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Abstract

In this essay, | consider what condensed matter physics has to say
about the nature of spacetime. In particular, 1 consider the extent to
which spacetime can be modeled as a quantum liquid, with matter and
force fields described by effective field theories of the low-energy excita-
tions of the liquid. After a brief review of effective field theories in 2-dim
highly-correlated condensed matter systems, | evaluate analogies in the
recent physics literature between spacetime and superfluid Helium, and
proposals that suggest spacetime is an emergent phenomenon arising from
the edge states of a 4-dim Quantum Hall liquid. Keywords: spacetime,
effective field theory, condensed matter, quantum gravity
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1 Introduction

In the philosophy of spacetime literature not much attention has been given
to concepts of spacetime arising from condensed matter physics. This essay
attempts to address this. T look at analogies between spacetime and a quan-
tum liquid that have arisen from effective field theoretical approaches to highly
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correlated many- body quantum systems. Such approaches have suggested to
some authors that spacetime can be modeled by a quantum liquid with its
contents (matter and force fields) described by effective field theories (EFTs,
hereafter) of the low-energy excitations of this liquid. While directly relevant
to ongoing debates over the ontological status of spacetime, this programme
also has other consequences that should interest philosophers of physics. It sug-
gests, for instance, a particular attitude towards quantum gravity, as well as an
anti-reductionist attitude towards the nature of symmetries in quantum field
theory. A secondary goal of this essay is to address some of these issues. While
discussion of these topics has appeared in the philosophical and historical liter-
ature (e.g., Cat 1999), the gory theoretical details have not been made explicit.
Moreover, while the topic of EFTs in the philosophy of quantum field theory
literature has also been given some attention (e.g., Castellini 2002, Hartmann
2001, Huggett and Weingard 1995), surprisingly little has been said about how
EFTs arise in condensed matter systems.

The plan of the paper is as follows. Section 2 sets the stage by reviewing some
simple (241)-dim EFTs arising in condensed matter systems. Following the pre-
sentation in Zhang (2004), these include (2+41)-dim quantum electrodynamics
(QED3) in superfluid Helium 4 films and in high temperature superconductors,
and the (241)-dim Chern-Simons gauge theory of the 2-dim Quantum Hall Ef-
fect (QHE). One extraordinary property of these EFTs is the emergence of a
Lorentz-invariant theory in the low-energy sector of a non-relativistic theory (in
the case of the QHE, the relativistic theory emerges at the edges). Section 3
considers the extent to which this carries over to (3+1)-dim. Tt first looks at
claims that the superfluids Helium 3 and Helium 4 provide models for (341)-dim
spacetime. In particular, a growing body of literature indicates how such models
can describe aspects of black hole physics via “acoustic” analogues (e.g., Barcelé
et al. 2005), and Volovik (2001, 2003) has claimed that such models solve the
cosmological constant problem. Section 3 concludes with a look at recent work
(Sparling 2002) that links twistor theory with Zhang and Hu’s (2001) extension
of the QHE to 4-dim. This work suggests that spacetime is an emergent phe-
nomenon that arises from the edge states of a 4-dim quantum Hall liquid. The
conclusion summarizes these results and offers commentary on the relevance of
condensed matter analogues of spacetime to both philosophy of spacetime and
philosophy of quantum field theory.

2 Effective Field Theories in Condensed Matter
Systems

The condensed matter systems to be discussed below are highly-correlated quan-
tum many-body systems; that is, many-body systems that display macroscopic
quantum effects. Examples include superfluids, superconductors, Bose conden-
sates, and quantum Hall liquids. In general, an effective field theory of such a



system describes the dynamics of the states with energy close to zero; z.e., the
“zero modes” of the system. These zero modes can take the following forms

(Volovik 2003, pg. 4):

(1) Bosonic collective modes of the ground state of the system.

(i) Fermionic excitations of the system above its ground state, referred to as
“quasiparticles”.

(iii) Topological defects of the system, primarily in the form of vortices.

In the remainder of this section, T will flesh out this general description by
means of concrete examples, concentrating on EFTs that arise in 2-dim con-
densed matter systems. This review will then inform the discussion in Section 3
of concepts of spacetime arising from higher dimensional systems. In the follow-
ing, two methods will be used to take the low-energy limit of a theory. The first
expands the Lagrangian density about small fluctuations in the field variables
above the ground state and then integrates out the high-energy fluctuations.
An example of this will be the EFT for superfluid Helium 4. Alternatively, the
theory’s energy spectrum can be linearized about its zero points (the points
where it vanishes), and the corresponding low-energy Hamiltonian can then be
determined. Examples of this will be the EFTs for high temperature supercon-
ductors and superfluid Helium 3. (Note that neither of these methods involves
taking a mathematical limit; rather, they are approximation schemes.)

Finally, a few words on the notion of “emergence” may be appropriate. The
examples below suggest to some authors that novel phenomena (fields, parti-
cles, spacetime, etc.) “emerge” in the low-energy limit of certain condensed
matter systems. As will be seen, this sense of emergence consists of both formal
and interpretive elements. The formal element involves a relation between the
emergent structure and the “host” structure; in the present context, this takes
the form of a low-energy limit (viz., low-energy approximation). The inter-
pretive element involves adopting an interpretation under which the emergent
structure is not merely a definitional extension of the host; in other words, the
emergent structure is interpreted to be ontologically distinct from its host. For
instance, the claim that QED3 emerges from a superfluid *He film is based on
both the derivation of the QEDj3 Lagrangian from the low-energy limit of the
* He Lagrangian, and an interpretation (a “duality representation”) in which the
superfluid velocity and density are interpreted as electric and magnetic fields,
respectively.

2.1 Superfluid Helium Films

At low temperatures, liquid Helium forms a superfluid characterized by dis-
sipationless flow and quantized vortices. This superfluid comes in two forms,
depending on the isotope of Helium involved: In addition to two electrons, *He



contains two nucleons and hence is a boson; whereas 3 He contains three nucle-
ons and hence is a fermion. The superfluids formed by these isotopes occur at
different temperatures, but it is believed that both consist of Bose condensates
(in the case of He the condensate is formed from pairs of >He atoms). In this
section I review how QEDj3 arises as an EFT in 2-dimensional *He superfluid
films (3 He will make its appearance in Section 3.1 below).!

The phase transition between the normal liquid and superfluid states can be
described by an order parameter that vanishes above a critical temperature 7,
and becomes finite below T,. The *He order parameter takes the form of a
“macroscopic” wave function ¢y = \/p_oew describing the coherent ground state
of a Bose condensate with density pg and coherent phase #. An appropriate
Lagrangian density describes non-relativistic neutral bosons (viz., *He atoms)
interacting via a quartic potential with coupling constant g2,

, 1
Lage = ip1d;0 — %&w*&-s@ + pele — g% (ele)? (1)

Here m is the mass of a * He atom, and the term involving the chemical potential
p enforces particle number conservation. (1) is invariant under a global U(1)
symmetry with ground state energy density given by Qq(u) = —pu|po|*+97|@ol*.
Minimizing Qg determines the ground state: For g < 0, the ground state van-
ishes, while for y > 0, it is degenerate, given by ¢ = \/11/2g2e!®. The transition
at 4 = 0 can be described qualitatively as a spontaneous breaking of the U(1)
symmetry in which one of the degenerate ground states is chosen, thereby al-
lowing the bosons to condense.

It is perspicacious to rewrite (1) in a form in which the dynamical variables are
the particle density p and the phase #. This form makes the hydrodynamical
properties of the superfluid explicit. If we let ¢ = \/ﬁew , (1) becomes,

1
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(dropping a total divergence and a constant term). The second term represents
the kinetic energy density in which the superfluid velocity v; is identified as
v; = (1/m)8;0. The fact that the macroscopic wave function is unique up to

E“He = _P3t6 — 2—(629)2
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phase entails that the superflow in a multiply-connected domain is quantized,

1 [~ 1
fﬂdi‘:—f@%df:—?nq, (3)
m m

around a closed path encircling a “hole”, where ¢ is an integer. Such holes may
be interpreted as wvortices — points where the real and imaginary parts of g
vanish. Then (3) entails that the superflow about a vortex is quantized.?

1The following draws on pedagogical treatmentsin Wen (2004) and Zee (2003). Throughout
this essay, unless otherwise noted, units are chosen such that A = 1.

2More precisely, vortices are soliton solutions to the equations of motion of (1) characterized
by ¢ = f(r)eie, with boundary conditions f(0) = 0 and f(r) — g, as r — co. Intuitively,
these conditions describe a localized wave with finite energy that does not dissipate over time.



