03. Vectors and Operators

I. Vectors and Vector Spaces: 9 Easy Steps

1. Vectors

- A vector $=$ a magnitude ("length") and a direction
- One way to represent vectors:

- Every point in $x-y$ plane has a vector $|A\rangle$ associated with it.
- In this example, the collection of all vectors $|A\rangle,|B\rangle,|C\rangle, \ldots$ forms a 2-dimensional vector space, call it V.

2. Vector addition

- To add vectors $|A\rangle$ and $|B\rangle$ in V, place tail of $|B\rangle$ to head of $|A\rangle$ to form a third vector in $V,|A\rangle+|B\rangle$, whose tail is the tail of $|A\rangle$ and whose head is the head of $|B\rangle$:

3. Scalar (number) multiplication

- Numbers can be multiplied to vectors. The result is another vector.

```
\(\underline{E x}: 5|A\rangle\) is a vector in \(V\) that you get by multiplying the
``` vector \(|A\rangle\) by the number 5 .

\section*{4. Inner-product (or dot-product)}
- Vectors can be multiplied to each other.
- One type of vector multiplication is called the inner-product.
- The inner-product of two vectors \(|A\rangle,|B\rangle\) is written as \(\langle A \mid B\rangle\) and is a number defined by:

Note: This means \(\langle A \mid A\rangle=|A||A| \cos (0)=|A|^{2}\).
So the length of a vector \(|A\rangle\) is given by \(|A|=\sqrt{\langle A \mid A\rangle}\)

\section*{5. Orthogonality}
- Two non-zero-length vectors \(|A\rangle\) and \(|B\rangle\) are orthogonal (perpendicular) just when their inner-product is zero: \(\langle A \mid B\rangle=0\).
\[
\text { Check: }\langle A \mid B\rangle=|A||B| \cos \theta=0 \text {, just when } \theta=90^{\circ} \text {, given }|A| \neq 0 \neq|B| .
\]

\section*{6. Dimensionality}
- The dimension of a linear vector space is equal to the maximum number \(N\) of mutually orthogonal vectors.

\section*{7. Orthonormal bases}
- An orthonormal basis of an \(N\)-dimensional vector space is a set of \(N\) mutually orthogonal vectors, each with unit length (or norm).

Note: An \(N\)-dim vector space can have many different orthonormal bases!
\(\underline{E x}:\) Let \(N=3\).
Then \(\left|A_{1}\right\rangle,\left|A_{2}\right\rangle,\left|A_{3}\right\rangle\) and \(\left|A_{1}\right\rangle,\left|A_{2}{ }^{\prime}\right\rangle,\left|A_{3}{ }^{\prime}\right\rangle\) are two different orthonormal bases:

\section*{8. Expansion in an orthonormal basis}
- In an \(N\)-dimensional vector space, any vector \(|B\rangle\) can be expanded in terms of any orthonormal basis.
- Suppose: \(\left|A_{1}\right\rangle,\left|A_{2}\right\rangle, \ldots\left|A_{N}\right\rangle\) are \(N\) orthonormal basis vectors.
- Suppose: \(|B\rangle\) is an \(N\)-dim vector.
- Then: \(|B\rangle=b_{1}\left|A_{1}\right\rangle+b_{2}\left|A_{2}\right\rangle+\ldots+b_{N}\left|A_{N}\right\rangle\).
- And: The numbers \(b_{i}=\left\langle A_{i} \mid B\right\rangle, i=1, \ldots, N\), are called expansion coefficients.
\(\underline{E x}\) : Let \(N=3\).

\section*{9. Column vectors and row vectors}
- One way to represent vectors is in terms of columns or rows of their expansion coefficients in a given basis:
\(\underline{E x}:|B\rangle=b_{1}\left|A_{1}\right\rangle+b_{2}\left|A_{2}\right\rangle+b_{3}\left|A_{3}\right\rangle\)
\[
\begin{gathered}
|B\rangle=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=b_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+b_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+b_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\bigvee_{\text {column vector }}
\end{gathered}
\]

Rule: To turn a column vector into a row vector, take the complex conjugate of its expansion coefficients:
\[
\begin{aligned}
& \langle B|=b_{1}{ }^{*}\left\langle A_{1}\right|+b_{2}{ }^{*}\left\langle A_{2}\right|+b_{3}{ }^{*}\left\langle A_{3}\right| \\
& \langle B|=\left(b_{1}{ }^{*}, b_{2}{ }^{*}, b_{3}{ }^{*}\right)=b_{1}{ }^{*}(1,0,0)+b_{2}{ }^{*}(0,1,0)+b_{3}{ }^{*}(0,0,1) \\
& \text { Grow vector }^{\text {row }} \text {. }
\end{aligned}
\]

\section*{II. Operators: 3 Easy Steps}

\section*{1. Linear Operators}
- A linear operator \(O\) is a map that assigns to any vector \(|A\rangle\), another vector \(O|A\rangle\), such that, for any other vector \(|B\rangle\) and numbers \(n, m\),
\[
O(n|A\rangle+m|B\rangle)=n(O|A\rangle)+m(O|B\rangle)
\]

Ex: Rotation operator \(=\) a map \(R\) that assigns to any vector another one that is rotated clockwise by \(90^{\circ}\) about vector \(|C\rangle\), is a linear operator.

