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Moore Chap 11:  The Löwenheim-Skolem Theorem
Recall:  Set Theory -- attempt to mathematically codify the concept of infinity
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ZF axioms:
(ZF1) Two sets are equal if and only if they have the same members.  (Axiom of Extensionality)

(ZF2) The empty set exists.  (Empty Set Axiom)

(ZF3) Given any sets x and y, there is a set z whose members are x and y.  (Axiom of Pairing)

(ZF4) Given any set x, there is a set y which has as its members all members of members of x.  (Axiom of Unions)

(ZF5) Given any set x, there is a set y which has as its members all the subsets of x.  (Powerset Axiom)

(ZF6) Given any set x and a function on x, there is a set y which has as its members all the images of members of x under this function.  (Any

“set-sized” collection of sets is a set.)  (Axiom Scheme of Replacement)

(ZF7) An infinite set exists.  (Axiom of Infinity)

(ZF8) Every non-empty set x contains a member which is disjoint from x.  (Axiom of Foundation)

(AC) For any non-empty set x, there is a set y which has precisely one element in common with each member of x.  (Axiom of Choice)

Topics
I. ZF Formal Set Theory
II. Advantages
III. Problems:  Gödel and L-S Theorem
IV. Skolem Paradox

I.  Zermelo-Fraenkel (ZF) Formal Set Theory
Primitives of ZF: Individuals: Sets (“pure” iterative sets)

Property: set-membership

Formal Rules of ZF: (I) First-Order Logic

(II) ZF axioms

II.  Advantages:

  (A) Precise notion of “set”:  avoids paradoxes of the One and the Many (Russell’s paradox, Set of Sets Paradox, etc)

  (B) Precise notions of infinity:  ZF Set theory includes Cantor’s ordinals and cardinals:

empty Set ∅

ω = ℵ 0

65,536 Sets
below Stage 5!
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The number of
Sets here has
20,000 digits!

ε0

First infinite cardinal/ordinal (Õ)

All Sets here
are finite

All Sets here are
countable (same
size as Õ)

•
•

•

•
•

•

•

•

ℵ 1

ℵ ω

κ = ℵ κ

Second infinite cardinal
(first uncountable ordinal)

First cardinal to be preceded
by infinitely many cardinals

First cardinal that can only be named
by the ordinal that is as big as itself

“inaccessible” cardinals
(ZF axioms cannot be used to
prove the existence of these Sets)

All Sets here and
above are
uncountable
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III.  Problems:

(A) (Gödel)  ZF Formal Set Theory includes formal arithmetic as a part (recall that the natural numbers can be

defined in terms of Sets).

SO:

There are truths about Sets that

cannot be proven within ZF.

Gödel’s 1st

Incompleteness

Theorem

If ZF is consistent, then its consistency

cannot be proven within ZF.

Gödel’s 2nd

Incompleteness

Theorem

(B) Do we know what we’re talking about?  (Do we really know what ZF is about?)

Problem of how to interpret ZF.

Löwenheim-Skolem Theorem:

If a first order formal system S is consistent, then S has

a model whose domain is a countable set.

SO: If S is consistent, then we can always interpret it as describing only countably many Things.

an interpretation that makes
all theorems of S true

the set of Things that the
interpretation is talking about

Applies to ZF Set Theory:  ZF is
a first-order formal system.

Consequences for ZF:

(1) No matter how many true statements from the language of ZF we are given, we could never tell if the

speaker was talking about Sets or natural numbers (or any countable collection of Things).

(2) BUT:  This seems to be a Big Problem:  What about uncountable Sets?

First note: “Ordinary” languages: Interpretations are (usually) easy to fix.  The speaker can always point to the

objects being referred to in the language (ostensive definitions).

ZF Set Theory language: We can’t point to Sets.  Is there a way to fix the subject matter of the language of

ZF to unambiguously be about Sets?  The Löwenheim-Skolem Theorem says “No”:

Under the “intended” interpretation of ZF,

there are such Things as uncountable

Sets (the Vast majority of Sets).

L-S Theorem says ZF can be

interpreted as being about only

countable Things.

