

04. Five Principles of Quantum Mechanics

1. States
2. Properties
3. Dynamics
4. Born Rule
5. Projection Postulate

1. States are represented by vectors of length 1.

- The state space of a *physical system* is represented by a *linear vector space* (the space of all its possible states).

2. Properties are represented by operators.

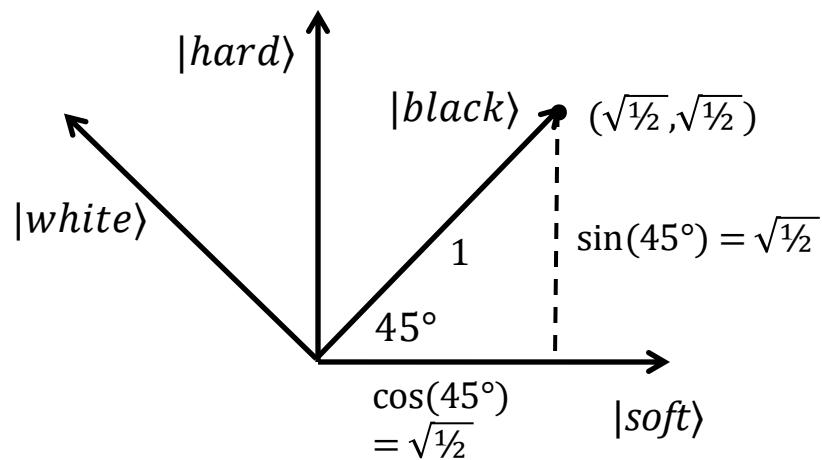
- An operator O represents a *property*.
- Its eigenvectors $|\lambda\rangle$ represent the *value states* ("eigenstates") associated with the property.
- Its eigenvalues λ represent the (numerical) *values* of the property.

Eigenvector/Eigenvalue (EE) Rule:

A quantum system possesses the value λ of a property represented by operator O *if and only if* it is in a state represented by an eigenvector of O with eigenvalue λ .

Why is this helpful?

- Recall: Black electrons appear to have no determinate value of Hardness.
- Let's represent the *value states* of Hardness and Color as *orthonormal basis vectors*.
- Let's suppose the Hardness basis $\{|hard\rangle, |soft\rangle\}$ is rotated by 45° with respect to the Color basis $\{|white\rangle, |black\rangle\}$:



Then: $|\text{black}\rangle = \sqrt{1/2}|\text{hard}\rangle + \sqrt{1/2}|\text{soft}\rangle$

A black vector state
of an electron...

... is in a "superposition" of
hard and soft vector states.

So: Since an electron in the vector state $|\text{black}\rangle$ cannot be in either of the vector states $|\text{hard}\rangle, |\text{soft}\rangle$, the EE Rule says it cannot be said to possess a value of Hardness.

Let's be a bit more precise...

- Represent the Hardness basis vectors by column vectors:

$$|hard\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad |soft\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Define the Hardness operator by $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Then: $|hard\rangle$ and $|soft\rangle$ are eigenvectors of H :

$$H|hard\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = +1|hard\rangle$$

$$H|soft\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\begin{pmatrix} 0 \\ 1 \end{pmatrix} = -1|soft\rangle$$

Orthonormality check:

$$\langle hard|soft\rangle = (1,0) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$

$$\langle hard|hard\rangle = (1,0) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$$

$$\langle soft|soft\rangle = (0,1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1$$

Stipulate: +1 is the number corresponding to the Hardness value *hard*.

−1 is the number corresponding to the Hardness value *soft*.

Thus: An electron in the vector state $|hard\rangle$ has a Hardness value of *hard*.

An electron in the vector state $|soft\rangle$ has a Hardness value of *soft*.