The task now is to find the low-energy limit of (2) and demonstrate that the
resulting EFT restricted to 2-dim is QED3.? This seems initially plausible, given
the similarity between (3) and Gauss’ Law. This similarity can be cashed out in
terms of a “duality” transformation under which vortices become the sources of
a gauge field formally identical to the Maxwell field. One starts by expanding
(2) in small fluctuations in p and 6 about their ground state values: Formally,
we let p = po + dp, 6§ = 6y + d8. Discarding 2nd order terms, one obtains
Lige = Lo[po, bo] + L [0p,06], where the first term reproduces (2), and the
second term describes fluctuation contributions. To obtain a low-energy EFT,
the high-energy contributions to £}, must be eliminated. Note that since the
ground state is a function only of the phase, low-energy excitations take the

form of phase fluctuations. High energy excitations will thus depend on density

/
‘He
dp in the resulting equation of motion, and then substitute back into L, . In

2-dim the result is,

fluctuations. To eliminate these, extremize £ with respect to dp, solve for

1
r. = 7 00) = S L@0), i=12 (4)
with 48 replaced by 8 for the sake of notation. In this derivation, the first term
has been simplified from pod:[4g%po — (1/2m)d?]~19:0. This is justified in the
low- energy limit for momenta k much smaller than \/8¢?pom (Zee 2003, pg.
258). As will be seen, the (1/2m)d? term becomes important in the formalism
for acoustic black holes in Section 3.1. below, where it is the source of curvature
in the acoustic metric. Formally, (4) describes a scalar field propagating at
speed ¢ = 2g%py/m. For units in which ¢ = 1, it can be re-written as

1
QHe - @n#uaugaya pv=20,1,2, (5)

where ¥ is the (24+1)-dim Minkowski metric. (5) is manifestly Lorentz invari-
ant; in fact, it is formally identical to the Lagrangian density for a massless
scalar field propagating in (241)-dim Minkowski spacetime. To obtain QEDs3,
note that in 2 dimensions, the magnetic field is a scalar, whereas the electric
field is a 2-vector. This motivates the following identifications:*

(a) B= o0 = —29%(p — po)
(b) Ei = (1/m)eij0;0 = cijv;

in which the magnetic field is identified with the density, and the electric field
with the superfluid velocity (here ¢;; is the skew volume 2-form). Substituting
into (5), one obtains the Lagrangian density for sourceless QED3

3The following draws on Wen (2004, pp. 82-83; 259-264) and Zee (2003, pp. 257-258;
314-316).

4To derive the equality in (a), extremize (2) with respect to p to obtain the equation of
motion 998 + (1/2m)(8:8)? + 29%(p — po) = 0, and then discard the (1/2m)3? term.
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where F,, = 0,A, — 0, Ay, with the potential A, defined by E; = 0y A; — 0; Ag,
B = 01A3 — 02A1. Now note that (3) entails that the density for “elementary”
vortices (¢ = +1) is given by (1/271')5 x . This can be identified as the Oth
component of a vortex current j# = (1/27)e"**8,0,0, where ¢#** is the skew
volume 3-form.5 This vortex current is the dual of the electromagnetic current,
in so far as adding a source term A, j¥ to (6) and extremizing with respect to
A, produces the sourced Maxwell equations.

Remarks: To recap, we started with the Lagrangian density (1) for a superfluid
‘He film and found that, in the low-energy limit, it becomes the Lagrangian
density for (24+1)-dim quantum electrodynamics. Under a literal interpretation
of the dual representation (6), low energy excitations of such a film take the form
of electric and magnetic fields, the former being given by the superfluid velocity,
and the latter being given by the superfluid density. Moreover, topological
defects (i.e., elementary vortices) take the form of charge-carrying electrons.
This is a first example of a Lorentz-invariant EFT that emerges in the low-
energy limit of a non-relativistic (i.e., Galilei- invariant) theory (1). While
this is by itself remarkable, one might initially question whether (5) has any
additional physical relevance (massless scalar fields after all are limited in their
physical applications). The dual representation (6) lays this question to rest.
Note, however, that this particular dual representation only works in (24+1)-dim,
in which the magnetic field can be identified as the scalar particle density.

2.2 2-dim Superconductors

QED3 also arises in some accounts of high temperature (high-T, hereafter)
cuprate superconductors. Such materials consist of a 2-dim layer of copper
and oxygen atoms and are characterized by an orbital symmetry referred to
as “d-wave” symmetry. Due to this symmetry, the standard BCS Hamiltonian
becomes a relativistic (241)-dim Dirac Hamiltonian in the low energy limit.
QED3 then arises in some attempts to describe the phase transition to d- wave
superconductivity. In this section, after a brief review of BCS theory, T will
indicate how this occurs. The following review will also inform the discussion
of superfluid Helium 3 in section 3.1 below.

Superconductors are experimentally characterized by dissipationless current flow
and the expulsion of external magnetic fields (the Meissner Effect). The phase
transition to the superconducting state is accompanied by the appearance of an
energy gap at the Fermi surface in momentum space that separates occupied
states from unoccupied states. The Bardeen-Cooper-Schrieffer (BCS) theory ex-
plains these effects in terms of a Bose condensate consisting of pairs of electrons

5Note that the form of j5 contracts over skew and symmetric indices; however it is not
identically zero, since for vortices, ¢ is not a globally defined function.



with opposite spin and momenta (Cooper pairs). The order parameter that
describes this condensate 1s called the BCS gap parameter A and characterizes
the energy gap in the superconducting phase.

To flesh this out in just a bit more detail, consider the second-quantized many-
body momentum space BCS Hamiltonian

Hpcs = Z(Ek — )k oCra + Z (Achyel )+ A%e_gyenr)

= Z Xorﬁ ((ex —/1)03+A0++A*0_)XQQ(E). (7

In the first line, the ¢’s are creation/annihilation (particle/hole) operators for
electrons with momentum & and spin a. The first term describes the kinetic
energy in terms of the energy e of an effective electron in a crystal lattice.
The second term describes an effective interaction in which a pair of electrons
with opposite spins and momenta (a Cooper pair) interact via the exchange
of a lattice phonon.® In the second line, the notation has been simplified by
introducing Pauli matrices ¢, and recasting the particle/hole operators as SU(2)
2-spinors XL,B(]_‘;) = (cLa,—iagc_kﬁ).7 Finally the BCS gap parameter A is
defined by,

A= /\Z<c—kick1‘>‘ (8)
k

A takes the form of the expectation value for a Cooper pair annihilation op-
erator, and hence is a measure of the presence of Cooper pairs. It can also
be interpreted as a gap in the energy spectrum for quasiparticle excitations
above the Cooper pair condensate. This is motivated by diagonalizing (7) via
a Bolgoliubov transformation to obtain Hpcg = > ¢T(E)E(E)012/)(E), where
wT(E) = (bITcT’b—kJ«) with the b operators being linear combinations of the ¢’s,
and E2(k) (ex — p)? — |A]? . The b’s are interpreted as creation/annihilation
operators for quasiparticles with energy F, with A representing a constant en-
ergy gap between the Fermi surface and the lowest allowable quasiparticle energy

8The first line is actually a mean field approximation to a Hamiltonian of the general
form Hgeog = Zk,a akcla Cha + A th, C}LTCT—kJ,C—k’J,Ck’T’ where A is a coupling constant.
The mean field approximation involves replacing the interaction term with its expectation
value with respect to a suitably chosen expression for the ground state and applying Wick’s
Theorem. See Annett (2004, pg. 140).

"The Pauli spin matrices are given by o1 = ( (1) (1) ), oy = ( (2) —02 ), o3 =

1 0 . . . . . .
( 0 -1 ), with 04 = (o1 £ i62)/2. Technically, in (7) they act in the particle/hole
configuration space, whereas in the expression for the 2-spinor, o5 acts in the spin space. In
the latter expression, this serves to flip the spin of the second component. Summing over all
spin indices o, 3 then reproduces the interaction term with opposite spins.



state. Under this interpretation, above 7T, the gap parameter vanishes and &
is the energy to create or annihilate an (effective) electron. Below T, the gap
parameter is finite, indicating the presence of Cooper pairs that form a Bose
condensate, and F is the energy to create/annihilate a quasiparticle excitation
of the condensate. Note finally that below T, the energy is never zero due to the
gap; hence a low-energy approximation about zero points cannot be taken. This
can be done, however, for high-7. superconductors for which the gap parameter
has non-trivial symmetries.

To move to high-7;. superconductors, one may first note that a Cooper pair
wavefunction can be expressed as the product of a k-dependent orbital part
and a spin part: schematically, ¥,z (E) = ¢oap¥i, where a, 3 are spin indices,
with the spin part in either a spin singlet state (S = 0) , or a spin triplet
state (S = 1). The gap parameter inherits this structure, Aa,@(];“) = ¢apli.
Conventional superconductors are described by spin singlet Cooper pairs with
Ay = Ain (8) above. Thisis referred to as “s- wave” pairing symmetry, since the
orbital part is constant and hence can be described by an [ = 0, or “s-orbital”,
spherical harmonic function. Cooper pairs for high-T;. superconductors are also
characterized by spin singlets, but the general consensus is that they have a “d-
wave” symmetry, with their orbital parts described by [ = 2 (d-orbital) spherical
harmonics. For example, the d;,-gap parameter is given by®

A = Asink,sink,. (9)

Unlike the s-wave gap parameter (8), the d-wave gap parameter (9) is a function
of k and vanishes at the four points +(kp,0), £(0,kr), where kp = \/2myp is
the Fermi momentum. About these “Fermi” points, quasiparticle excitations
can take place at arbitrarily low energies. The energy spectrum can now be
linearized about these points and the corresponding low-energy Hamiltonian
constructed.

