
1.	States	are	represented	by	vectors	of	length	1.
• The	state	space	of	a	physical	system is	represented	by	a	
linear	vector	space (the	space	of	all	its	possible	states).

Eigenvector/Eigenvalue	(EE)	Rule:
A	state	possesses	the	value	𝜆 of	a	property	represented	by	operator	𝑂
if	and	only	if that	state	is	an	eigenvector	of	𝑂with	eigenvalue	𝜆.

2.	Properties	are	represented	by	operators.
• An	operator	𝑂 represents	a	property.
• Its	eigenvectors	|𝜆⟩ represent	the	value	states ("eigenstates")	
associated	with	the	property.

• Its	eigenvalues	𝜆 represent	the	(numerical)	values of	the	property.

04.	Five	Principles	of	Quantum	Mechanics
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5. Projection	Postulate



• Recall:	Black	electrons	appear	to	have	no	determinate	value	of	Hardness.
• Let's	represent	the	value	states of	Hardness	and	Color	as	orthonormal	basis	
vectors.

So:	Since	an	electron	in	the	vector	state	|black⟩ cannot	be	
in	either	of	the	vector	states	|ℎ𝑎𝑟𝑑⟩,	|soft⟩,	the	EE	Rule	
says	it	cannot	be	said	to	possess	a	value	of	Hardness.

Why is this helpful?

|soft⟩

|ℎ𝑎𝑟𝑑⟩
|𝑏𝑙𝑎𝑐𝑘⟩

|𝑤ℎ𝑖𝑡𝑒⟩

45°

• Let's	suppose	the	Hardness	basis	{|ℎ𝑎𝑟𝑑⟩,	|𝑠𝑜𝑓𝑡⟩} is	rotated	by	45°
with	respect	to	the	Color	basis	{|𝑤ℎ𝑖𝑡𝑒⟩,	|𝑏𝑙𝑎𝑐𝑘⟩}:

A black vector state 
of an electron...

... is in a "superposition" of 
hard and soft vector states.

Then:	|𝑏𝑙𝑎𝑐𝑘⟩	=	 ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft
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1

cos(45°)
=	 ½

sin(45°)	=	 ½

• ( ½ , ½ )



Let's be a bit more precise...

Stipulate: +1 is	the	number	corresponding	to	the	Hardness	value	ℎ𝑎𝑟𝑑.
−1 is	the	number	corresponding	to	the	Hardness	value	𝑠𝑜𝑓𝑡.

Thus: An	electron	in	the	vector	state	|ℎ𝑎𝑟𝑑⟩ has	a	Hardness	value	of	ℎ𝑎𝑟𝑑.
An	electron	in	the	vector	state	|soft⟩ has	a	Hardness	value	of	soft.

• Define	the	Hardness	operator	by	𝐻 = 1 0
0 −1

• Then:	|ℎ𝑎𝑟𝑑⟩ and	|𝑠𝑜𝑓𝑡⟩ are	eigenvectors	of	𝐻:

𝐻| ⟩ℎ𝑎𝑟𝑑 = 1 0
0 −1

1
0 = 1

0 = +1| ⟩ℎ𝑎𝑟𝑑

𝐻| ⟩soft = 1 0
0 −1

0
1 = − 0

1 = −1| ⟩soft

• Represent	the	Hardness	basis	vectors	by	column	vectors:

| ⟩ℎ𝑎𝑟𝑑 = 1
0 | ⟩soft = 0

1
Orthonormality	check:

ℎ𝑎𝑟𝑑|soft = 1,0 0
1 = 0

ℎ𝑎𝑟𝑑|ℎ𝑎𝑟𝑑 = 1,0 1
0 = 1

soft|soft = 0,1 0
1 = 1
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• Define	the	Color	operator	by	𝐶 = 0 1
1 0

Stipulate: +1 is	the	number	corresponding	to	the	Color	value	𝑏𝑙𝑎𝑐𝑘.
−1 is	the	number	corresponding	to	the	Color	value	𝑤ℎ𝑖𝑡𝑒.