- Represent the Color basis vectors by column vectors:

$$|black\rangle = \begin{pmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \end{pmatrix} \quad |white\rangle = \begin{pmatrix} \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} \end{pmatrix}$$

Check: Angle between $|black\rangle$ and $|soft\rangle$ is 45° :

$$\langle black|soft\rangle = \left(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\text{██} = \sqrt{\frac{1}{2}} = 1$$

$$1 \times \cos 45^\circ$$

Orthonormality check:

$$\langle black|white\rangle = \left(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right) \begin{pmatrix} \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} \end{pmatrix} = 0$$

$$\langle black|black\rangle = \left(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right) \begin{pmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \end{pmatrix} = 1$$

$$\langle white|white\rangle = \left(\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}}\right) \begin{pmatrix} \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} \end{pmatrix} = 1$$

- Define the Color operator by $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- Then: $|black\rangle$ and $|white\rangle$ are eigenvectors of C :

$$C|black\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \end{pmatrix} = +1|black\rangle$$

$$C|white\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} \end{pmatrix} = -\begin{pmatrix} \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} \end{pmatrix} = -1|white\rangle$$

Stipulate: $+1$ is the number corresponding to the Color value *black*.
 -1 is the number corresponding to the Color value *white*.

- Can now expand Color states in Hardness basis:

$$|black\rangle = \begin{pmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \end{pmatrix} = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \sqrt{\frac{1}{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \sqrt{\frac{1}{2}} |hard\rangle + \sqrt{\frac{1}{2}} |soft\rangle$$

$$|white\rangle = \begin{pmatrix} \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} \end{pmatrix} = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \sqrt{\frac{1}{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \sqrt{\frac{1}{2}} |hard\rangle - \sqrt{\frac{1}{2}} |soft\rangle$$

- The EE Rule says: To say a *white* electron has a Hardness value (*hard* or *soft*), it must be in an eigenstate of the Hardness operator.
- But: The state represented by $|white\rangle$ is *not* an eigenstate of the operator H representing the Hardness property:

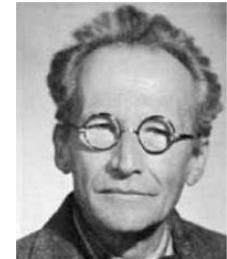
$$H|white\rangle = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} \end{pmatrix} \neq \lambda |white\rangle, \quad \text{for any value of } \lambda.$$

So: According to the Eigenvector/Eigenvalue Rule...

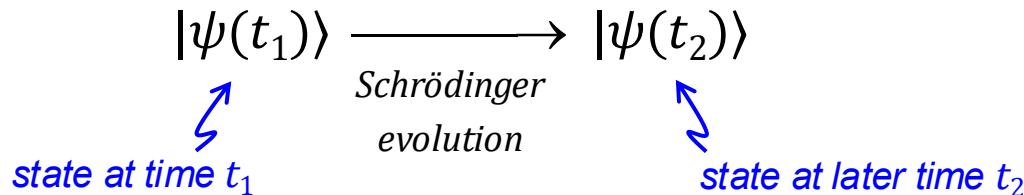
- A *white* electron has no definite value of Hardness.
- A *black* electron has no definite value of Hardness.
- A *hard/soft* electron has no definite value of Color.

3. Dynamics: States evolve in time via the Schrödinger equation

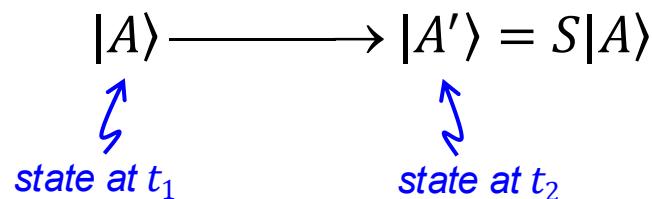
- Plug an initial state $|\psi(t_1)\rangle$ into the Schrödinger equation, and it produces a unique final state $|\psi(t_2)\rangle$.



Erwin Schrödinger
(1887-1961)



- The Schrödinger equation can be encoded in an operator $S \equiv e^{-iH(t_2-t_1)/\hbar}$ (where H is the Hamiltonian operator that encodes the energy).