One may start by expanding the 2-spinors in (7) about the Fermi points:®

X(F) = P T (F) + P2 T30 (F) 4+ P2 F13(F) + e F T ayxa(F). (10)
Substituting back into the Fourier transform of (7) and neglecting second order
terms, one obtains the d-wave effective Hamiltonian (Franz, et al. 2002, pg.

12),

8See, e.g., Annett (2004, pg. 162). Current evidence suggests a d 2 _y2 symmetry, under
which Ay = A(coskz —cosky)/2, with nodes at +(7/2,7/2) and +(—n/2, 7/2) (Annett 2004,
pp. 164-166). The dg, gap parameter is obtained by a rotation, and more readily facilitates
taking the low-energy limit. The EFTs for both are identical.

9The following is based on Franz et al. (2002). See also Herbut (2002), and Zhang (2004),

who take the low-energy limit for d_ _y2 Symmetry. The Fourier transformed (configuration
space) spinor is given by x(&) = ﬁ ZE<A eig'fx(z), for momentum cut-off A and phase

space volume V. In (10) the Fermi points have been labeled 1, 2, 3, 4.
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where vp = O¢i /Ok|k=k, is the Fermi velocity and va = OAy/0k|g=k is the
“gap velocity”.1® This is a (241)-dim Hamiltonian for massless Dirac fields. To
see this, note that the corresponding Lagrangian density can be written as,

ew = V1 (%00 + 71vF8s + 12va0y) ¥ + (1 & 2,2 < y) (12)

where the ¥ matrices are given by v = 03®02, 71 = 03®01, ¥2 = —0'3®0'3, and
the 2-spinors have been combined into 4-spinors ¥, = \IIJ{VO (XL Xz)fyo, U, =
(2;,21)70 (Franz et al. 2002, pg. 13). So-defined, the v matrices generate a
Clifford algebra, and the 4-spinors are irreducible representations of this algebra;
in other words, the v matrices are Dirac ¥ matrices, and the 4-spinors are Dirac
4-spinors. £;_, can now be compared with the general form ¥+,d,¥ which
describes a massless Dirac field.

Remarks: While it is “anisotropic”, in so far as, in general, vp # va, the
Lagrangian density (12) nevertheless displays a gapless relativistic energy dis-
persion relation EQ(E) =viki+|va |2k§ (similarly for , y exchanged). Again, it
is a further example of a Lorentz-invariant EF'T that emerges in the low-energy
limit of a non- relativistic theory (7). In particular, under the intended inter-
pretation, the low-energy quasiparticle excitations of a d-wave superconductor
are identified as relativistic massless Dirac fields.

The move to QED3 occurs by coupling the effective Dirac fermions of (12) to a
gauge field generated by vortex excitations. This is done in a manner similar in
principle to the duality transformation of the superfluid Lagrangian in Section
2.1. There the phase degree of freedom of the complex order parameter was
responsible for the low-energy excitations, as well as the vortex source current.
This source current depended on the fact that the phase 6§ was multi-valued
on its domain. The BSC gap parameter is also a complex scalar, A = |Ale??,
and we can similarly identify vortex solutions with the multi- valued part of its
phase ¢. To couple (12) to such vortices, the procedure is first to re-write ¢ in
terms of smooth and multi-valued (vortex) components ¢ = ¢, + ¢, substitute
back into (12), and then integrate out the smooth component.'! The result is
formally identical to QEDs and takes the form (Franz et al. 2002, pg. 13),

10The second term in (11) is identical to the first with z- and y- indices interchanged.
To get a feel for the approximations, note first that the kinetic energy in (7) is that for
electrons hopping on a 2-dim lattice, and is given explicitly by e = —2t(cosks + cosky),
where t = 1/m.y, for m. ¢ the effective mass of an electron (see, e.g., Zhang 2004, pg. 673).
The Fourier transform of £, can then be approximated by t(ag + 8;), hence acting on the first
term in (10), it produces (iupam)e’ka X
of the gap parameter (9) can be approximated by A79;9,. Acting on the first term in (10),
it produces (ivAay)e’kaxl( 7), where va = —Akp.

1 The non-trivial details are given in Herbut (2002) and Franz et al. (2002). This procedure
could have been used above in Section 2.1. See, e.g., Zee (2003), pp. 314-316.

1(#), where vp = kp/m.y. The Fourier transform



L=Cl+ 1A (0% b)2. (13)

Here, £!]_,, is obtained from (12) by minimal coupling 9,, — 9, + tb,, where b,
is a U( ) gauge potential dependent on ¢, and K, is a constant. The second
term in (13) is the Maxwell term written in the transverse gauge (0 - b); = 0.

Remarks: It should be noted that this QEDs theory of high-T, superconduc-
tivity is one approach among several in an active field of research. While the
physics of the phase transition for conventional superconductors is well under-
stood, that for high-T, superconductors i1s not. Above the critical temperature,
the normal state for a high-7, superconductor is not a conductor, but an an-
tiferromagnetic (AF) insulator. Moreover, there is a “pseudogap” in the phase
diagram that separates this AF phase from the d-wave superconducting phase,
and much current research is directed towards discovering the physics of this
pseudogap. The approach represented by (13) starts with the d-wave super-
conducting state and works backwards to recover the normal AF state. This
approach views the transition between these states as a symmetry-breaking of
the effective QEDg3 theory, analogous to chiral symmetry breaking in the Stan-
dard Model.!?

2.3 2-dim Quantum Hall Liquids

The 2-dim Quantum Hall Effect (QHE) provides a final example of a con-
densed matter system described by a (241)-dim EFT. The set-up consists of
current flowing in a 2-dim conductor in the presence of an external magnetic
field perpendicular to its surface. The classical Hall Effect occurs as the elec-
trons in the current are deflected towards the edge by the magnetic field, thus
inducing a transverse voltage. Suppose the conductor lies in the zy plane,
the magnetic field Bt is in the negative z-direction, and the current density
Jy = neevy is in the z-direction, where n. is the electron density.™® 1In the
steady state, the force due to the magnetic field is balanced by the force due to
the induced electric field, eE, = ev, B, and the Hall resistivity is given by
PH = poy = Ey/Js = Bt /n,e. The QHE occurs in the presence of a strong
magnetic field, in which the Hall resistivity becomes quantized in units of the
ratio of fundamental constants h/e?,

a = (h/e?)v " (14)

Here v is the filling factor defined by v = n./np, where ngp = B®**'/®; is

12This is Herbut’s (2002) take. Similar strategies are given in Balents et al. (1998) and
Franz et al. (2002).

13Tn this section particle densities are labeled by , as opposed to “p”, in keeping with
the literature, and to make the notation less cumbersome. Note, further, that the resistivity
below is labeled by “p” and is not to be confused with particle density.

o
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the flux density, with ®, = h/e the flux quantum.'® The Integer Quantum
Hall Effect (IQHE) is characterized by integer values of v, and the Fractional
Quantum Hall Effect (FQHE) is characterized by values of v given by odd-
denominator fractions. Two properties experimentally characterize the system
at such quantized filling factors: the diagonal resistivity pye, = pyy vanishes,
and the system is incompressible.

For filling factors v = 1/p, for p an odd integer, these properties can be explained
by an effective Chern-Simons gauge theory of a Bose condensate in which the
particle content is given by “composite bosons” consisting of electrons with p
quanta of magnetic flux attached to them. Mathematically, this is achieved by
coupling the electrons to a Chern-Simons gauge field. This effectively turns
the electrons into bosons. When the magnetic field due to the attached fluxes
exactly balances the external magnetic field, the bosons can condense and the
resulting Bose condensate is identical to a superconductor. The properties of
the latter then explain the properties of the QHE.

