Bell Experiment

Here's a slightly more formal derivation of the literal $Q M$ prediction discussed in class.
The initial state is an $E P R$ state $|\Psi\rangle$ that anti-correlates the spin-orientations of the particles along the same spin axis. There are 3 ways to represent it in terms of axes V, R, L :

$$
\sqrt{1 / 2}|\uparrow\rangle_{1}|\downarrow\rangle_{2}-\sqrt{1 / 2}|\downarrow\rangle_{1}|\uparrow\rangle_{2} \quad \text { or } \quad \sqrt{1 / 2}|\uparrow\rangle_{1}|\searrow\rangle_{2}-\sqrt{1 / 2}|\searrow\rangle_{1}|\nwarrow\rangle_{2} \quad \text { or } \quad \sqrt{1 / 2}|\tau\rangle_{1}|\zeta\rangle_{2}-\sqrt{1 / 2}|\measuredangle\rangle_{1}|\tau\rangle_{2}
$$

Spin states along different axes are related via the technical result (see next page for proof):

$$
\begin{aligned}
& |\uparrow\rangle=\cos (\theta / 2)\left|\uparrow^{\prime}\right\rangle+\sin (\theta / 2)\left|\downarrow^{\prime}\right\rangle \\
& |\downarrow\rangle=\sin (\theta / 2)\left|\uparrow^{\prime}\right\rangle-\cos (\theta / 2)\left|\downarrow^{\prime}\right\rangle
\end{aligned} \quad \theta=\text { angle between } \uparrow \text { and } \uparrow^{\prime}
$$

Examples:

$$
\begin{aligned}
|\uparrow\rangle & =\cos \left(120^{\circ} / 2\right)|\nearrow\rangle+\sin \left(120^{\circ} / 2\right)|\measuredangle\rangle & |\uparrow\rangle & =\cos \left(90^{\circ} / 2\right)|\rightarrow\rangle+\sin \left(90^{\circ} / 2\right)|\leftarrow\rangle \\
& =\frac{1}{2}|\nearrow\rangle+\frac{\sqrt{3}}{2}|\measuredangle\rangle & & =\sqrt{1 / 2}|\rightarrow\rangle+\sqrt{1 / 2}|\leftarrow\rangle
\end{aligned}
$$

Recall: One of the $\sum \begin{aligned} & \text { relations for the } \\ & \text { eigenvectors of Albert's }\end{aligned}$ Color and Hardness

NOW: Suppose the initial state is $|\Psi\rangle=\sqrt{1 / 2}|\uparrow\rangle_{1}|\downarrow\rangle_{2}-\sqrt{1 / 2}|\downarrow\rangle_{1}|\uparrow\rangle_{2}$ and we want to measure particle 1's spin along V and particle 2's spin along L. To apply the Born Rule, we must first expand $|\Psi\rangle$ in eigenvector bases of V and L. It's already in an eigenvector basis of V; but we need to expand it's particle 2-part in terms of L states:

$$
\begin{aligned}
& |\downarrow\rangle_{2}=\frac{\sqrt{3}}{2}|\nearrow\rangle_{2}-\frac{1}{2}|\zeta\rangle_{2} \\
& |\uparrow\rangle_{2}=\frac{1}{2}|\nearrow\rangle_{2}+\frac{\sqrt{3}}{2}|\zeta\rangle_{2}
\end{aligned}
$$

SO:

$$
\begin{aligned}
|\Psi\rangle & =\frac{1}{\sqrt{2}}|\uparrow\rangle_{1}\left\{\frac{\sqrt{3}}{2}|\nearrow\rangle_{2}-\frac{1}{2}|\zeta\rangle_{2}\right\}-\frac{1}{\sqrt{2}}|\downarrow\rangle_{1}\left\{\frac{1}{2}|\nearrow\rangle_{2}-\frac{\sqrt{3}}{2}|\measuredangle\rangle_{2}\right\} \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}|\uparrow\rangle_{1}|\nearrow\rangle_{2}-\frac{1}{2 \sqrt{2}}|\uparrow\rangle_{1}|\measuredangle\rangle_{2}-\frac{1}{2 \sqrt{2}}|\downarrow\rangle_{1}|\nearrow\rangle_{2}-\frac{\sqrt{3}}{2 \sqrt{2}}|\downarrow\rangle_{1}|\zeta\rangle_{2}
\end{aligned}
$$

Now we can apply the Born Rule:
$\operatorname{Pr}($ spin-orientations of \#1 and \#2 differ along V, L in state $|\Psi\rangle)=\left|-\frac{1}{2 \sqrt{2}}\right|^{2}+\left|-\frac{1}{2 \sqrt{2}}\right|^{2}=1 / 4$
By rotational symmetry, this holds for spin measurements along all other pairs of axes as well.