Important property: S is a *linear operator*.

$S(\alpha|A\rangle + \beta|B\rangle) = \alpha S|A\rangle + \beta S|B\rangle$, where α, β are numbers.

- Recall: Experimental Result #1: There is no correlation between Hardness measurements and Color measurements.
 - *If the Hardness of a batch of white electrons is measured, 50% will be soft and 50% will be hard.*
- Let's assume:

"Born Rule":

The probability that a quantum system in a state $|\psi\rangle$ possesses the value b of a property B is given by the square of the expansion coefficient of the basis state $|b\rangle$ in the expansion of $|\psi\rangle$ in the basis corresponding to all values of the property.

Max Born
(1882-1970)

- So: The probability that a *black* electron has the value *hard* when measured for Hardness is $\frac{1}{2}$!

$$|black\rangle = \sqrt{\frac{1}{2}}|hard\rangle + \sqrt{\frac{1}{2}}|soft\rangle$$

An electron in a *black* vector state...

... has a probability of $\frac{1}{2}$ of being in a *hard* vector state upon measurement for Hardness.

More precisely...

4. Born Rule

The *probability* that a state $|\psi\rangle$ possesses the value b_i of the property represented by B is given by

$$\text{Pr}(\text{value of } B \text{ is } b_i \text{ in state } |\psi\rangle) \equiv |\langle\psi|b_i\rangle|^2 = |a_i|^2$$

where $|b_i\rangle$ is the eigenvector of B with eigenvalue b_i , and a_i is the expansion coefficient corresponding to $|b_i\rangle$ in the expansion of $|\psi\rangle$ in the eigenvector basis of B .

- Suppose a physical system is in a state represented by $|\psi\rangle$.
- To measure the value of a property represented by an operator B :
 - (1) First expand $|\psi\rangle$ in a basis given by a set of eigenvectors of B :

$$|\psi\rangle = a_1|b_1\rangle + a_2|b_2\rangle + \cdots + a_N|b_N\rangle$$

↑ *↑* *↑*
expansion coefficients of $|\psi\rangle$ in basis $|b_1\rangle, \dots, |b_N\rangle$

eigenvectors of B :
 $B|b_1\rangle = b_1|b_1\rangle, B|b_2\rangle = b_2|b_2\rangle, \text{etc...}$

- (2) The *probability* that $|\psi\rangle$ possesses the value b_1 , say, of the property represented by B is then $|a_1|^2$, according to the Born Rule.

4. Born Rule

The *probability* that a state $|\psi\rangle$ possesses the value b_i of the property represented by B is given by

$$\Pr(\text{value of } B \text{ is } b_i \text{ in state } |\psi\rangle) \equiv |\langle\psi|b_i\rangle|^2 = |a_i|^2$$

where $|b_i\rangle$ is the eigenvector of B with eigenvalue b_i , and a_i is the expansion coefficient corresponding to $|b_i\rangle$ in the expansion of $|\psi\rangle$ in the eigenvector basis of B .

- When $|\psi\rangle$ is itself an eigenvector $|b_i\rangle$ of B , then the probability that it possesses the value b_i is equal to 1.
 - Suppose: $|\psi\rangle = |b_i\rangle$.
 - Then: $|\langle\psi|b_i\rangle|^2 = |\langle b_i|b_i\rangle|^2 = 1$.
 - This is consistent with the EE Rule!

5. Projection Postulate

When a measurement of a property B is made on a system in the state $|\psi\rangle = a_1|b_1\rangle + \dots + a_N|b_N\rangle$ expanded in the eigenvector basis of B , and the result is the value b_i , then $|\psi\rangle$ collapses to the state $|b_i\rangle$: $|\psi\rangle \xrightarrow{\text{collapse}} |b_i\rangle$.

John von Neumann
(1903-1957)

Example: Suppose we measure a *black* electron for Hardness.