To see how this comes about, one can start with a 2-dim Lagrangian density for
nonrelativistic electrons in the presence of an electromagnetic field

1

2m

Lonp = Y1 (i0 — cAT" )Y — ¢ (=i0h + eAF™) % + VY] + Loy, (15)
where A& A$®' are potentials for the magnetic and electric fields, V is an
interaction potential, and Lgar is the electromagnetic Lagrangian density. At
low energies, this fermion system can be shown to be equivalent to a boson
system described by'3

1
Lonn = ¢! (i0: — eAo)p — 5—p!(=i0i + eAi) e + VIpTe] + Los. (16)

Here Ag = ag + A§™, Ai = a; + A{"™", where (ag,a;) = a, is a Chern-Simons
(CS, hereafter) potential field described by the term Log = (p/4m)e**a,d,ay,
with p an odd integer. At low energies, this term dominates the Lgar term in
(15). Now note that extremizing (16) with respect to the CS field yields the
equation of motion,

(6/27717)6“”)\81/60\ =J# Uaya)‘: 0,1,2, (17)

where JO is the particle density'® | and J? is the current density. To see what
this entails, consider a boson at rest at @ = 0, with J° = §(z), J* = 0. Upon

141n the lowest energy (or “Landau”) level, there is one electron state for each flux quantum;
a flux quantum in this context can be heuristically thought of as the amount of flux that
penetrates the area occupied by an electron. Thus the flux density n g measures the degeneracy
per unit area of each Landau level. Hence, the filling factor determines the ratio of the number
of electrons to the number of states in a Landau level.

15See, e.g., Zhang (1992, pg. 32).

16We assume the particle density ne is the same for both the electron system and the boson
system, and that the bosons have the same electromagnetic charges.
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integration, (17) yields the flux of the CS field through the area containing the
boson, § @-d¥ = p®q (in units in which A = 1). This motivates an interpretation
of the CS field as attaching to each boson a magnetic flux given by an odd
number p of flux quanta ®y. The effect is to modify the exchange statistics of
the bosons: When two are exchanged, they pick up an Aharonov-Bohm phase

equal to eiﬁfo ddE —1, which mimics the Fermi-Dirac statistics of the original
electrons. Note that this statistical transmutation only works in 2-dim: In 1-
dim, point particles cannot be exchanged, and for dim 3, any closed, continuous
exchange path taken by two point particles can be continuously deformed into a
point; hence such paths cannot be distinguished by means of winding numbers.

Thus, as advertised, the electrons of (15) have been turned into composite
bosons by attaching an odd number of flux quanta to them. To see how this ac-
counts for the FQHE, note that the combined external and Chern-Simons mag-
netic field felt by the composite bosons is given by dx (5+gext) = p®gn. — B,
which vanishes when ®gn./B®* = v = 1/p. Thus at filling factors v = 1/p, the
composite bosons feel no net magnetic field and hence can form a condensate
at 7' = 0. This QH condensate has the same properties as a superconductor;
namely, dissipationless current flow and the Meissner effect. The former entails
that the diagonal resistivity vanishes. The Meissner effect entails there is no
net internal magnetic field in the QH condensate, and since the internal CS
magnetic field is determined by the particle density via (17), this entails that
the particle density is constant; 7.e., the QH condensate is incompressible.

The exact derivation of these results requires the techniques of Ginsberg-Landau
theory, with the resulting Chern-Simons-Ginsberg-Landau (CSGL) theory map-
ping the incompressible QH phase of the original electrons onto the supercon-
ducting phase of the composite bosons. Note finally that this CSGL-EFT de-
scribes QH liquids only at filling factors v = 1/p, for odd p; however, it can be
extended in a hierarchy scheme for other filling factors (see Zhang 1992, pg. 26,
and references therein).

Remarks: The CSGL-EFT based on (16) differs in two majors respects from the
EFTs considered in previous sections. First, the CSGL theory is a topological
quantum field theory: explicitly, no metric occurs in (16) (indices are raised and
lowered by ¢#¥?). Second, since the QH liquid is incompressible, excitations have
finite energy gaps, and this prevents the construction of a low-energy limit in
the manner outlined above for superfluid films and high-7; superconductors.
Such a low-energy limit can, however, be constructed for the edge states of the
liquid. Wen (1990) demonstrated that the low-energy excitations of the edge
states are described by a (141)-dimensional EFT of chiral fermions. This edge
EFT is a further example of an emergent relativistic EFT and will also play a
role in the conception of spacetime discussed in Section 3.2 below.

Edge State EFT for 2-dim QH Liquids
Since the bulk QH liquid is incompressible, Wen (1990) assumed that an edge
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excitation takes the form of a surface wave described by the density function
p(z) = n.f(x), with f(z) being the wave amplitude. This wave propagates
according to the wave equation,

Orp —vdegp =0 (18)
with speed v = E,/B®"* and it’s energy is given by the edge Hamiltonian,

Hegge = %eEy /d:L‘f(:L‘)p(:L‘) = ﬂpv/da:p2(m), (19)

for odd integer p.!” The formulas (18) and (19) can now be encoded in the
Lagrangian density for a (1+41)-dim massless chiral fermion field,

Ledge = i1 (2) (8 — v0:)2(x). (20)

The encoding is accomplished by writing (z) o ¢?9() which relates the
fermion field to the density by means of a boson field ¢, which is required to
satisfy p(z) = (1/2m)0,¢. This procedure of rewriting a fermion field in terms of
a boson field i1s an instance of “bosonization”. Key to this construction are the
commutation relations for the density operator [pg, pr'] = (1/27)kdgr’, which
follow from (18), (19), and Hamilton’s equations of motion. The physical system
described by these commutation relations and the Hamiltonian (19) defines what
is referred to as a (chiral) Luttinger liquid.

Remarks: Note first that (20) is a relativistic (14+1)-dim EFT, and not a topo-
logical theory like the bulk liquid EFT. However, it is a bit different from the
relativistic EFTs in Sections 2.1 and 2.2 above. In those cases, a relativistic
theory emerges near the Fermi surface of a non-relativistic system. For the edge
state EFT (20), the relativistic theory emerges near the surface of a different
sort of liquid; namely, a Luttinger liquid.® Moreover, the low-energy limit in
this case corresponds to a hydrodynamical analysis in which it is initially as-
sumed that excitations are gapless and obey a linear dispersion relation (this is
implicit in (18)). In the previous cases of EFTs, the gapless energy condition
was derived, and not put into the analysis by hand.

3 Spacetime and Quantum Liquids

The above examples of EFTs in condensed matter systems are (141)- and (241)-
dim. The restriction to these dimensions is essential: QED3 appears in * He films

1"Here T follow Wen (2004, pp. 312-313). The increment in energy of an edge surface wave
in the interval Az may be given by §H.g4. = 1/2[V(f(z)) — V(0)] whence the first equality
in (19) follows upon integration. The second equality follows from f(z) = p(z)/n., with
ne = vng = eB®* [2mp, for v = 1/p.

18 A Luttinger liquid differs from a Fermi liquid mathematically in the form of the electron
propagator: Luttinger liquids are characterized by propagators with non-trivial exponents.
Physically this entails that Luttinger liquids cannot be analyzed in terms of single particle
occupancies, as can Fermi liquids. See Wen (2004, pp. 314-315) for discussion.
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only because the magnetic field is a scalar in (2+41)-dim; massless Dirac fermions
appear near the Fermi surface of high-T, superconductors only because of the 2-
dim d-wave symmetry of the gap parameter; and the CSGL theory of the QHE
depends on the statistical transmutation of electrons into composite bosons,
possible only in 2-dim. While these examples are instructive in demonstrating
how a relativistic theory can emerge in the low-energy sector of a non-relativistic
theory, they cannot be said to be instructive as to the ontological nature of
spacetime, if we require the latter to be (34+1)-dim. Tf condensed matter EFTs
are to be informative about the nature of spacetime, we should ask if there
are (3+1)- dim examples. In this section, T review some results, starting with
superfluid Helium and ending with the 4-dim QHE.

3.1 Spacetime and Superfluid Helium

In this subsection I review two ways in which superfluid Helium can provide
information about the nature of spacetime. The first is by providing an analogue
of (3+1)-dim general relativistic spacetimes, and the second is by providing an
analogue of the (34+1)-dim vacuum of the Standard Model of particle physics.

(A) Helium 4 and General Relativity

Superfluid Helium analogues of general relativistic spacetimes can be motivated
by recalling that the effective Lagrangian (5) for *He is identical to that for
a massless scalar field in (3+1)-dim Minkowski spacetime (after reattaching a
third spatial dimension). To move to curved spacetime requires reinserting a
term left out in the derivation of (5). Recall that the result of linearizing (2) is
given schematically by Lig. = Lo + L1, where L describes the ground state
and L1 describes contributions from fluctuations. After integrating out the
high-energy density fluctuations, £ becomes

1 Po 2 .
= — [ Z'Z'HQ—— 0)° =1,2,: 21
Ly 4g2(80 + v;0;0) 2m(5 ), ) ,2,3 (21)
with 66 replaced by 6 for the sake of notation. In the derivation of (21), a term
(1/2m)d? has been retained (see the remarks after (4)). This is responsible for

the v; term in L1, which is the only difference between it and (4) above. £; can
now be rewritten in the compact form,

1
1= 5V=99" 0,000,  pv=01,23 (22)

for the curved metric given by
ds? = g datde” = (p/em)[—c?dt? + §;;(dx' — v'dt)(da? — vidt)] (23)

where /=g = p?/m?c, and ¢? = 2g?p/m. (22) describes a massless scalar field
propagating in a (34+1)-dim curved spacetime with a low- energy “acoustic”
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metric g,w.lg

To make contact with general relativity, Volovik (2003, pg. 38) interprets Lap,
as comprised of a “gravitational” part Ly describing a background spacetime
expressed in terms of the variables 6y, pg, with gravity being simulated by the
superfluid velocity, and a “matter” part L1, expressed in terms of the variable
. To obtain the “gravitational” equations of motion, one can proceed in anal-
ogy with general relativity by extremizing Lig, with respect to 6g, po. This
results in a set of equations that are quite different in form from the Einstein
equations (Volovik 2003, pg. 41). This indicates immediately that the dynamics
of this EFT does not reproduce general relativity. However (23) can be used
to reproduce aspects of general relativity that do not depend explicitly on the
Einstein equations. In particular, acoustic spacetimes can be exploited to probe
the physics of black holes and the nature of the cosmological constant.