• Represent	the	Color	basis	vectors	by	column	vectors:

| ⟩𝑏𝑙𝑎𝑐𝑘 = ½
½

| ⟩𝑤ℎ𝑖𝑡𝑒 = ½
− ½

• Then:	|𝑏𝑙𝑎𝑐𝑘⟩ and	|𝑤ℎ𝑖𝑡𝑒⟩ are	eigenvectors	of	𝐶:

𝐶| ⟩𝑏𝑙𝑎𝑐𝑘 = 0 1
1 0

½
½

= ½
½

= +1| ⟩𝑏𝑙𝑎𝑐𝑘

𝐶| ⟩𝑤ℎ𝑖𝑡𝑒 = 0 1
1 0

½
− ½

= − ½
− ½

= −1| ⟩𝑤ℎ𝑖𝑡𝑒

Check:	Angle	between	|𝑏𝑙𝑎𝑐𝑘⟩ and	|𝑠𝑜𝑓𝑡⟩ is	45°:

𝑏𝑙𝑎𝑐𝑘|𝑠𝑜𝑓𝑡 = ½ , ½ 0
1

= ½ = 1 × 1 × cos45°

Orthonormality	check:

𝑏𝑙𝑎𝑐𝑘|𝑤ℎ𝑖𝑡𝑒 = ½ , ½ ½
− ½

= 0

𝑏𝑙𝑎𝑐𝑘|𝑏𝑙𝑎𝑐𝑘 = ½ , ½ ½
½

= 1

𝑤ℎ𝑖𝑡𝑒|𝑤ℎ𝑖𝑡𝑒 = ½ ,− ½ ½
− ½

= 1
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• The	EE	Rule	says:	To	say	a	𝑤ℎ𝑖𝑡𝑒 electron	has	a	Hardness	value	(ℎ𝑎𝑟𝑑 or	soft),	
it	must	be	in	an	eigenstate	of	the	Hardness	operator.

So:	According	to	the	Eigenvector/Eigenvalue	Rule...
- A	𝑤ℎ𝑖𝑡𝑒 electron	has	no	definite	value	of	Hardness.
- A	𝑏𝑙𝑎𝑐𝑘 electron	has	no	definite	value	of	Hardness.
- A	ℎ𝑎𝑟𝑑/𝑠𝑜𝑓𝑡 electron	has	no	definite	value	of	Color.

• Can	now	expand	Color	states	in	Hardness	basis:	

| ⟩𝑏𝑙𝑎𝑐𝑘 = ½
½

= ½ 1
0 + ½ 0

1 = ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft

⟩|𝑤ℎ𝑖𝑡𝑒 = ½
− ½

= ½ 1
0 − ½ 0

1 = ½ ⟩|ℎ𝑎𝑟𝑑 − ½| ⟩soft

• But:	The	state	represented	by	|𝑤ℎ𝑖𝑡𝑒⟩ is	not an	eigenstate	of	the	operator	𝐻
representing	the	Hardness	property:

𝐻 ⟩|𝑤ℎ𝑖𝑡𝑒 = 1 0
0 −1

½
− ½

= ½
½

≠ 𝜆| ⟩𝑤ℎ𝑖𝑡𝑒 , for any value of 𝜆.
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3.	Dynamics:	States	evolve	in	time	via	the	Schrödinger	equation

Important	property:	𝑆 is	a	linear	operator.
𝑆(𝛼|𝐴⟩	+	𝛽|𝐵⟩)	=	𝛼𝑆|𝐴⟩	+	𝛽𝑆|𝐵⟩,			where	𝛼,	𝛽 are	numbers.

• Plug	an	initial	state	|𝜓(𝑡1)⟩ into	the	Schrödinger	equation,	
and	it	produces	a	unique	final	state	|𝜓(𝑡2)⟩.

Schrödinger
evolution

|𝜓(𝑡1)⟩ ¾¾¾® |𝜓(𝑡2)⟩

state at later time t2state at time t1

• The	Schrödinger	equation	can	be	encoded	in	an	operator	𝑆 ≡ 𝑒!"#(%!!%")/ℏ

(where	𝐻 is	the	Hamiltonian	operator	that	encodes	the	energy).

state at t1 state at t2

| ⟩𝐴 ¾¾¾® | ⟩𝐴) = 𝑆| ⟩𝐴
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Erwin	Schrödinger
(1887-1961)



• Recall:	Experimental	Result	#1:	There	is	no	correlation	between	Hardness	
measurements	and	Color	measurements.
- If	the	Hardness	of	a	batch	of	white	electrons	is	measured,	50% will	be	soft	and	50%
will	be	hard.

