
1. States are represented by vectors of length 1.  

• The state space of a physical system is represented by a 

linear vector space (the space of all its possible states).

Eigenvector/Eigenvalue (EE) Rule:

A quantum system possesses the value 𝜆 of a property 

represented by operator 𝑂 if and only if it is in a state 

represented by an eigenvector of 𝑂 with eigenvalue 𝜆.

2. Properties are represented by operators.

• An operator 𝑂 represents a property.

• Its eigenvectors |𝜆⟩ represent the value states ("eigenstates") 

associated with the property.

• Its eigenvalues 𝜆 represent the (numerical) values of the property.

04. Five Principles of Quantum Mechanics
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• Recall: Black electrons appear to have no determinate value of Hardness.

• Let's represent the value states of Hardness and Color as orthonormal basis 

vectors.

So: Since an electron in the vector state |black⟩ cannot be 

in either of the vector states |ℎ𝑎𝑟𝑑⟩, |soft⟩, the EE Rule 

says it cannot be said to possess a value of Hardness.

Why is this helpful?

|soft⟩

|ℎ𝑎𝑟𝑑⟩

|𝑏𝑙𝑎𝑐𝑘⟩

|𝑤ℎ𝑖𝑡𝑒⟩

45°

• Let's suppose the Hardness basis {|ℎ𝑎𝑟𝑑⟩, |𝑠𝑜𝑓𝑡⟩} is rotated by 45° 

with respect to the Color basis {|𝑤ℎ𝑖𝑡𝑒⟩, |𝑏𝑙𝑎𝑐𝑘⟩}:

A black vector state 

of an electron...

... is in a "superposition" of 

hard and soft vector states.

Then: |𝑏𝑙𝑎𝑐𝑘⟩ = ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft
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1

cos(45°)

= ½ 

sin(45°) = ½ 

•  ( ½ , ½ )



Let's be a bit more precise...

Stipulate: +1 is the number corresponding to the Hardness value ℎ𝑎𝑟𝑑.

 −1 is the number corresponding to the Hardness value 𝑠𝑜𝑓𝑡.

Thus: An electron in the vector state |ℎ𝑎𝑟𝑑⟩ has a Hardness value of ℎ𝑎𝑟𝑑.

 An electron in the vector state |soft⟩ has a Hardness value of soft.

• Define the Hardness operator by 𝐻 =
1 0
0 −1

• Then: |ℎ𝑎𝑟𝑑⟩ and |𝑠𝑜𝑓𝑡⟩ are eigenvectors of 𝐻:

𝐻| ⟩ℎ𝑎𝑟𝑑 =
1 0
0 −1

1
0

=
1
0

= +1| ⟩ℎ𝑎𝑟𝑑

𝐻| ⟩soft =
1 0
0 −1

0
1

= −
0
1

= −1| ⟩soft

• Represent the Hardness basis vectors by column vectors:

| ⟩ℎ𝑎𝑟𝑑 =
1
0

| ⟩soft =
0
1

Orthonormality check:

ℎ𝑎𝑟𝑑|soft = 1,0
0
1

= 0

ℎ𝑎𝑟𝑑|ℎ𝑎𝑟𝑑 = 1,0
1
0

= 1

soft|soft = 0,1
0
1

= 1
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• Define the Color operator by 𝐶 =
0 1
1 0

Stipulate: +1 is the number corresponding to the Color value 𝑏𝑙𝑎𝑐𝑘.

 −1 is the number corresponding to the Color value 𝑤ℎ𝑖𝑡𝑒.