(1) Acoustic Black Holes. Acoustic black holes are regions in the background
fluid from which phonons (i.e., low-energy excitations traveling at ¢) cannot es-
cape. This can be made more precise with the definitions of acoustic versions of
ergosphere, trapped region, and event horizon, among others. A growing body
of literature seeks to exploit such formal similarities between relativistic black
hole physics and acoustic “dumb” hole physics (see, e.g., Barceld et al. 2005).
The primary goal is to provide experimental settings in condensed matter sys-
tems for relativistic phenomena such as Hawking radiation that do not depend
explicitly on the Einstein equations.

(i1) The Cosmological Constant. Volovik (2001, 2003) has argued that the anal-
ogy between superfluid Helium and general relativity provides a solution to the
cosmological constant problem. The latter he takes as the conflict between the
theoretically predicted value of the vacuum energy density in quantum field
theory (QFT), and the observationally predicted value: The QFT theoretical
estimate 1s 120 orders of magnitude greater than the observational estimate.
Volovik sees this as a dilemma for the marriage of QFT with general relativity.
If the vacuum energy density contributes to the gravitational field, then the
discrepancy between theory and observation must be addressed. If the vacuum
energy density is not gravitating, then the discrepancy can be explained away,
but at the cost of the equivalence principle. Volovik’s preferred solution is to
grab both horns by claiming that both QFT and general relativity are EFTs
that emerge in the low-energy sector of a quantum liquid.

'“The metric (23) agrees with Barcelé et al. (2001, pp. 1146- 1147). In the literature on
acoustic black holes, the derivation of the acoustic metric generally starts with a classical
irrotational, inviscid fluid described by a mass density function and a fluid velocity given by
v = —08;0 (e.g., Barcelé et al. 2005). To regain contact with (23), in which continuity is
maintained with the notation in Section 2.1, set m = 1. Note finally that Volovik’s (2003,
pp. 36-39) derivation of the acoustic metric for superfluid 4 He rescales the low-energy phase
fluctuation as m#@, to allow fluctuations in the superfluid velocity to be given simply by 9,0
(in keeping with the literature). His action is obtained by setting § = m#@ in (21) above.
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(a) The first horn is grasped by claiming that QFTs are EFTs of a quantum
liquid. As such, the vacuum energy density of a QFT does not represent
the true “trans-Planckian” vacuum energy density, which must be calcu-
lated from the microscopic theory of the underlying quantum liquid. And
simply put, at 7" = 0, the pressure of such a liquid is equal to the negative
of its energy density, P = —pa (Volovik 2003, pg. 14, 26). This rela-
tion between pressure and vacuum energy density also arises in general
relativity, if the vacuum energy density is identified with the cosmological
constant term in the Einstein equations. However, in the case of a quan-
tum liquid in equilibrium, the pressure is identically zero; hence, so is the
vacuum energy density. Moreover, if the liquid is in the form of a droplet,
the pressure is not zero, but scales as an inverse power of the droplet size,
and this models the cosmological constant term in the Einstein equations,
which scales as the inverse square of the size of the universe.

(b) The second horn is grasped simply by claiming that general relativity is an
EFT. Thus, we should not expect the equivalence principle to hold at the
“trans-Planckian” level, and hence we should not expect the true vacuum
energy density to be gravitating.

Remarks: Two questions seem pertinent at this point: First, to what extent
is (22) a low-energy EFT; and second, to what extent is (22), and acoustic
spacetimes in general, an analogue of general relativity?

In regard to the first question, note that the velocity term in (21) responsible for
the curvature in the acoustic metric is a higher order fluctuation term. As such,
one might question its presence in a supposedly low-energy derivation. In fact,
it was explicitly discarded as a high-energy term in the derivation of the low-
energy EFT (5) (see the remarks after (4)). On the other hand, note that it is a
2nd order fluctuation only in the phase, and not the density. Hence the acoustic
metric can be viewed as a low-energy limit that includes 2nd order fluctuations
away from a given ground state (in the form of phase fluctuations), but still
discards high energy fluctuations in the density. This might be seen as mod-
eling fluctuations in curvature above the flat Minkowski spacetime associated
with (5). This analogy cannot, however, be stretched too far, for the following
two reasons. First, interpreting Minkowski spacetime as the kinematic “back-
ground” spacetime of the acoustic metric (23) is problematic. The ground state
associated with (23) is the Lagrangian density (2) that describes a superfluid
in a background (Galilei-invariant) Neo-Newtonian spacetime. Low energy fluc-
tuations about this ground state obey the Lorentz symmetries associated with
Minkowski spacetime, and higher-order fluctuations obey the symmetries of the
curved metric (23). Hence, from a kinematic point of view, Neo-Newtonian
spacetime is the background for the acoustic metric. Second, from a dynamical
point of view, Minkowski spacetime cannot be derived from (5). While Lorentz
invariance can be said to emerge from (5), Minkowski spacetime cannot be con-
structed simply from the dynamics of a relativistic massless scalar field. Of
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course, if the Einstein equations were derivable from the curved case, we could
get Minkowski spacetime from (5) as the zero curvature solution.

The fact that the Einstein equations are not derivable from Lap, raises the
question of how effectively acoustic spacetimes model general relativity. The
general impression given by the literature is that acoustic spacetimes account
for the “kinematics” of general relativity, but not the dynamics:

... the features of general relativity that one typically captures in an
“analogue model” are the kinematic features that have to do with
how fields (classical or quantum) are defined on curved spacetime,
and the sine qua non of any analogue model is the existence of some
“effective metric” that captures the notion of the curved spacetimes
that arise in general relativity. (Barceld, et al. 2005, pg. 10.)

The acoustic analogue for black-hole physics accurately reflects half
of general relativity — the kinematics due to the fact that general
relativity takes place in a Lorentzian spacetime. The aspect of gen-
eral relativity that does not carry over to the acoustic model is the
dynamics — the Einstein equations. Thus the acoustic model pro-
vides a very concrete and specific model for separating the kinematic
aspects of general relativity from the dynamic aspects. (Visser 1998,

pg. 1790.)

While it is undeniable that acoustic black holes offer much in the way of an-
alyzing real black holes, one might question the extent to which the acoustic
metric reflects the kinematics of general relativity. The latter is a bit hard to
pin down, simply because what normally counts as the kinematics of a field
theory (i.e., those variables that describe the field in the absence of external
forces), is dynamic in general relativity. Moreover, identifying the kinematics of
general relativity with curved spacetimes in general seems inappropriate, since
not all curved spacetimes satisfy the Einstein equations; hence not all curved
spacetimes are physically relevant to the theory. These observations simply
point to the fact that diffeomorphism invariance is essential for modeling gen-
eral relativity, and the low-energy EFT (21) is not generally covariant. (The
acoustic metric takes the form of an ADM metric which explicitly splits space
from time.) So while Lorentz invariance does emerge from (5), diffeomorphism
invariance does not. At this point it might be instructive to compare acoustic
spacetimes as EFTs with the typical EFT that results from taking the low-
energy limit of general relativity (see, e.g., Donoghue 1995). The latter imposes
diffeomorphism invariance from the outset. One first notes that the Einstein-
Hilbert Lagrangian density that produces the Einstein equations is proportional
to the scalar curvature, and as such is the simplest diffeomorphism-invariant La-
grangian density that contains derivatives of the metric (which must be included
for the metric to be a dynamical field in the theory). The effective Lagrangian
density 1s constructed by including all other powers of the curvature, consis-
tent with diffeomorphism invariance. These extra terms then serve to cancel
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infinities at all orders that arise in the quantization process. (To make the con-
nection with low-energy limits discussed in this essay, note that renormalization
is analogous to integrating out high-energy terms.)

