\sqrt{1 / 2}}{-\sqrt{1 / 2}}=0$
\langle black $|$ black $\rangle=(\sqrt{1 / 2}, \sqrt{1 / 2})\binom{\sqrt{1 / 2}}{\sqrt{1 / 2}}=1$
\langle white $|$ white $\rangle=(\sqrt{1 / 2},-\sqrt{1 / 2})\binom{\sqrt{1 / 2}}{-\sqrt{1 / 2}}=1$

- Define the Color operator by $C=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Then: |black \rangle and \mid white \rangle are eigenvectors of C :

C|black $\rangle \left.=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{\sqrt{1 / 2}}{\sqrt{1 / 2}}=\binom{\sqrt{1 / 2}}{\sqrt{1 / 2}}=+1 \right\rvert\,$ black \rangle
C|white $\rangle \left.=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{\sqrt{1 / 2}}{-\sqrt{1 / 2}}=-\binom{\sqrt{1 / 2}}{-\sqrt{1 / 2}}=-1 \right\rvert\,$ white \rangle
Stipulate: +1 is the number corresponding to the Color value black.
-1 is the number corresponding to the Color value white.

- Can now expand Color states in Hardness basis:

$$
\begin{aligned}
& \left.\left.\mid \text { black }\rangle \left.=\binom{\sqrt{1 / 2}}{\sqrt{1 / 2}}=\sqrt{1 / 2}\binom{1}{0}+\sqrt{1 / 2}\binom{0}{1}=\sqrt{1 / 2} \right\rvert\, \text { hard }\right\rangle+\sqrt{1 / 2} \mid \text { soft }\right\rangle \\
& \left.\left.\mid \text { white }\rangle \left.=\binom{\sqrt{1 / 2}}{-\sqrt{1 / 2}}=\sqrt{1 / 2}\binom{1}{0}-\sqrt{1 / 2}\binom{0}{1}=\sqrt{1 / 2} \right\rvert\, \text { hard }\right\rangle-\sqrt{1 / 2} \mid \text { soft }\right\rangle
\end{aligned}
$$

- The EE Rule says: To say a white electron has a Hardness value (hard or soft), it must be in an eigenstate of the Hardness operator.
- But: The state represented by \mid white \rangle is not an eigenstate of the operator H representing the Hardness property:

$$
\left.H \mid \text { white }\rangle \left.=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\sqrt{1 / 2}}{-\sqrt{1 / 2}}=\binom{\sqrt{1 / 2}}{\sqrt{1 / 2}} \neq \lambda \right\rvert\, \text { white }\right\rangle, \quad \text { for any value of } \lambda .
$$

So: According to the Eigenvector/Eigenvalue Rule...

- A white electron has no definite value of Hardness.
- A black electron has no definite value of Hardness.
- A hard/soft electron has no definite value of Color.

3. Dynamics: States evolve in time via the Schrödinger equation

- Plug an initial state $\left|\psi\left(t_{1}\right)\right\rangle$ into the Schrödinger equation, and it produces a unique final state $\left|\psi\left(t_{2}\right)\right\rangle$.

- The Schrödinger equation can be encoded in an operator $S \equiv e^{-i H\left(t_{2}-t_{1}\right) / \hbar}$ (where H is the Hamiltonian operator that encodes the energy).

Important property: S is a linear operator.
$S(\alpha|A\rangle+\beta|B\rangle)=\alpha S|A\rangle+\beta S|B\rangle$, where α, β are numbers.

- Recall: Experimental Result \#1: There is no correlation between Hardness measurements and Color measurements.
- If the Hardness of a batch of white electrons is measured, 50% will be soft and 50% will be hard.
- Let's assume:

"Born Rule":

The probability that a quantum system in a state $|\psi\rangle$ possesses the value b of a property B is given by the square of the expansion coefficient of the basis state $|b\rangle$ in the expansion of $|\psi\rangle$ in the basis corresponding to all values of the property.

Max Born (1882-1970)

- So: The probability that a black electron has the value hard when measured for Hardness is $1 / 2$!

More precisely...

4. Born Rule

The probability that a state $|\psi\rangle$ possesses the value b_{i} of the property represented by B is given by

$$
\operatorname{Pr}\left(\text { value of } B \text { is } b_{i} \text { in state }|\psi\rangle\right) \equiv\left|\left\langle\psi \mid b_{i}\right\rangle\right|^{2}=\left|a_{i}\right|^{2}
$$

where $\left|b_{i}\right\rangle$ is the eigenvector of B with eigenvalue b_{i}, and a_{i} is the expansion coefficient corresponding to $\left|b_{i}\right\rangle$ in the expansion of $|\psi\rangle$ in the eigenvector basis of B.