\section*{2. Matrix representation of linear operators}
- An operator can be represented by its components in a given basis.
- The components \(O_{i j}(i, j=1, \ldots, N)\) of an operator \(O\) in the basis \(\left|A_{1}\right\rangle, \ldots,\left|A_{N}\right\rangle\) are defined by:
\[
O_{i j} \equiv\left\langle A_{i}\right| O\left|A_{j}\right\rangle
\]

Note: These are numbers: the result of taking the inner-product of the vectors \(\left|A_{i}\right\rangle\) and \(O\left|A_{j}\right\rangle\).
- The components \(O_{i j}\) of a linear operator form the elements of a matrix. \(i\) th row \(\quad j\) th column
\[
\begin{aligned}
& \text { Ex: 2-dim operator } O \text { in }\left|A_{1}\right\rangle,\left|A_{2}\right\rangle \text { basis. } \\
& \qquad O=\left[\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right]
\end{aligned}
\]
- Column and row vectors are special cases of matrices:
- A column vector is a matrix with a single column.
- A row vector is a matrix with a single row.

\section*{Matrix multiplication}
- To multiply two matrices \(A\) and \(B\) :
(1) The number of columns of \(A\) must be equal to the number of rows of \(B\).
(2) Row into Column Rule: If \(A\) is an \(n \times m\) matrix and \(B\) is an \(m \times r\) matrix, their product is an \(n \times r\) matrix \(C\) with entries given by:
\[
\begin{aligned}
& C_{i j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i m} B_{m j} \\
& \left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 m} \\
\vdots & \ddots & \vdots \\
A_{n 1} & \cdots & A_{n m}
\end{array}\right)\left(\begin{array}{ccc}
B_{11} & \cdots & B_{1 r} \\
\vdots & \ddots & \vdots \\
B_{m 1} & \cdots & B_{m r}
\end{array}\right)=\left(\begin{array}{ccc}
C_{11} & \cdots & C_{1 r} \\
\vdots & \ddots & \vdots \\
C_{n 1} & \cdots & C_{n r}
\end{array}\right) \\
& n \times m
\end{aligned}
\]

For instance: \(C_{11}=A_{11} B_{11}+A_{12} B_{21}+\cdots+A_{1 m} B_{m 1}\)
\[
\begin{gathered}
\underline{E x}: \quad O=\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right), \quad|B\rangle=\binom{b_{1}}{b_{2}}, \quad O|B\rangle=\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right)\binom{b_{1}}{b_{2}}=\binom{O_{11} b_{1}+O_{12} b_{2}}{O_{21} b_{1}+O_{22} b_{2}} \\
2 \times 2
\end{gathered}
\]

\section*{3. Eigenvectors and Eigenvalues}
- An eigenvector of an operator \(O\) is a vector \(|\lambda\rangle\) that does not change its direction when \(O\) acts on it: \(O|\lambda\rangle=\lambda|\lambda\rangle\), for some number \(\lambda\).
- An eigenvalue \(\lambda\) of an operator \(O\) is the number that results when \(O\) acts on one of its eigenvectors.
- Convention: Eigenvectors \(|\lambda\rangle\) are labeled by their eigenvalues \(\lambda\).
- Note: \(\lambda\) and \(|\lambda\rangle\) are different mathematical objects: \(\lambda\) is a number and \(|\lambda\rangle\) is a vector.
- Also note: \(|\lambda\rangle\) and \(\lambda|\lambda\rangle\) are two different vectors. They point in the same direction but have different lengths.

\section*{Example:}
- Let \(O\) be a 4 -dim operator with matrix
\[
O=\left(\begin{array}{cccr}
5 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -7
\end{array}\right)
\]
- Then it has 4 eigenvectors given by:
\[
|A\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad|B\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad|C\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad|D\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\]
- Check:
\[
O|A\rangle=\left(\begin{array}{cccr}
5 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -7
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
5 \\
0 \\
0 \\
0
\end{array}\right)=5|A\rangle
\]
- Similarly: \(O|B\rangle=3 / 2|B\rangle, \quad O|C\rangle=2|C\rangle, O|D\rangle=-7|D\rangle\)
- We say: " \(|A\rangle\) is an eigenvector of \(O\) with eigenvalue \(5,|B\rangle\) is another eigenvector of \(O\) with eigenvalue \(3 / 2\), etc..."```