• Let's	assume:

"Born	Rule":
The	probability	that	a	quantum	system	in	a	state	|𝜓⟩ possesses	
the	value	𝑏 of	a	property	𝐵 is	given	by	the	square	of	the	
expansion	coefficient	of	the	basis	state	|𝑏⟩ in	the	expansion	of	
|𝜓⟩ in	the	basis	corresponding	to	all	values	of	the	property. Max	Born

(1882-1970)

More precisely...

• So:	The	probability	that	a	black electron	has	the	value	hardwhen	
measured	for	Hardness	is	½!

An electron in a black vector state... ... has a probability of ½ of being in a hard 
vector state upon measurement for Hardness.

|black⟩	=	 ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft
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• Suppose	a	physical	system	is	in	a	state	represented	by	|𝜓⟩.
• To	measure	the	value	of	a	property	represented	by	an	operator	𝐵:

(2) The	probability that	|𝜓⟩ possesses	the	value	𝑏1,	say,	of	the	property	
represented	by	𝐵 is	then	|𝑎1|2,	according	to	the	Born	Rule.

eigenvectors of 𝐵:
𝐵|𝑏1⟩	=	𝑏1|𝑏1⟩,	𝐵|𝑏2⟩	=	𝑏2|𝑏2⟩, etc...

expansion coefficients of |𝜓⟩ in basis |𝑏1⟩,	...,	|𝑏𝑁⟩

|𝜓⟩	=	𝑎1|𝑏1⟩	+	𝑎2|𝑏2⟩	+	⋯	+	𝑎𝑁|𝑏𝑁⟩

(1) First	expand	|𝜓⟩ in	a	basis	given	by	a	set	of	eigenvectors	of	𝐵:

4.	Born	Rule

Pr(value	of	𝐵 is	𝑏𝑖 in	state |𝜓⟩)	≡ |⟨𝜓|𝑏𝑖⟩|2 =	|𝑎𝑖|2

where	|𝑏𝑖⟩ is	the	eigenvector	of	𝐵with	eigenvalue	𝑏𝑖,	and	
𝑎𝑖 is	the	expansion	coefficient	corresponding	to	|𝑏𝑖⟩ in	
the	expansion	of	|𝜓⟩ in	the	eigenvector	basis	of	𝐵.

The	probability that	a	state	|𝜓⟩ possesses	the	value	𝑏𝑖
of	the	property	represented	by	𝐵 is	given	by
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• When	|𝜓⟩ is	itself	an	eigenvector	|𝑏𝑖⟩ of	𝐵,	then	the	probability	that	it	
possesses	the	value	𝑏𝑖 is	equal	to	1.

- Suppose:	|𝜓⟩ =	|𝑏𝑖⟩.
- Then:	|⟨𝜓|𝑏𝑖⟩|2 =	|⟨𝑏𝑖|𝑏𝑖⟩|2 =	1.
- This	is	consistent	with	the	EE	Rule!

4.	Born	Rule

Pr(value	of	𝐵 is	𝑏𝑖 in	state |𝜓⟩)	≡ |⟨𝜓|𝑏𝑖⟩|2 =	|𝑎𝑖|2

where	|𝑏𝑖⟩ is	the	eigenvector	of	𝐵with	eigenvalue	𝑏𝑖,	and	
𝑎𝑖 is	the	expansion	coefficient	corresponding	to	|𝑏𝑖⟩ in	
the	expansion	of	|𝜓⟩ in	the	eigenvector	basis	of	𝐵.

The	probability that	a	state	|𝜓⟩ possesses	the	value	𝑏𝑖
of	the	property	represented	by	𝐵 is	given	by
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Check:

5.	Projection	Postulate

collapse

When	a	measurement	of	a	property	𝐵 is	made	on	a	system	
in	the	state	|𝜓⟩	=	𝑎1|𝑏1⟩	+	⋯	+	𝑎𝑁|𝑏𝑁⟩ expanded	in	the	
eigenvector	basis	of	B,	and	the	result	is	the	value	𝑏𝑖,	then	
|𝜓⟩ collapses to	the	state	|𝑏𝑖⟩:	|𝜓⟩		¾¾¾® |𝑏𝑖⟩.