How can an uncountable Thing be

interpreted as a countable Thing?
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IV.  The Skolem Paradox

Under its intended interpretation, ZF refers to uncountable Sets.

BUT:  The L-S Theorem says we can always interpret ZF as only referring to countable sets.

SO:  How can we interpret an uncountable Set in terms of a countable set?

Example: How can we interpret the sentence “The powerset ℘ (Õ) of Õ is uncountable”

only in terms of countable sets?

General idea:  The L-S Theorem allows us to do the following:

Take a small slice M off the bottom of the Set Hierarchy such that:

  (1) M is a countably infinite Set

  (2) M serves as an interpretation of ZF:  The members of M can be interpreted as the

subject matter of ZF.  Under this interpretation, an “M-set” corresponds to a “ZF Set”.

M

Countable Sets

•
ℵ 1

L-S Theorem:  Everything ZF says

about all Sets (countable and

uncountable) in the Set Hierarchy

can be reinterpreted as statements

about M-sets.  (i.e., to do ZF Set

theory, all we really need is M -- we

don’t need the entire Hierarchy!)

Skolem paradox:  How can

an uncountable Set way up

here in the Hierarchy be

thought of as an M-set way

down here?

Formal Resolution of Skolem Paradox:

Recall: To say “Set A is uncountable” means “There is another set B such that the members of

A cannot be paired in 1-1 fashion with the members of B”.

... and this just means “Another set C exists whose

members are the pairs of A and B members”

SO: Statements about uncountable sets are interpreted in M as statements about

whether or not certain M-sets exist.

Example: The statement “The powerset ℘ (ω) of ω is uncountable” is interpreted in M as

a statement about certain M-sets:  “There is an M-set M1 (corresponding to

℘ (Õ)) and there is an M-set M2 (corresponding to Õ) and there is not an M-set

corresponding to the set of pairs of members of M1 and M2”

under the “intended”
interpretation, B is Õ

i.e., “Within M, there is a set M1 that looks like ℘ (Õ) and another M2 that looks like

Õ, and these can’t be paired.”
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Outside of M, we can see that all M-sets are really only countable.  The M-set M1 that M says is ℘ (Õ) really isn’t:

outside M, M1 and Õ can be paired, but this requires the existence of a “pairing” Set that isn’t in M.

Lingering Conceptual Problems:

The L-S Theorem says there is nothing intrinsic to ZF that can determine what its intended interpretation is.

In particular:  Anything you can do in ZF, you can do in M.  But we know that ZF extends to Things outside M (i.e., it

extends to Sets in the full Set Hierarchy).

BUT: How do we know that what we take to be the full Hierarchy really is the intended interpretation of ZF?  What if

what we think is the full hierarchy is really a small slice, call it M’, near the bottom of an even larger

hierarchy?

In particular:  What we think are uncountable sets in our hierarchy may really be countable M’-sets in the larger

hierarchy.

Suggests a relativism of the following sort (Skolem):

But recall: The distinction between countable and uncountable Sets is the basic distinction between

types of infinity:

A set can only be said to be countable or

uncountable relative to an interpretation of ZF.

Countably infinite Sets:   Õ, ω, ℵ 0 -- “first level” of infinity

Uncountable Sets:   ℵ 1, ℵ 2, ℵ 3, ... -- each labels the next higher level of infinity

Are we thus left with a relative concept of infinity?
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ZF axioms (8 + Axiom of Choice):

(ZF1) Two sets x, y are the same if and only if they have the same members.  (Axiom of Extensionality)

x = y ↔ (∀ z)(z ∈  x ↔ z ∈  y)

(ZF2) A set x exists that has no members (i.e., the empty set).  (Empty Set Axiom)

(∃ x)(∀ y)~(y ∈  x)

Notation:  (ZF1) and (ZF2) entail there is a unique empty set: Call it ∅ .

(ZF3) Given any sets x and y, there is a “pair” set z whose members are x and y.  (Axiom of Pairing)

(∀ x)(∀ y)(∃ z)(∀ w)(w ∈  z ↔ (w = x ∨  w = y))

Notation:  (ZF1) and (ZF3) entail there is a unique pair set for any given x, y:  Call it {x, y}.