Now let's derive the technical result from the previous page:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { How to relate spin axes (technical result): In general, } \\
\left.\qquad \begin{array}{c}
(\operatorname{spin}-\mathrm{up} \text { on } z)
\end{array}=\begin{array}{c}
\text { spin-up on } \left.z^{\prime}\right] \\
\operatorname{Prob}=\cos ^{2}(\theta / 2)
\end{array}+\begin{array}{c}
\text { spin-down on } z^{\prime}
\end{array}\right] \\
\operatorname{Prob}=\sin ^{2}(\theta / 2)
\end{array} \\
& \theta=\text { angle between axes } z \text { and } z^{\prime}
\end{aligned}
$$

First recall: We're talking about a particular property: Spin-along-an-axis. For electrons (and other spin- $1 / 2$ particles), this property has only two values: spin-up-along-the-axis, spin-down-along-the-axis. Since the axis can point in any direction in 3-dim physical space, there can be an infinite number of such properties, one for each axis/direction in 3-space. Albert calls two of them Hardness and Color. It turns out that these are spin properties along axes that are at 90° to each other. Here's one way to represent their relation to each other, and to another spin axis.

What is the relation between $S_{z^{\prime}}, S_{z}$, and S_{x} ? We have:

$$
\begin{align*}
& S_{z}=S_{z^{\prime}} \cos \theta \tag{1}\\
& S_{x}=S_{z^{\prime}} \sin \theta \tag{2}
\end{align*}
$$

Now multiply (1) on both sides by $\cos \theta$, and (2) on both sides by $\sin \theta$, and then add them together:

$$
S_{z^{\prime}}=S_{x} \sin \theta+S_{z} \cos \theta
$$

In terms of matrices, recall:

$$
\begin{array}{rrl}
S_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & S_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) & \text { Eigenvectors of } S_{z} \text { (Hardness): } \\
\begin{array}{c}
\text { Hardness } \\
\text { operator }
\end{array} & \mid \text { hard }\rangle=\binom{1}{0} & \mid \text { soft }\rangle=\binom{0}{1} \\
\text { operator }
\end{array}
$$

So:

$$
S_{z^{\prime}}=S_{x} \sin \theta+S_{z} \cos \theta=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \longleftarrow \begin{aligned}
& \text { The general form of the operator for spin } \\
& \text { along an axis } z^{\prime} \text { inclined at } \theta \text { from the } z- \\
& \text { axis, in the } S_{z} \text { eigenvector basis. (Note: } \\
& \text { when } \theta=90^{\circ} \text {, we get the Color operator!) }
\end{aligned}
$$

The eigenvectors of $S_{z^{\prime}}$ then turn out to be:

$$
\left|\uparrow^{\prime}\right\rangle=\binom{\cos (\theta / 2)}{\sin (\theta / 2)} \quad\left|\downarrow^{\prime}\right\rangle=\binom{\sin (\theta / 2)}{-\cos (\theta / 2)}
$$

Explicitly, $S_{z^{\prime}}\left|\uparrow^{\prime}\right\rangle=\left|\uparrow^{\prime}\right\rangle$, and $S_{z^{\prime}}\left|\downarrow^{\prime}\right\rangle=-\left|\downarrow^{\prime}\right\rangle$. To check, recall the trigonometric half-angle formulas:

$$
\begin{aligned}
& \sin \theta=2 \sin (\theta / 2) \cos (\theta / 2) \\
& \cos \theta=\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2)
\end{aligned}
$$

(Note: when $\theta=90^{\circ}$, we get the Color eigenvectors!)

SO: The relations between the eigenvectors of S_{z} (Hardness) and those of $S_{z^{\prime}}$ are:

$$
\begin{array}{ll}
|\uparrow\rangle=\cos (\theta / 2)\left|\uparrow^{\prime}\right\rangle+\sin (\theta / 2)\left|\downarrow^{\prime}\right\rangle & \left|\uparrow^{\prime}\right\rangle=\cos (\theta / 2)|\uparrow\rangle+\sin (\theta / 2)|\downarrow\rangle \\
|\downarrow\rangle=\sin (\theta / 2)\left|\uparrow^{\prime}\right\rangle-\cos (\theta / 2)\left|\downarrow^{\prime}\right\rangle & \left|\downarrow^{\prime}\right\rangle=\sin (\theta / 2)|\uparrow\rangle-\cos (\theta / 2)|\downarrow\rangle
\end{array}
$$

And this produces the result we wanted (in particular, the result we used is given by the first equality). For instance, if you're a hard electron (an electron with spin-up-along-z-axis) in state $|\uparrow\rangle$, then the probability that a measurement of spin along the z^{\prime} axis yields the value spin-up is:
$\operatorname{Pr}($ value of Spin-along-z'-axis is up in state $|\uparrow\rangle)=|\cos (\theta / 2)|^{2}=\cos ^{2}(\theta / 2)$