- The pre-measurement state is given by:

$$|black\rangle = \sqrt{\frac{1}{2}}|hard\rangle + \sqrt{\frac{1}{2}}|soft\rangle$$

- Suppose: The outcome of the measurement is the value *hard*.
- Then: The post-measurement state is given by $|hard\rangle$.

5. Projection Postulate

When a measurement of a property B is made on a system in the state $|\psi\rangle = a_1|b_1\rangle + \cdots + a_N|b_N\rangle$ expanded in the eigenvector basis of B , and the result is the value b_i , then $|\psi\rangle$ collapses to the state $|b_i\rangle$: $|\psi\rangle \xrightarrow{\text{collapse}} |b_i\rangle$.

John von Neumann
(1903-1957)

- Motivation: Guarantees that if we obtain the value b_i once, then we should get the same value b_i on a second measurement (provided the system is not interfered with in-between).

Check:

- Suppose we conduct a B -measurement on the state $|\psi\rangle = a_1|b_1\rangle + \cdots + a_N|b_N\rangle$.
 - Born Rule says: The probability of getting b_i is $a_i^2 < 1$.
- Suppose we get b_i upon initial measurement.
 - Projection Postulate says: $|\psi\rangle$ collapses to $|b_i\rangle$.
- Born Rule says: The probability of getting b_i upon a second measurement is 1!
- So: If we measure the property represented by B again, we should get b_i with certainty.

Aside: The Wave Function

- Have been considering Color and Hardness (*i.e.*, spin) properties for electrons:
 - *Only 2 values.*
 - *State space is a 2-dimensional vector space.*
 - *Many orthonormal bases; each associated with a spin property: Color, Hardness, Gelb, Scrad, etc.; all of which are mutually incompatible.*
- Now consider Position and Momentum properties:
 - *Infinite continuum of values.*
 - *State space is an infinite-dimensional vector space (!).*
 - *Two distinct orthonormal bases; one associated with Position, the other with Momentum; both of which are mutually incompatible.*
 - Let X be the operator that represents the property of Position.
 - Let the eigenvectors and eigenvalues of X be given by $|x\rangle$ and x :
$$X|x\rangle = x|x\rangle$$
 - There are an infinite number of values for x , and thus an infinite number of eigenvectors $|x\rangle$!

- Suppose $|\psi\rangle$ represents the state of an electron located at some position.
- Can expand $|\psi\rangle$ in eigenvectors $|x\rangle$ of position operator X :

$$|\psi\rangle = a_1|1\rangle + a_{1.00001}|1.00001\rangle + \dots + a_{72.93}|72.93\rangle + \dots$$

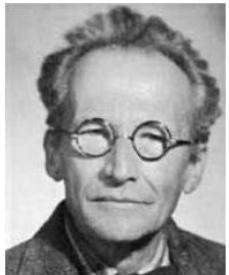
- All of the infinite number of position eigenvectors $|x\rangle$ are orthogonal to each other and form a basis for the ∞ -dim position state space.
- Any expansion coefficient a_x is given by $a_x = \langle\psi|x\rangle$, where x can be any number from $-\infty$ to $+\infty$!
- $\langle\psi|x\rangle$ is a continuous function, call it $\psi(x)$, of x called the *wave function*.

Just a functional way of representing a vector that has a continuum of eigenvalues!

- According to the Born Rule:

$$\text{Pr}(\text{electron is located at position } x \text{ in state } |\psi\rangle) = |\langle\psi|x\rangle|^2 = |\psi(x)|^2$$

The square of the amplitude of the wavefunction $\psi(x)$!



Erwin Schrödinger
(1887-1961)

Schrodinger's (1926)
"wave mechanics"
(mathematics of waves)

Werner Heisenberg
(1901-1976)

Heisenberg's (1925)
"matrix mechanics"
(mathematics of matrices)

Paul Dirac
(1902-1984)

Dirac's (1926)
"transformation theory"
(linear algebra;
functional analysis)