• Motivation:	Guarantees	that	if	we	obtain	the	value	𝑏𝑖 once,	then	we	
should	get	the	same	value	𝑏𝑖 on	a	second	measurement	(provided	
the	system	is	not	interferred	with	in-between).

• Suppose	we	conduct	a	𝐵-measurement	on	the	state	|𝜓⟩	=	𝑎1|𝑏1⟩	+	⋯	+	𝑎𝑁|𝑏𝑁⟩.
- Born	Rule	says:	The	probability	of	getting	𝑏𝑖 is	𝑎𝑖2<	1.

• Suppose	we	get	𝑏𝑖 upon	initial	measurement.
- Projection	Postulate	says:	|𝜓⟩ collapses	to	|𝑏𝑖⟩.

• Born	Rule	says:	The	probability	of	getting	𝑏𝑖upon	a	second	measurement	is	1!
• So:	If	we	measure	the	property	represented	by	𝐵 again,	we	should	get	𝑏𝑖with	
certainty.
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John	von	Neumann
(1903-1957)



• Have	been	considering	Color	and	Hardness	(i.e.,	spin)	properties	for	electrons:
- Only	2 values.
- State	space	is	a	2-dimensional	vector	space.
- Many	orthonormal	bases;	each	associated	with	a	spin	property:	Color,	Hardness,	Gelb,	
Scrad,	etc.;	all	of	which	are	mutually	incompatible.

• Now	consider	Position	and	Momentum	properties:
- Infinite	continuum	of	values.
- State	space	is	an	infinite-dimensional	vector	space	(!).
- Two	distinct	orthonormal	bases;	one	associated	with	Position,	the	
other	with	Momentum;	both	of	which	are	mutually	incompatible.

Aside:	The	Wave	Function

- Let	𝑋 be	the	operator	that	represents	the	property	of	Position.
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- Let	the	eigenvectors	and	eigenvalues	of	𝑋 be	given	by	|𝑥⟩ and	𝑥:
𝑋|𝑥⟩	=	𝑥|𝑥⟩

- There	are	an	infinite	number	of	values	for	𝑥,	and	thus	an	infinite	
number	of	eigenvectors	|𝑥⟩!



• Suppose	|𝜓⟩ represents	the	state	of	an	electron	located	at	some	position.

- All	of	the	infinite	number	of	position	eigenvectors	|𝑥⟩ are	orthogonal	to	
each	other	and	form	a	basis	for	the	∞-dim	position	state	space.

- Any	expansion	coefficient	𝑎𝑥 is	given	by	𝑎𝑥 =	⟨𝜓|𝑥⟩,	where	𝑥 can	be	any	
number	from	−∞ to	+∞!

|𝜓⟩	=	𝑎1|1⟩	+	𝑎1.00001|1.00001⟩	+	⋯	+	𝑎72.93|72.93⟩ +	⋯

• Can	expand	|𝜓⟩ in	eigenvectors	|𝑥⟩ of	position	operator	𝑋:
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• According	to	the	Born	Rule:
Pr(electron	is	located	at	position 𝑥 in	state |𝜓⟩)	= |⟨𝜓|𝑥⟩|2 =	|𝜓(𝑥)|2

The square of the amplitude 
of the wavefunction 𝜓(𝑥)!

Just a functional way of representing a 
vector that has a continuum of eigenvalues!

- ⟨𝜓|𝑥⟩ is	a	continuous	function,	call	it	𝜓(𝑥),	of	𝑥 called	the	wave	function.



Erwin	Schrödinger
(1887-1961)

Schrodinger's (1926) 
"wave mechanics"
(mathematics of waves)

Werner	Heisenberg
(1901-1976)

Heisenberg's (1925) 
"matrix mechanics"
(mathematics of matrices)

Dirac's (1926) 
"transformation theory"
(linear algebra; 
functional analysis)Paul	Dirac

(1902-1984)
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