03. Vectors and Operators

Vectors and Vector Spaces
 Operators

I. Vectors and Vector Spaces: 9 Easy Steps

<u>1. Vectors</u>

- A vector = a magnitude ("length") *and* a direction
- One way to represent vectors:

- Every point in *x*-*y* plane has a vector $|A\rangle$ associated with it.
- In this example, the collection of all vectors |A>, |B>, |C>, ...
 forms a 2-dimensional *vector space*, call it V.

2. Vector addition

To add vectors |A> and |B> in V, place tail of |B> to head of |A> to form a third vector in V, |A>+|B>, whose tail is the tail of |A> and whose head is the head of |B>:

3. Scalar (number) multiplication

• *Numbers* can be multiplied to vectors. The result is another vector.

<u>*Ex*</u>: $5|A\rangle$ is a vector in *V* that you get by multiplying the vector $|A\rangle$ by the number 5.

4. Inner-product (or dot-product)

- Vectors can be multiplied to each other.
- One type of vector multiplication is called the *inner-product*.
- The inner-product of two vectors |A>, |B> is written as (A|B> and is a number defined by:

length of $|A\rangle$ length of $|B\rangle$

angle between |A> and |B>

<u>Note</u>: This means $\langle A|A \rangle = |A||A| \cos(0) = |A|^2$. So the *length* of a vector $|A\rangle$ is given by $|A| = \sqrt{\langle A|A \rangle}$

5. Orthogonality

Two non-zero-length vectors |A> and |B> are *orthogonal* (perpendicular) just when their inner-product is zero: (A|B> = 0.

<u>6. Dimensionality</u>

• The *dimension* of a linear vector space is equal to the maximum number *N* of mutually orthogonal vectors.

7. Orthonormal bases

• An *orthonormal basis* of an *N*-dimensional vector space is a set of *N* mutually orthogonal vectors, each with unit length (or *norm*).

<u>Note</u>: An N-dim vector space can have many different orthonormal bases!

<u>*Ex*</u>: Let N = 3.

Then $|A_1\rangle$, $|A_2\rangle$, $|A_3\rangle$ and $|A_1\rangle$, $|A_2'\rangle$, $|A_3'\rangle$ are two different orthonormal bases:

<u>8. Expansion in an orthonormal basis</u>

- In an *N*-dimensional vector space, any vector |B> can be *expanded* in terms of any orthonormal basis.
 - <u>Suppose</u>: $|A_1\rangle$, $|A_2\rangle$, ... $|A_N\rangle$ are N orthonormal basis vectors.
 - *Suppose*: |*B*) is an *N*-dim vector.
 - <u>Then</u>: $|B\rangle = b_1|A_1\rangle + b_2|A_2\rangle + \dots + b_N|A_N\rangle$.
 - <u>And</u>: The numbers $b_i = \langle A_i | B \rangle$, i = 1, ..., N, are called *expansion coefficients*.

9. Column vectors and row vectors

• One way to represent vectors is in terms of columns or rows of their expansion coefficients in a given basis:

Ex:
$$|B\rangle = b_1|A_1\rangle + b_2|A_2\rangle + b_3|A_3\rangle$$

$$|B\rangle = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = b_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + b_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

column vector

<u>*Rule*</u>: To turn a column vector into a row vector, take the complex conjugate of its expansion coefficients:

$$\langle B| = b_1^* \langle A_1| + b_2^* \langle A_2| + b_3^* \langle A_3|$$

$$\langle B | = (b_1^*, b_2^*, b_3^*) = b_1^*(1, 0, 0) + b_2^*(0, 1, 0) + b_3^*(0, 0, 1)$$

row vector

II. Operators: 3 Easy Steps

<u> 1. Linear Operators</u>

A *linear operator O* is a map that assigns to any vector |A>, another vector O|A>, such that, for any other vector |B> and numbers n, m,

 $O(n|A\rangle + m|B\rangle) = n(O|A\rangle) + m(O|B\rangle)$

<u>*Ex*</u>: *Rotation operator* = a map *R* that assigns to any vector another one that is rotated clockwise by 90° about vector $|C\rangle$, is a linear operator.