• Represent the Color basis vectors by column vectors:

| ⟩𝑏𝑙𝑎𝑐𝑘 = ½

½ 
| ⟩𝑤ℎ𝑖𝑡𝑒 = ½ 

− ½ 

• Then: |𝑏𝑙𝑎𝑐𝑘⟩ and |𝑤ℎ𝑖𝑡𝑒⟩ are eigenvectors of 𝐶:

𝐶| ⟩𝑏𝑙𝑎𝑐𝑘 =
0 1
1 0

½

½ 
= ½

½ 
= +1| ⟩𝑏𝑙𝑎𝑐𝑘

𝐶| ⟩𝑤ℎ𝑖𝑡𝑒 =
0 1
1 0

½ 

− ½ 
= − ½ 

− ½ 
= −1| ⟩𝑤ℎ𝑖𝑡𝑒

Check: Angle between |𝑏𝑙𝑎𝑐𝑘⟩ and |𝑠𝑜𝑓𝑡⟩ is 45°:

𝑏𝑙𝑎𝑐𝑘|𝑠𝑜𝑓𝑡 = ½ , ½
0
1

= ½ = 1 ×
 1 ×  cos45°

Orthonormality check:

𝑏𝑙𝑎𝑐𝑘|𝑤ℎ𝑖𝑡𝑒 = ½ , ½ ½ 

− ½ 
= 0

𝑏𝑙𝑎𝑐𝑘|𝑏𝑙𝑎𝑐𝑘 = ½ , ½ ½

½ 
= 1

𝑤ℎ𝑖𝑡𝑒|𝑤ℎ𝑖𝑡𝑒 = ½ , − ½ ½ 

− ½ 
= 1
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• The EE Rule says: To say a 𝑤ℎ𝑖𝑡𝑒 electron has a Hardness value (ℎ𝑎𝑟𝑑 or soft), 

it must be in an eigenstate of the Hardness operator.

So: According to the Eigenvector/Eigenvalue Rule...

- A 𝑤ℎ𝑖𝑡𝑒 electron has no definite value of Hardness.

- A 𝑏𝑙𝑎𝑐𝑘 electron has no definite value of Hardness.

- A ℎ𝑎𝑟𝑑/𝑠𝑜𝑓𝑡 electron has no definite value of Color.

• Can now expand Color states in Hardness basis: 

| ⟩𝑏𝑙𝑎𝑐𝑘 =
½

½ 
= ½

1
0

+ ½
0
1

= ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft

⟩|𝑤ℎ𝑖𝑡𝑒 =
½ 

− ½ 
= ½

1
0

− ½
0
1

= ½ ⟩|ℎ𝑎𝑟𝑑 − ½| ⟩soft

• But: The state represented by |𝑤ℎ𝑖𝑡𝑒⟩ is not an eigenstate of the operator 𝐻 

representing the Hardness property:

𝐻 ⟩|𝑤ℎ𝑖𝑡𝑒 =
1 0
0 −1

½ 

− ½ 
= ½

½ 
≠ 𝜆| ⟩𝑤ℎ𝑖𝑡𝑒 , for any value of 𝜆. 
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3. Dynamics: States evolve in time via the Schrödinger equation

Important property: 𝑆 is a linear operator.

   𝑆(𝛼|𝐴⟩ + 𝛽|𝐵⟩) = 𝛼𝑆|𝐴⟩ + 𝛽𝑆|𝐵⟩,   where 𝛼, 𝛽 are numbers.

• Plug an initial state |𝜓(𝑡1)⟩ into the Schrödinger equation, 

and it produces a unique final state |𝜓(𝑡2)⟩.

Schrödinger

evolution

|𝜓(𝑡1)⟩  ⎯⎯⎯→  |𝜓(𝑡2)⟩

state at later time t2state at time t1

• The Schrödinger equation can be encoded in an operator 𝑆 ≡ 𝑒−𝑖𝐻(𝑡2−𝑡1)/ℏ 

(where 𝐻 is the Hamiltonian operator that encodes the energy).

state at t1 state at t2

| ⟩𝐴  ⎯⎯⎯→ | ⟩𝐴′ = 𝑆| ⟩𝐴
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Erwin Schrödinger
(1887-1961)



• Recall: Experimental Result #1: There is no correlation between Hardness 

measurements and Color measurements.

