
Moore Chap 8:  Cantor and the Mathematics of the Infinite

Recall:  Paradox of the Even Numbers

Claim: There are just as many even natural numbers as natural numbers
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{ 0 , 1 , 2 , 3 , 4 , ............ , n , ..........}

{ 0 , 2 , 4 , 6 , 8 , ............ , 2n , ..........}

Proof:

natural numbers = non-negative
whole numbers (0, 1, 2, ..)

In general:  2 criteria for comparing sizes of sets:

(1) Correlation criterion: Can members of one set be paired with members of

the other?

(2) Subset criterion: Do members of one set belong to the other?

Can now say:

(a) There are as many even naturals as naturals in the correlation sense.

(b) There are less even naturals than naturals in the subset sense.

Moral:
To talk about the infinitely

big, just need to be clear

about what’s meant by size

notion of sets

makes this clear

Bolzano (1781-1848)

Promoted idea that notion of infinity was fundamentally set-theoretic:

To say something is infinite is

just to say there is some set

with infinite members

“God is infinite in knowledge”

means

“The set of truths known by God

has infinitely many members”

SO:  Are there infinite sets? “a many thought of as a one”  -Cantor

Bolzano: Claim: The set of truths is infinite.

Proof: Let p1 be a truth (ex: “Plato was Greek”)

Let p2 be the truth “p1 is a truth”.

Let p3 be the truth “p3 is a truth”.

In general, let pn be the truth “pn-1 is a truth”, for any natural number n.

Dedekind:
(1831-1916)

Claim: The set of thoughts is infinite.

Proof: Let s1 be a thought.

Let s2 be the thought that s1 is a thought.

Let s3 be the thought that s3 is a thought.

In general, let sn be the thought that sn-1 is a thought, for any natural number n.

I.  Sets and Paradoxes of the Infinitely Big

Topics
I. Sets and Paradoxes of the

Infinitely Big
II. Cantor and Diagonal Arguments
III.Cantor’s Theory of Ordinal

Numbers
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BUT:  Can these sets really be treated as complete wholes?

Problem #1 with sets:

Russell’s Paradox

Let R be the set of all sets that do not belong to themselves.

Claim:  R belongs to itself if and only if R does not belong to itself.

There are sets that do belong to themselves:
  - The set of sets
  - The set of things written on this lecture note
But most sets do not belong to themselves.
So R is very likely an infinite set.

Proof: (1) Suppose R belongs to R.

Then R is a set that does not belong to itself.

So R does not belong to R.

(2) Suppose R does not belong to R.

Then R is a set that belongs to itself.

So R does belong to R.

Russell’s Paradox is a paradox of the One and the Many:  It looks like R can’t be thought of as a “one”.

SO:  Sets were introduced initially (in part) to address paradoxes of the Infinitely Big.  But now it seems

we’ve just replaced them with paradoxes of the One and the Many!

II.  Cantor and Diagonal Arguments
- adopted correlation criterion for set-size:

        (1) Set A has the same size as set B just when members of A can be paired with members of B.

        (2) Set A is bigger than set B just when all members of B can be paired with some members of A,

but not with all of them.

Some results:

   1. There are as many even natural numbers as natural numbers.

   2. There are as many real numbers between 0 and 1 as there are real numbers.

Proof:

x

0 1 2 3-3 -2 -1

center of circle
with (0, 1) as arc

0 1 Every point on the arc (i.e., real
number between 0 and 1) is paired
with a real number on the real
number line by means of the dashed
projection lines that originate at the
circle’s center.

3.  All line segments have the same number of points.

Proof:

X Y

A B

All points in XY are paired with all points in AB
by means of dashed projection lines.
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4.  There are more real numbers between 0 and 1 than there are natural numbers.

Proof:  (“Diagonal” Argument)

(i) Pair natural numbers with decimal expansions of reals between 0 and 1.  There are many ways to do this.

One particular way is the following:

0

1

2

3

0 . 3 3 3 3 ... = 1/3

0 . 1 4 1 5 ... = π - 3

0 . 4 1 4 2 ... = √2 - 1

0 . 5 0 0 0 ... = 1/2

..
.

..
.

all reals between 0 and 1
can be given an infinite
decimal expansion

(ii) Construct a real between 0 and 1 that is not listed in the table:

(a) Go down the “diagonal” of the table starting at the first digit in the decimal expansion of the first real.

(b) Write “3” if the digit in the diagonal is a 4; write “4” if the digit in the diagonal is anything else.

our example:   0.4334...

(iii) This real is not listed in the table!

By construction, it differs from the first real in its first decimal place; it differs from the second real in its

second decimal place, etc.  In general, it differs from all listed reals (no matter how they are listed).

BUT:  The table contains all the natural numbers (in its first column).

SO:  There are more real numbers between 0 and 1 than there are natural numbers.

Recall:  There are just as many reals between 0 and 1 as there are reals.

SO:  There are more real numbers than there are natural numbers (even though both are infinite).

— = set of real numbers

Õ = set of natural numbers

5.  There are more sets of natural numbers than there are natural numbers.

Proof:  (“Diagonal” Argument)

(i) Pair natural numbers with sets of natural numbers.

Represent a set of natural numbers
as a sequence of “yeses” and “noes”
depending on whether successive
naturals belong to it or not.

Examples:

Represent {0, 2, 4, 6, 8, ... } as <yes, no, yes, no, yes, ... >
Represent {1, 2} as <no, yes, yes, no, no, no, no, ... >

SO:  One way to do Step (i) is the following:

0

1

2

3

 0  1   2 3 ...

yes no yes ...

no no yes ...

no no no ...

..
.

..
.