The best moral perhaps is that drawn by Barceld, et al. (2004) who suggest that
acoustic spacetimes simply demonstrate that some phenomena typically associ-
ated with general relativity really have nothing to do with general relativity:

Some features that one normally thinks of as intrinsically aspects of
gravity, both at the classical and semiclassical levels (such as hori-
zons and Hawking radiation), can in the context of acoustic mani-
folds be instead seen to be rather generic features of curved space-
times and quantum field theory in curved spacetimes, that have
nothing to do with gravity per se. (Barceld, et al. 2004, pg. 2.)

This takes some of the initial bite out of Volovik’s solution to the cosmological
constant problem. If acoustic spacetimes really have nothing to do with general
relativity, their relevance to reconciling the latter with quantum field theory is
somewhat diminished. On the other hand, Volovik’s solution to the cosmological
constant problem is meant to carry over to other analogues of general relativity
besides superfluid * He. In particular, it can be run for the case of the superfluid
3He — A, which differs significantly from * He in that fields other than massless
scalar fields arise in the low-energy limit. The fact that these fields model the
dynamics of the Standard Model perhaps adds further plausibility to Volovik’s
solution. To investigate further, I now turn to 3He.

(B) Helium 3 and the Standard Model

The second way superfluid Helium can provide information about the nature of
spacetime is via an analogy between superfluid *He and the Standard Model.
This analogy is based ultimately on the derivation of effective Lagrangian den-
sities for force fields by treating the latter as vacuum corrections to interactions
between matter fields and potential fields. Such derivations are at the basis of
the “induced electrodynamics” of Zeldovich (1967) and the “induced gravity”
of Sakharov (1967).

The ground state of superfluid 3He is believed to be a Bose condensate con-
sisting of pairs of 3He atoms forming a type of Cooper pair. In the case of
superconductors, such Cooper pairs consist of electrons in spin singlet (S = 0)
states. Recall that conventional superconductors have s-wave (I = 0) orbital
symmetry, whereas high-T, superconductors have d-wave (I = 2) symmetry.
3He Cooper pairs are in spin triplet (S = 1) states with p- wave (I = 1) symme-
try. Thus the ®He Cooper pair wave function consists of 3 spin (S, = 0,41) and
3 orbital (I, = 0,=%1) substates. The corresponding order parameter is charac-
terized by a 3 x 3 matrix with symmetry SO(3) x SO(3) x U(1). The breaking
of this symmetry leads to a number of distinct superfluid states. Volovik (2003,
2001) demonstrates that the low-energy EFT for the A-phase, denoted ®He-A,
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reproduces (3+1)- dim QED and aspects of the Standard Model and general
relativity.

To see how this comes about, note first that the Hamiltonian for 3He Cooper
pairs is a modified version of the BCS Hamiltonian (7), with the gap parame-
ter Aaﬁ(g) now having spin- and k-dependent components. In the mean field
approximation, it takes the form (Annett 2004, pg. 154; Volovik 2003, pg. 77),

Hape = Z(gk - ,U)Clocko - Z (Aa (E)Cmc kgt AG (E)C—mck(s)
k,o a,B

= Z xaﬁ ((ex — p)os + (opkiAp)oy + (opkiAu) o) xap(k ) (24)

where the kinetic energy and c-operators are now those for 3He atoms. The gap
parameter is given by A, 5(k ) kaé Vapys (k, k') (cryc_ks), where V describes
an appropriate interaction potential. In the second line, the gap parameter has
been encoded in a 3 x 3 matrix A,; via A%g(k) Api (O'Nw'z)a,@, u,i=1,2,320

In the superfluid phase 3 He-A, the S, = 0 substates are absent and the zero-spin
and orbital axes are constant and parallel.?! This is conventionally encoded in
a gap parameter of the form A,; = |Ayp|du(m; + in;), where d,, is the unit
zero- spin axis and 7 x 7 = [ is the unit orbital axis. Substituting this into (24)
yields,

Hagea = Y xhs(F) (5 — m)os + cu(o,dy) (mikior + nikios)) Xap (k) (25)
.

with energy given by E2(E) = (k*/m— p)? + 2 (]; X [)2, where ¢ = |[Ayg|/kF
(Volovik 2003, pg. 82). The energy vanishes at the two Fermi points k; =
qakrli, o = £1,22 and one can subsequently linearize the energy about these

20This can be viewed as a linear expansion of Aa,@‘(l_‘;) in the 2 x 2 basis 0,%02, where the
0th component may be taken as —i 7, for the identity 7. This Oth component encodes the spin
singlet case and can hence be discarded. The “matrix” A,; transforms as an SO(3) vector
under both its spin index p and its orbital index i. For discussion, see Volovik (2003, pp.
76-77), Annett (2004, pp. 155-156).

21To make this a bit more concrete, for S, = 0, three of the possible nine > He Cooper pair
substates are absent. Fach of the remaining substates describes two ®He atoms with spin
axes pointing in the same direction and perpendicular to their orbital angular momentum
axis. The zero-spin axis points in the direction of zero spin projection; i.e., perpendicular to
the spin axes.

22More precisely, the energy vanishes at these points near the Fermi surface where p =
k%/2m. The subscript “a” labels one of four species of quasiparticles. These are distinguished
by their effective charges g4 and by their spin projection onto d,, given by Szo = (1/2)oud, =
+1/2. The effective charge determines the chirality of the quasiparticle, in so far as chirality
is determined by the sign of the determinate of the dreibein matrices (see below) sign|e;)(a)| =
—qq. For the interpretation of S.,, see the discussion below.
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points in a manner similar to the procedure in Section 2.2. To second order,
one obtains

B k) 2 (eplilhs — qadi))” + 2 (exmi(k — aAs))? + 2 (cumi(ki = gaAi))”
= gij(ki — qaAi)(kj — qaAj), (26)
where A; = kpl;, and o = krp/m. In the second line the notation has been

simplified by the introduction of the quantity ¢ = cﬁlilj +ck (6 —11V) = eéeg
(b =1, 2, 3) for the “dreibein” el = 2cym;, eh = —2cin;, e = qacyli (Volovik
2003, pg. 106). Volovik interprets ¢*/ as the spatial part of an effective metric
g" describing the 3He-A superflow, with ¢°° = —1, ¢ = —uv;, and inverse
given by

ds? = Gudatde” = —dt2—|-gij(dazi—vidt)(dazj—vjdt), u,v=20,1,2,3. (27)

This is similar to the metric arising in *He. It is anisotropic, depending on
the direction /;, with ¢, and ¢ being the velocities of quasiparticles in motion
transverse to, and parallel to [;, respectively.

The Hamiltonian corresponding to (26) is given by (Volovik 2003, pg. 105),

Higoa = 3 xho®) (6 (ki —qadi)on) xas(F),  b=1,23.  (29)
k,o,B

and its corresponding Lagrangian density can be written as,

Lhon =YY (04 — qaANY,  p=0,1,2,3 (29)

where y# = el'e} (6, ® 03) (0¢ being the 2 x 2 identity), the ¥’s are 4-spinors,
and Ag = kpl;v;.23 This describes massless Dirac fermions interacting with a
vector potential A, in a curved spacetime with metric g,,,. Note that we cannot
yet identify A, with the electromagnetic potential, since (29) has no Maxwell
term.

It turns out that a Maxwell term arises naturally as a vacuum correction to
the coupling between the quasiparticles and the potential field A,. This is
demonstrated by expanding (29) in small fluctuations in A, about the ground
state, and then integrating out the high-energy fluctuations. The result is a
term of the general form L[l;, v;] with a constant 4 that depends logarithmically

23To motivate the form of Ag, Volovik (2003, pg. 106) notes that (26) is given in a frame
moving with the superfluid. In the “environment” frame in which the superfluid moves with
velocity v;, the Hamiltonian is doppler shifted by HéHeA — HéHeA + kjv; = HéHeA + (ks —
gaAi)vi + gakplivi.
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on the cut-off energy.24 For F,, = 0,A, — 0, A,, with A, the function of I;
and v; given above, this term takes the form of the Maxwell Lagrangian density
in a curved spacetime Larqp = (47)~'/=99"" Fua Fy5, where g"” is the ? He-A
effective metric. Combining this with (29), we obtain (341)-dim QED.

Volovik (2003, pp. 114-115) now indicates how this can be extended to include
SU(2) gauge fields, and hence, in principle, the dynamics of the Standard Model.
The trick is to exploit an additional degree of freedom associated with the
quasiparticles described by (29). In addition to their charge g, and chirality
Ca = —qa, such quasiparticles are also characterized by the value of S;, = +1/2,
which determines the spin orientation of the initial >He atoms (see footnote
22). This last property can be interpreted as a quasiparticle SU(2) isospin
symmetry and incorporated explicitly into the effective Lagrangian density by
means of Lhsroa = Y (9y — quAy — qao'ini)\Il, where the new effective field
W, can be identified as an SU(2) potential field (i.e., the potential for the
weak force). Expanding this Lagrangian density in small fluctuations in the W-
field about the ground state then produces to second order a Yang-Mills term.
The general moral is that discrete degeneracies in the Fermi point structure of
the energy spectrum induce local symmetries in the low-energy sector of the
background liquid (Volovik 2003, pg. 116). For the discrete two- fold (Zs)
symmetry associated with S,,, we obtain a low-energy SU(2) local symmetry;
and in principle for larger discrete symmetries Zpy, we should obtain larger local
SU(N) symmetry groups. In this way the complete local symmetry structure of
the Standard Model could be obtained in the low-energy limit of an appropriate
condensed matter system.