- Suppose a physical system is in a state represented by $|\psi\rangle$.
- To measure the value of a property represented by an operator B :
(1) First expand $|\psi\rangle$ in a basis given by a set of eigenvectors of B :

(2) The probability that $|\psi\rangle$ possesses the value b_{1}, say, of the property represented by B is then $\left|a_{1}\right|^{2}$, according to the Born Rule.

4. Born Rule

The probability that a state $|\psi\rangle$ possesses the value b_{i} of the property represented by B is given by

$$
\operatorname{Pr}\left(\text { value of } B \text { is } b_{i} \text { in state }|\psi\rangle\right) \equiv\left|\left\langle\psi \mid b_{i}\right\rangle\right|^{2}=\left|a_{i}\right|^{2}
$$

where $\left|b_{i}\right\rangle$ is the eigenvector of B with eigenvalue b_{i}, and a_{i} is the expansion coefficient corresponding to $\left|b_{i}\right\rangle$ in the expansion of $|\psi\rangle$ in the eigenvector basis of B.

- When $|\psi\rangle$ is itself an eigenvector $\left|b_{i}\right\rangle$ of B, then the probability that it possesses the value b_{i} is equal to 1 .
- Suppose: $|\psi\rangle=\left|b_{i}\right\rangle$.
- Then: $\left|\left\langle\psi \mid b_{i}\right\rangle\right|^{2}=\left|\left\langle b_{i} \mid b_{i}\right\rangle\right|^{2}=1$.
- This is consistent with the EE Rule!

5. Projection Postulate

When a measurement of a property B is made on a system in the state $|\psi\rangle=a_{1}\left|b_{1}\right\rangle+\cdots+a_{N}\left|b_{N}\right\rangle$ expanded in the eigenvector basis of B, and the result is the value b_{i}, then $|\psi\rangle$ collapses to the state $\left|b_{i}\right\rangle:|\psi\rangle \xrightarrow[\text { collapse }]{ }\left|b_{i}\right\rangle$.

- Motivation: Guarantees that if we obtain the value b_{i} once, then we should get the same value b_{i} on a second measurement (provided the system is not interferred with in-between).

Check:

- Suppose we conduct a B-measurement on the state $|\psi\rangle=a_{1}\left|b_{1}\right\rangle+\cdots+a_{N}\left|b_{N}\right\rangle$.
- Born Rule says: The probability of getting b_{i} is $a_{i}{ }^{2}<1$.
- Suppose we get b_{i} upon initial measurement.
- Projection Postulate says: $|\psi\rangle$ collapses to $\left|b_{i}\right\rangle$.
- Born Rule says: The probability of getting b_{i} upon a second measurement is 1 !
- So: If we measure the property represented by B again, we should get b_{i} with certainty.

Aside: The Wave Function

- Have been considering Color and Hardness (i.e., spin) properties for electrons:
- Only 2 values.
- State space is a 2-dimensional vector space.
- Many orthonormal bases; each associated with a spin property: Color, Hardness, Gelb, Scrad, etc.; all of which are mutually incompatible.
- Now consider Position and Momentum properties:
- Infinite continuum of values.
- State space is an infinite-dimensional vector space (!).
- Two distinct orthonormal bases; one associated with Position, the other with Momentum; both of which are mutually incompatible.
- Let X be the operator that represents the property of Position.
- Let the eigenvectors and eigenvalues of X be given by $|x\rangle$ and x :

$$
X|x\rangle=x|x\rangle
$$

- There are an infinite number of values for x, and thus an infinite number of eigenvectors $|x\rangle$!
- Suppose $|\psi\rangle$ represents the state of an electron located at some position.
- Can expand $|\psi\rangle$ in eigenvectors $|x\rangle$ of position operator X :

$$
|\psi\rangle=a_{1}|1\rangle+a_{1.00001}|1.00001\rangle+\cdots+a_{72.93}|72.93\rangle+\cdots
$$

- All of the infinite number of position eigenvectors $|x\rangle$ are orthogonal to each other and form a basis for the ∞-dim position state space.
- Any expansion coefficient a_{x} is given by $a_{x}=\langle\psi \mid x\rangle$, where x can be any number from $-\infty$ to $+\infty$!
- $\langle\psi \mid x\rangle$ is a continuous function, call it $\psi(x)$, of x called the wave function.

Just a functional way of representing a vector that has a continuum of eigenvalues!

- According to the Born Rule:
$\operatorname{Pr}($ electron is located at position x in state $|\psi\rangle)=|\langle\psi \mid x\rangle|^{2}=|\psi(x)|^{2}$

The square of the amplitude of the wavefunction $\psi(x)$!

Erwin Schrödinger (1887-1961)

Werner Heisenberg (1901-1976)

Schrodinger's (1926) "wave mechanics" (mathematics of waves)

Paul Dirac (1902-1984)

Dirac's (1926) "transformation theory" (linear algebra;
functional analysis)