- If the Hardness of a batch of white electrons is measured, 50% will be soft and 50% 

will be hard.

• Let's assume:

"Born Rule":

The probability that a quantum system in a state |𝜓⟩ possesses 

the value 𝑏 of a property 𝐵 is given by the square of the 

expansion coefficient of the basis state |𝑏⟩ in the expansion of 

|𝜓⟩ in the basis corresponding to all values of the property.
Max Born

(1882-1970)

More precisely...

• So: The probability that a black electron has the value hard when 

measured for Hardness is ½!

An electron in a black vector state... ... has a probability of ½ of being in a hard 

vector state upon measurement for Hardness.

|black⟩ = ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft
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• Suppose a physical system is in a state represented by |𝜓⟩.

• To measure the value of a property represented by an operator 𝐵:

(2) The probability that |𝜓⟩ possesses the value 𝑏1, say, of the property 

represented by 𝐵 is then |𝑎1|2, according to the Born Rule.

eigenvectors of 𝐵:

𝐵|𝑏1⟩ = 𝑏1|𝑏1⟩, 𝐵|𝑏2⟩ = 𝑏2|𝑏2⟩, etc...
expansion coefficients of |𝜓⟩ in basis |𝑏1⟩, ..., |𝑏𝑁⟩

|𝜓⟩ = 𝑎1|𝑏1⟩ + 𝑎2|𝑏2⟩ + ⋯ + 𝑎𝑁|𝑏𝑁⟩

(1) First expand |𝜓⟩ in a basis given by a set of eigenvectors of 𝐵:

4. Born Rule

Pr(value of 𝐵 is 𝑏𝑖 in state |𝜓⟩) ≡ |⟨𝜓|𝑏𝑖⟩|2 = |𝑎𝑖|
2

where |𝑏𝑖⟩ is the eigenvector of 𝐵 with eigenvalue 𝑏𝑖, and 

𝑎𝑖 is the expansion coefficient corresponding to |𝑏𝑖⟩ in 

the expansion of |𝜓⟩ in the eigenvector basis of 𝐵.

The probability that a state |𝜓⟩ possesses the value 𝑏𝑖 

of the property represented by 𝐵 is given by
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• When |𝜓⟩ is itself an eigenvector |𝑏𝑖⟩ of 𝐵, then the probability that it 

possesses the value 𝑏𝑖 is equal to 1.

- Suppose: |𝜓⟩ = |𝑏𝑖⟩.

- Then: |⟨𝜓|𝑏𝑖⟩|2 = |⟨𝑏𝑖|𝑏𝑖⟩|2 = 1.

- This is consistent with the EE Rule!

4. Born Rule

Pr(value of 𝐵 is 𝑏𝑖 in state |𝜓⟩) ≡ |⟨𝜓|𝑏𝑖⟩|2 = |𝑎𝑖|
2

where |𝑏𝑖⟩ is the eigenvector of 𝐵 with eigenvalue 𝑏𝑖, and 

𝑎𝑖 is the expansion coefficient corresponding to |𝑏𝑖⟩ in 

the expansion of |𝜓⟩ in the eigenvector basis of 𝐵.

The probability that a state |𝜓⟩ possesses the value 𝑏𝑖 

of the property represented by 𝐵 is given by
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5. Projection Postulate

collapse

When a measurement of a property 𝐵 is made on a system 

in the state |𝜓⟩ = 𝑎1|𝑏1⟩ + ⋯ + 𝑎𝑁|𝑏𝑁⟩ expanded in the 

eigenvector basis of B, and the result is the value 𝑏𝑖, then 

|𝜓⟩ collapses to the state |𝑏𝑖⟩: |𝜓⟩  ⎯⎯⎯→  |𝑏𝑖⟩.
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John von Neumann
(1903-1957)

Example: Suppose we measure a black electron for Hardness.

- Suppose: The outcome of the measurement is the value hard.