..
. ..
.
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(ii) Construct a set of natural numbers that is not listed in the table in the following way:

Go down the diagonal.  Write “no” for each “yes”, and “yes” for each “no”.

our example:  <no, yes, yes, ... >

(iii) By construction, this set of naturals is not listed in the table:  It differs from the first listed set in its first

member; it differs from the second listed set in its second member, etc.  It differs from all listed sets of

naturals, no matter how they are listed.

BUT:  The table lists all natural numbers (in its first column).

SO:  There are more sets of natural numbers than there are naturals.

Terminology: Let A be a set.
The powerset ℘ (A) of A is the set of all subsets of A. ex: A = {a, b}

℘ (A) = { { }, {a}, {b}, {a, b} }

SO:  Result #5 can be stated as:  ℘ (Õ) is larger than Õ.

One Big Question (“Cantor’s Unanswered Question”):

How much larger than Õ is —?

(a)  Is it the “next infinite size up” from Õ?

(b)  Are there intermediate sizes between Õ and —?

The “Continuum Hypothesis” is the claim that the answer is (a).

III.  Cantor’s Theory of Ordinal Numbers

Motivation: The size of a set doesn’t depend on what its members are or how they are ordered.

Important definition:

A well-ordering of a set X (finite or infinite) is an imposition of order on the members of X that

      (1) singles out one member as the first (unless X is the empty set)

      (2) for each member or set of members already specified, singles out its successor (unless no

members are left).

Further Claim:  For any set A, ℘ (A) is larger than A.

Consequence: No limit to how large an infinite set can be!

- Õ is infinite.

- ℘ (Õ) is larger.

- ℘ (℘ (Õ)) is larger still, etc...
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Examples:

1.   < ..., -2, -1, 0, 1, 2, ... >          whole numbers

- Not a well-ordering:  Doesn’t specify a first.

2.   < 0, ..., 1/4, ..., 1/2, ..., 1, ..., 1 1/2, ..., 2, ... >          non-negative rational numbers

- Not a well-ordering:  Doesn’t specify a successor of 0.

3.   < 0, 1, 2, 3, ..., -3, -2, -1 >          whole numbers

naturals negative
wholes

- Not a well-ordering:  Doesn’t specify a successor to Õ.

4.   < 0, 1, 2, 3, ... >          natural numbers Õ

- Well-ordering. no successor specified at the end; but
this is okay, since no members are left.

5.   < 1, 2, 3, ...., 0 >          naturals Õ

- Well-ordering.  (0 is specified as the successor to all the non-negative naturals.)

even
naturals

odd
naturals

6.   < 0, 2, 4, 6, ..., 1, 3, 5, ... >          naturals Õ

some
still left

(i.e., odds)

successor
to all evens

none left --
no need for
successor

- Well-ordering.

Note:  Well-orderings of different sets may have the same “shape” (“length”).

examples: < 1, 2, 3, 4, ..., 0 > well-ordering of Õ

< 3, 5, 7, ..., 1 > well-ordering of odd naturals

<1, 2, 4, 5, ..., 0, 3> well ordering of Õ with “one more member”

same “shape”/”length”

slightly “longer”!

Ordinal numbers:  measure “length” of well-ordered sets in correlation sense:

By definition, ordinals are well-ordered:

    (i) One ordinal is first.

    (ii) For each ordinal, there is another which is its successor.

    (iii) For each set of ordinals (finite or infinite), there is an ordinal that succeeds them all.
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- First ordinals are the natural numbers { 0, 1, 2, 3, ... }.

- The ordinal that succeeds Õ is called “ω”.

the “length” of Õ
not a natural number

- Next ordinal is called “ω + 1”.

  Next is called “ω + 2”.

  etc...

just a name at this
point; not a sum

length of < 1, 2, 3, 4, ..., 0 >

length of < 1, 2, 4, 5, ..., 0, 3 >

- The ordinal that succeeds all “ω + _” ordinals is called “ω + ω” or “ω × 2”.

- Next is “(ω × 2) + 1”.

  etc...

length of < 0, 2, 4, ..., 1, 3, 5, ... >

length of < 2, 4, 6, ..., 1, 3, 5, ..., 0 >

A small part of the ordinals:

0, 1, 2, 3, ...

ω, ω + 1, ω + 2, ...

ω × 2, (ω × 2) + 1, (ω × 2) + 2, ...

ω × 3

ω2, ω2 + 1, ω2 + 2, ...

ω3

ωω, ωω + 1, ωω + 2, ...

ωωω, ..., ωωω, ...
ω

...
...

...

First ordinal to succeed all

of these is called “ε0”.

Claim:  There are as many ordinals

preceding ω as there are preceding ε0.

Burali-Forti Paradox

Consider the set of all ordinals -- call it Ω.  As a set, Ω must have a “length”.

SO:  There must be an ordinal that “measures” this “length”.

BUT:  It can’t be in Ω (no members of Ω are big enough).

SO:  Ω is not the set of all ordinals!  (No set can be “big enough” to contain all the ordinals.)

OR: Since Ω is a set of ordinals, there must be an ordinal that is the successor to Ω.

So Ω cannot be the set of all ordinals.
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Possible Responses:

Burali-Forti:  Ordinals cannot themselves be well-ordered.

Cantor: No such set as Ω.
Some totalities are too big to be considered as sets!

These totalities are “absolutely infinite”.

“inconsistent totalities”
“truly infinite”

maybe “well-behaved” sets like
Õ aren’t really infinite after all

Also Cantor’s response
to Russell’s R

Problem:  Are we back to the basic distinction between

(a)  finite sets (now including “well-behaved” infinities labeled by ordinals)

(b)  infinite sets (misbehaving “true” infinities)

Cantor’s ordinals are used to resolve paradoxes of the Infinitely Big.

BUT:  Are these paradoxes just replaced by paradoxes of the One and the Many?