(ZF4) Given any set x, there is a “union” set y which has as its members all members of members of x.  (Axiom of

Unions)

(∀ x)(∃ y)(∀ z)(z ∈  y ↔ (∃ w)(w ∈  x •  z ∈  w))

Notation:  (ZF1) and (ZF4) entail there is a unique union for any set x:  Call it ∪ x.

  Let x ∪  y represent the union set ∪ {x, y} of the pair set of x and y.  (This is used in ZF6.)

(ZF5) Given any set x, there is a set y which has as its members all sets whose members are also members of x

(i.e., y contains all the “subsets” of x).  (Powerset Axiom)

(∀ x)(∃ y)(∀ z)(z ∈  y ↔ (∀ w)(w ∈  z → w ∈  x))

Notation:  (ZF1) and (ZF4) entail there is a unique powerset for any set x:  Call it ℘ (x).

                 Define x ⊆  y (“x is a subset of y”) as ∀ z(z ∈  x → z ∈  y).  Then (ZF5) can be written as:

(∀ x)(∃ y)(∀ z)(z ∈  y ↔ z ⊆  x)

Optional:  Zermelo-Fraenkel (ZF) Formal Set Theory

Formal Rules of ZF: (I) First-Order Logic

(II) ZF axioms

Individuals (infinite): Sets (“pure” iterative sets)

One Property: set-membership (denoted by “∈ ”)

Primitives of ZF

(intended interpretation):
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(ZF6) An infinite set exists.  (Axiom of Infinity)
(∃ x)(∅  ∈  x •  (∀ y)(y ∈  x → y ∪  {y} ∈  x))

Comment:  This axiom guarantees the existence of a set x such that ∅  is a member of x, and for any set y, if y is a

member of x, then so is y ∪  {y}.  The set x thus takes the following form:

{∅ , {∅ }, {∅ , {∅ }}, {∅ , {∅ }, {∅ , {∅ }}}, ... }

∅  is in x.  This implies ∅  ∪  {∅ }, or {∅ }, is in x.  This implies {∅ } ∪  {{∅ }} is in x.  Etc...

(ZF7) Every non-empty set x contains a member which is disjoint from x.  (Axiom of Foundation)

(∀ x)(~x = ∅  → (∃ y)(y ∈  x •  ~(∃ z)(z ∈  y •  z ∈  x)))

Comment:  This axiom says that for any set x other than the empty set, there is a “minimal” member y of x that has no

members in common with members of x.  This rules out circular chains of sets (e.g., x ∈  y and y ∈  z and z ∈  x) and

infinitely descending chains of sets.  In particular, it rules out the possibility of a set being a member of itself (if there was

such a set x, then the infinitely descending chain ... x ∈  x ∈  x ∈  x would be possible).  So Russell-type paradoxes are

avoided.

(ZF8) Given a function A(x, y) (i.e., a map that relates every set x to a unique set y), then for any set z, we can form

a new set w which has as its members all the images of members of z under this function.  (Axiom Scheme of

Replacement)

(∀ x)(∃ !y)A(x, y) → (∀ z)(∃ w)(∀ v)(v ∈  w ↔ (∃ u)(u ∈  z •  A(u, v)))

Comment:  The members of w are formed by collecting together all the sets to which the members of z are mapped by

the function A.  You start with the set z and get the set w by replacing all the members of z with their counterparts under

the function A.  This is called an “Axiom Scheme” since it holds for all possible functions A (so there’s really one axiom

per function A:  you can build a new set from an original by using any appropriate available function).

(AC) For any non-empty set x, there is a set y which has precisely one element in common with each member of x.

(Axiom of Choice)

Comment:  AC doesn’t tell you how to construct y; i.e., it doesn’t say what the “choice” function is that you use to pick out

the members of y from members of x.  All the other axioms do give you recipes for the construction of new sets.  For this

reason, the status of AC as an axiom is sometimes debated.  It is needed in order to prove that all sets can be well-

ordered, so it’s important for Cantor’s theory of ordinals and cardinals.