Remarks: Volovik (2003, pg. 112) observes the following differences between
QED and the effective Lagrangian density for 3 He-A:

(a) The vector field /; is an observable for ®He, but the potential field A,
(formed from {; at low energies) is not an observable for QED.

(b) The effective metric and effective gauge field(s) are mixed, due to their
common dependence on Il; and v;.

Arguably, (a) can be addressed at the expense of locality: Interpretations of
QED (and Yang-Mills theory in general) in which the potential field is awarded
observable status are possible, but they require a form of non-locality (e.g. Belot
1998). The second observation (b) is a problem simply because of the fact that
the effective metric does not obey the Einstein equations. Hence its presence in
the effective Lagrangian density contaminates what would otherwise be an EFT
for QED. Note, however, that in the isotropic case in which c¢; = ¢, the metric
“decouples” from the /;-field, and hence from the effective electromagnetic field.

21See, e.g., Volovik (2003, pg. 112). A detailed derivation is given in Dziarmaga (2002).
This method of obtaining the Maxwell term as the second order vacuum correction to the
coupling between fermions and a potential field was proposed by Zeldovich (1967).
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In this restricted case, QED emerges uncontaminated; but then we lose contact
with modeling general relativistic spacetimes.

The contamination of the effective Lagrangian density due to the effective
metric can be seen explicitly by applying the same procedure in deriving the
Maxwell term to the case of the effective metric. In particular, one expands
the Lagrangian density in small fluctuations in the effective metric g,, about
the ground state and then integrates out the high-energy terms. This follows
the procedure of what is known as “induced gravity”, after Sakharov’s (1967)
derivation of the Einstein-Hilbert Lagrangian density as a vacuum correction
to the coupling between quantum matter fields and the spacetime metric. In
Sakharov’s original derivation, the metric was taken to be Lorentzian, and
the result included terms proportional to the cosmological constant and the
Einstein- Hilbert Lagrangian density (as well as higher-order terms). In the case
of the 3 He-A effective metric, the result contains higher-order terms dependent
on the superfluid velocity v;, and these terms dominate the Einstein- Hilbert
term.2® These terms are not diffeomorphic invariant, which is understandable,
stemming, as they do, ultimately from the non-relativistic Galilei-invariant su-
perfluid Lagrangian density. Volovik (2003, pg. 130) indicates that these terms
originate from integrating over quasiparticles far from the Fermi points. The
mechanism that would enforce diffeomorphism invariance in the EFT would
thus be one that constrains the integration over quasiparticles to regions close
to the Fermi points, where the effective metric is Minkowskian. To investigate
such a mechanism, Volovik (2003, pg. 132) considers the limit m — oo, v; = 0,
interpreted as an “inert vacuum”. In this limit, it turns out that vacuum fluc-
tuations of the effective metric do induce the Einstein- Hilbert term without
contamination. Since this limit involves no superfluidity, Volovik’s (2003, pg.
113) conclusion is that our “physical vacuum” cannot be completely modeled
by a superfluid.

This approach to general relativity and the Standard Model views both as theo-
ries of low-energy phenomena induced by the ground state of a condensed matter
system, although perhaps not a superfluid. In the context of general relativity,
the literal interpretation would identify spacetime as this ground state. Matter
fields and gauge potential fields would be identified as low-energy quasiparticle
and collective bosonic excitations of spacetime, respectively, with gauge fields
identified as “induced” vacuum corrections to the interactions between matter
fields and potential fields. The viability of this conception of spacetime rests on
the viability of Volovik’s inert vacuum system. Given the nature of the m — oo
limit, it may appear doubful that there are physical examples of condensed

?5See, e.g., Volovik (2003, pg. 113). Sakharov’s original procedure results in a version
of semiclassical quantum gravity, in so far as it describes quantum fields interacting with a
classical, unquantized spacetime metric. In the condensed matter context, the background
metric is not a classical background spacetime, but rather arises as low-energy degrees of
freedom of a quantized non-relativistic system (the superfluid). Hence one could argue this
condensed matter version of induced gravity is not semiclassical.
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matter systems for which the Einstein action can be induced in the low-energy
limit. Even apart from this problem, there is the question of whether all the
symmetries of the Standard Model can be expressed in such systems. From
a more constructive point of view however, Volovik’s discussion indicates that
any system purporting to reproduce general relativity and the Standard Model
in the low-energy limit minimally must have Fermi points in its energy spec-
trum, and in order to avoid superfluidity, such Fermi points should not be the
consequence of symmetry breaking.

3.2 Spacetime and 4-dim Quantum Hall Liquids

Recently another condensed matter analogue of spacetime has been suggested by
Sparling (2002). This analogue is based on Zhang and Hu’s (2001) extension of
the 2-dim QHE to 4 dimensions. Sparling’s suggestion is that spacetime emerges
from the edge states of Zhang and Hu’s 4-dim QH liquid. To initially motivate
this, recall from Section 2.3 that the edge states of a 2-dim QH liquid can be
described by a (141)-dim EFT of massless relativistic fermions. This suggests
that (34+1)- dim massless relativistic fermions may be obtainable from the edge
states of a 4- dim QH liquid, and this is borne out (Zhang and Hu 2001, Hu and
Zhang 2002). The connection to spacetime comes in the guise of the twistor
formalism: It turns out that the 4-dim QHE can be formulated in terms of
twistors, and one of the goals of the twistor programme is to construct spacetime
from twistors. Thus the claim that spacetime emerges from 4-dim QHE edge
states rests, in part, on the extent to which spacetime can be reconstructed
from twistors. This will be fleshed out below, following a brief description of

the 4-dim QHE.

QHE on S? and S*

The key to extending the 2-dim QHE to four dimensions is Haldane’s (1983)
formulation of the 2-dim case in terms of spherical geometry. Haldane considered
an electron gas on the surface of a 2-sphere S? with a U(1) Dirac magnetic
monopole at its center. The radial monopole field serves as the external magnetic
field of the original setup. By taking an appropriate thermodynamic limit, the
2- dim QHE on the 2-plane is recovered. To motivate Zhang and Hu’s (2001)
extension to 4-dim, note that a Dirac monopole can be formulated as a U(1)
connection on a principle fiber bundle S — S?, consisting of base space S?
and bundle space S with typical fiber S' = U(1). This is known as the 1st
Hopf bundle.?6 There is also a 2nd Hopf bundle S7 — S*, consisting of the 4-
sphere S* as base space, and the 7-sphere S7 as bundle space with typical fiber
53 = SU(2). The SU(2) connection on this bundle is referred to as a Yang
monopole. Zhang and Hu’s 4-dim QHE then consists of taking the appropriate

26See, e.g., Nabor 1997, Chapter 0 for the relation between the Dirac monopole and the 1st
Hopf bundle. The latter is essentially a way of mapping the 3-sphere onto the 2-sphere by
viewing S° as a collection of “fibers”, all isomorphic to a “typical fiber”, and parameterized
by the points of S2.
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thermodynamic limit of an electron gas on the surface of a 4-sphere with an
SU(2) Yang monopole at its center.

In just a bit more detail, the Hamiltonian for an electron with mass m moving
on a 2-sphere S? with radius R in the presence of a Dirac monopole is given by,

1 2 .
HSEQHE:WZA”’ Z,]:l,?,?} (30)
1<]
This is an expression for the kinetic energy, where A;; = —i(2; D; —2;D;) is the

orbital angular momentum, with D; = J; + a; being the covariant derivative as-
sociated with the monopole potential field a;. This latter satisfies Ixi= é, for
the field strength |§| = I/eR?, with 2I being an integer (the Dirac quantization
condition). The eigenstates of (30) belong to finite matrix representations of
SO(3), the symmetry group of S%. Haldane (1983) obtained N-particle states
as antisymmetric products of the lowest energy eigenstates, and showed that in
the “thermodynamic” limit N — oo, I — 00, R — oo, holding T/ R? constant,
these states reproduce those in the original planar case.?”