- Then: The post-measurement state is given by |hard⟩.

- The pre-measurement state is given by:

|black⟩ = ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft



Check:

5. Projection Postulate

collapse

When a measurement of a property 𝐵 is made on a system 

in the state |𝜓⟩ = 𝑎1|𝑏1⟩ + ⋯ + 𝑎𝑁|𝑏𝑁⟩ expanded in the 

eigenvector basis of B, and the result is the value 𝑏𝑖, then 

|𝜓⟩ collapses to the state |𝑏𝑖⟩: |𝜓⟩  ⎯⎯⎯→  |𝑏𝑖⟩.

• Motivation: Guarantees that if we obtain the value 𝑏𝑖 once, then we 

should get the same value 𝑏𝑖 on a second measurement (provided 

the system is not interferred with in-between).

• Suppose we conduct a 𝐵-measurement on the state |𝜓⟩ = 𝑎1|𝑏1⟩ + ⋯ + 𝑎𝑁|𝑏𝑁⟩.

- Born Rule says: The probability of getting 𝑏𝑖 is 𝑎𝑖
2 < 1.

• Suppose we get 𝑏𝑖 upon initial measurement.

- Projection Postulate says: |𝜓⟩ collapses to |𝑏𝑖⟩.

• Born Rule says: The probability of getting 𝑏𝑖 upon a second measurement is 1!

• So: If we measure the property represented by 𝐵 again, we should get 𝑏𝑖 with 

certainty.
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John von Neumann
(1903-1957)



• Have been considering Color and Hardness (i.e., spin) properties for electrons:

 - Only 2 values.

 - State space is a 2-dimensional vector space.

 - Many orthonormal bases; each associated with a spin property: Color, Hardness, Gelb, 

Scrad, etc.; all of which are mutually incompatible.

• Now consider Position and Momentum properties:

 - Infinite continuum of values.

 - State space is an infinite-dimensional vector space (!).

 - Two distinct orthonormal bases; one associated with Position, the 

other with Momentum; both of which are mutually incompatible.

Aside: The Wave Function

- Let 𝑋 be the operator that represents the property of Position.
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- Let the eigenvectors and eigenvalues of 𝑋 be given by |𝑥⟩ and 𝑥:

   𝑋|𝑥⟩ = 𝑥|𝑥⟩

- There are an infinite number of values for 𝑥, and thus an infinite 

number of eigenvectors |𝑥⟩!



• Suppose |𝜓⟩ represents the state of an electron located at some position.

- All of the infinite number of position eigenvectors |𝑥⟩ are orthogonal to 

each other and form a basis for the ∞-dim position state space.

- Any expansion coefficient 𝑎𝑥 is given by 𝑎𝑥 = ⟨𝜓|𝑥⟩, where 𝑥 can be any 

number from −∞ to +∞!

|𝜓⟩ = 𝑎1|1⟩ + 𝑎1.00001|1.00001⟩ + ⋯ + 𝑎72.93|72.93⟩ + ⋯

• Can expand |𝜓⟩ in eigenvectors |𝑥⟩ of position operator 𝑋:
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• According to the Born Rule:

  Pr(electron is located at position 𝑥 in state |𝜓⟩) = |⟨𝜓|𝑥⟩|2 = |𝜓(𝑥)|2

The square of the amplitude 

of the wavefunction 𝜓(𝑥)!

Just a functional way of representing a 

vector that has a continuum of eigenvalues!

- ⟨𝜓|𝑥⟩ is a continuous function, call it 𝜓(𝑥), of 𝑥 called the wave function.



Erwin Schrödinger
(1887-1961)

Schrodinger's (1926) 

"wave mechanics"
(mathematics of waves)

Werner Heisenberg
(1901-1976)

Heisenberg's (1925) 

"matrix mechanics"
(mathematics of matrices)

Dirac's (1926) 

"transformation theory"
(linear algebra; 
functional analysis)Paul Dirac

(1902-1984)
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