2. Matrix representation of linear operators

- An operator can be represented by its *components* in a given basis.
- The *components* O_{ij} (i, j = 1, ..., N) of an operator O in the basis |A₁⟩, ..., |A_N⟩ are defined by:

$$O_{ij} \equiv \langle A_i | O | A_j \rangle$$

<u>Note</u>: These are *numbers*: the result of taking the inner-product of the *vectors* $|A_i\rangle$ and $O|A_j\rangle$.

• The components O_{ij} of a linear operator form the elements of a *matrix*. *i*th row *j*th column

> <u>Ex</u>: 2-dim operator O in $|A_1\rangle$, $|A_2\rangle$ basis. $O = \begin{bmatrix} O_{11} & O_{12} \\ O_{21} & O_{22} \end{bmatrix}$

- Column and row vectors are special cases of matrices:
 - A column vector is a matrix with a single column.
 - A row vector is a matrix with a single row.

Matrix multiplication

• To multiply two matrices *A* and *B*:

(1) The number of *columns* of *A* must be equal to the number of *rows* of *B*.

(2) *Row into Column Rule*: If *A* is an $n \times m$ matrix and *B* is an $m \times r$ matrix, their product is an $n \times r$ matrix *C* with entries given by:

$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{im}B_{mj}$$

$$\begin{pmatrix} A_{11} & \cdots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nm} \end{pmatrix} \begin{pmatrix} B_{11} & \cdots & B_{1r} \\ \vdots & \ddots & \vdots \\ B_{m1} & \cdots & B_{mr} \end{pmatrix} = \begin{pmatrix} C_{11} & \cdots & C_{1r} \\ \vdots & \ddots & \vdots \\ C_{n1} & \cdots & C_{nr} \end{pmatrix}$$
$$n \times m \qquad m \times r \qquad n \times r$$

<u>For instance</u>: $C_{11} = A_{11}B_{11} + A_{12}B_{21} + \dots + A_{1m}B_{m1}$

$$\underline{Ex}: \ O = \begin{pmatrix} O_{11} & O_{12} \\ O_{21} & O_{22} \end{pmatrix}, \quad |B\rangle = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \quad O|B\rangle = \begin{pmatrix} O_{11} & O_{12} \\ O_{21} & O_{22} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} O_{11}b_1 + O_{12}b_2 \\ O_{21}b_1 + O_{22}b_2 \end{pmatrix} \\ 2 \times 2 \qquad 2 \times 1 \qquad 2 \times 1 \qquad 2 \times 1$$

3. Eigenvectors and Eigenvalues

- An *eigenvector* of an operator *O* is a vector $|\lambda\rangle$ that does not change its direction when *O* acts on it: $O|\lambda\rangle = \lambda |\lambda\rangle$, for some number λ .
- An *eigenvalue* λ of an operator *O* is the number that results when *O* acts on one of its eigenvectors.
- <u>*Convention*</u>: Eigenvectors $|\lambda\rangle$ are labeled by their eigenvalues λ .

- <u>Note</u>: λ and |λ⟩ are different mathematical objects: λ is a *number* and |λ⟩ is a *vector*.
- <u>Also note</u>: $|\lambda\rangle$ and $\lambda|\lambda\rangle$ are two *different* vectors. They point in the same direction but have different lengths.

Example:

- Let *O* be a 4-dim operator with matrix representation in a particular basis given by: $O = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 3/2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -7 \end{pmatrix}$ • Let *O* be a 4-dim operator with matrix
- Then it has 4 eigenvectors given by:

$$A\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \quad |B\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \quad |C\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \quad |D\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Check:

$$\underbrace{CK}: \\ O|A\rangle = \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 3/2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -7 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 5|A\rangle$$

- <u>Similarly</u>: $O|B\rangle = 3/2|B\rangle$, $O|C\rangle = 2|C\rangle$, $O|D\rangle = -7|D\rangle$
- We say: " $|A\rangle$ is an eigenvector of *O* with eigenvalue 5, $|B\rangle$ is another eigenvector of O with eigenvalue 3/2, etc..."