Zhang and Hu (2001) extended this treatment to 4-dim by taking the 2nd Hopf
bundle S7 — S* as the starting point. The Hamiltonian for an electron moving
on a 4-sphere S* with radius R with an SU(2) monopole at its center is an
extension of (30) given by

1 2 .
Hssiqmr = WZAM)’ a,b=1,2,3,4,5. (31)
a<b
where Agp = —i(2q Dy — 2pD,) is the angular momentum with Dy = 94 + Aq

being the covariant derivative associated with the SU(2) monopole potential
field A,. This latter takes values in the SU(2) Lie algebra generated by [I;, I;] =
1€;5% I, with Casimir operator I? = I(I + 1), where I labels the dimension of
the SU(2) representation (and, it turns out, corresponds to the magnetic flux
of the SU(2) monopole; hence is the analogue of the “I” in the 2-dim case). Tn
a manner similar to the 2-dim case, one obtains the eigenstates of (31) as finite
matrix representations of SO(5), the symmetry group of S*, and a 4-dim QH
liquid is constructed by taking the equivalent of Haldane’s thermodynamic limit

for S*.

Finally, a low-energy Chern-Simons-Ginsberg-Landau effective topological field
theory for such 4-dim QH liquids was constructed by Bernevig et al. (2002).
This theory is based on statistical transmutations for extended objects (“branes”),
as opposed to points, and thus side-steps the dimensional restrictions of the 2-

dim CSGL theory.

27Tt turns out that the lowest energy level is (N = 2I 4 1)-fold degenerate. An N-particle
system is obtained by filling all of these states. The N — oo limit thus requires taking
I — co. To recover an incompressible QH liquid on the 2-plane, the density N/4rR? ~ I/R?
is required to remain constant as R — co.
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Remarks: Some authors have imbued the interplay between algebra and geom-
etry in the 4-dim QHE extension with ontological significance. These authors
note that there are only four normed division algebras: the real numbers R
the complex numbers C, the quaternions H, and the octonions ©.28 Tt is then
observed that these may be associated with the four Hopf bundles, S' — S',
S35 8% 87 - 8% S5 5 S8 in so far as the base spaces of these fiber bundles
are the compactifications of the respective division algebra spaces R, R?Z R
R8. Finally, one notes that the typical fibers of these Hopf bundles are Zs,
U(l) = S, SU(2) = S3, and SO(8) = S7, respectively. These patterns are
then linked with the existence of quantum Hall liquids:

One , two, and four dimensional spaces have the unique mathe-
matical property that boundaries of these spaces are isomorphic to
mathematical groups, namely the groups Zs, U(1) and SU(2). No
other spaces have this property. (Zhang and Hu 2001, pg. 827.)

The four sets of numbers [viz., R, C, H, O] are mathematically known
as division algebras. The octonions are the last division algebra, no
further generalization being consistent with the laws of mathemat-
ics... Strikingly, in physics, some of the division algebras are realized
as fundamental structures of the quantum Hall effect. (Bernevig et

al. 2003, pg. 236803-1.)

Our work shows that QH liquids work only in certain magic dimen-
sions exactly related to the division algebras... (Zhang 2004, pg.
688.)

Before we see nature unfolding its secrets in the forms of division algebras and
Hopf bundles, we should pause and take stock. Note first that Zhang and Hu’s
statement should be restricted to the spaces S, S%, §* and should include S®
as well, the boundary of S® being S7. Furthermore, the statements of Bernevig
et al. and Zhang should refer to normed division algebras. Baez (2001, pg.
149) carefully distinguishes between R, C, H, © as the only normed division
algebras, and division algebras in general, of which there are other examples.
Baez (2001, pp. 153-156) indicates how the sequence R, C, H, O can in principle
be extended indefinitely by means of the Cayley-Dickson construction. Starting
from an n-dim *-algebra A (i.e., an algebra A equipped with a conjugation map
%), the construction gives a new 2n-dim x-algebra A’.2° The next member of
the sequence after O is a 16-dim x-algebra referred to as the “sedenions”. The
point here is that the sedenions and all subsequent higher-dimensional construc-
tions do not form division algebras; in particular, they have zero divisors. The

28 A normed division algebra A is a normed vector space, equipped with multiplication and
unit element, such that, for all a,b € A, if ab =0, thena = 0 or b = 0. R, C, and H are
associative, whereas () is non-associative (see, e.g., Baez 2001, pg. 149).

29The elements of A’ are defined as pairs of elements of A, with multiplication in A’ given
by (a,b)(c,d) = (ac — dbx,a = d + cb), and conjugation in A’ given by (a,b)* = (ax*, —b), for
a,b € A.

25



question therefore should be whether the absence of zero divisors in a normed
x-algebra has physical significance when it comes to constructing QH liquids.

Zhang (2004, pg. 687) implicitly suggests it does. He identifies various quantum
liquids with each Hopf bundle: 1-dim Luttinger liquids with S* — S', 2-dim
QH liquids with S% — S?, and 4-dim QH liquids with S — S*. Bernevig et al.
(2003) complete the pattern by constructing an 8-dim QH liquid as a fermionic
gas on S'® with an SO(8) monopole at its center. But whether this pattern is
physically significant remains to be seen. It is not entirely clear, for example,
how the bundle S? — S is essential in the construction of Luttinger liquids
in general. In particular, while Luttinger liquids are necessarily 1-dim, it’s not
clear what role, if any, the trivial Z, monopole associated with S — S! plays in
their construction. Moreover, while Luttinger liquids arise at the edge of 2-dim
QH liquids, this pattern does not carry over to higher dimensions: it is not the
case that 2-dim QH liquids arise at the edge of 4-dim QH liquids, nor is it the
case that 4-dim QH liquids arise at the edge of 8-dim QH liquids. Furthermore,
and more importantly, Meng (2003) demonstrates that higher- dimensional QH
liquids can in principle be constructed for any even dimension, and concludes
that the existence of division algebras is not a crucial aspect of such construc-
tions (see, also Karabali and Nair 2002). Hence, while the relation between Hopf
bundles and normed division algebras on the one hand, and quantum liquids on
the other, is suggestive, it perhaps should not be interpreted too literally.

So far in this discussion no mention of spacetime has been made. To see where
spacetime comes in, we need to move to the edges.

Edge States for 4-dim QH Liquids and Twistors

Recall from Section 2.3 that low-energy edge states of a 2-dim QH liquid take
the form of (141)-dim relativistic massless fermions. Tt turns out that edge
excitations can be viewed as particle-hole dipoles formed by the removal of a
fermion from the bulk to outside the QH droplet, leaving behind a hole (e.g.,
Stone 1990). If the particle-hole separation remains small, such dipoles can
be considered single localized bosonic particles. In 1-dim, in which relativis-
tic massless particles move at speed c independently of their momentum, these
dipoles are stable. In higher dimensions, the direction of velocity will in gen-
eral depend on the momentum, hence the uncertainty principle should prevent
stable dipoles from forming. Hu and Zhang (2002) determined that there is a
subset of dipole states at the edge of a 4-dim QH liquid for which the isospin
degrees of freedom associated with the SU(2) monopole counteract the uncer-
tainty principle. The main result of Hu and Zhang (2002) was to establish that
these stable edge states satisfy the (341)-dim zero rest mass field equations,
and hence can be interpreted as zero rest mass relativistic fields. These include
spin-1 Maxwell fields, as well as spin-2 fields satisfying the sourceless linearized
Einstein equations. On the other hand, the 7 — oo limit required to recover a
QH liquid leads to an “embarrassment of riches” (Zhang and Hu 2001, pg. 827)
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in which states with very large isospin I degrees of freedom occur. One conse-
quence of this is that the stable dipole edge states include states corresponding
to zero rest mass fields of all higher spins.

Sparling’s (2002) insight was to see that these stable dipole states correspond to
twistor representations of zero rest mass fields. In particular, he demonstrates
that the edge of a 4-dim QH liquid corresponds to a particular region of twistor
space T. T is the carrying space for matrix representations of SU(2,2) which
is the double covering group of SO(2,4). Elements 7 of T are called twistors
and are thus spinor representations of SO(2,4). T contains a Hermitian 2-form
Yop (a “metric”) of signature (+ + ——). This 2-form splits T into three re-
gions T+, T~ N, defined by $,57%7° > 0, £0p7°7° < 0, S0pZ2*7° = 0,
respectively. The connection to spacetime is based on the fact that SO(2,4) is
the double covering group of C(1, 3), the conformal group of Minkowski space-
time. This allows a correspondence to be constructed under which elements of
N, “null” twistors, correspond to null geodesics in Minkowski spacetime, and
1-dim subspaces of N (i.e., twistor “lines”) correspond to Minkowski spacetime
points.30

To make the identification of the edge of a 4-dim QH liquid with N plausible,
note that the symmetry group of the edge is SO(4) = S? and that of the bulk
is SO(5) = S*. The twistor group SO(2,4) has SO(4) in common with SO(5).
Intuitively, the restriction of SO(2,4) to SO(4) can be induced by a restriction
of twistor space T to N.3! With the edge identified as N, edge excitations are
identified as deformations of N. In twistor theory, such deformations take the
form of elements of the first cohomology group of projective null twistor space
PN, and these are in fact solutions to the zero rest mass field equations of all
helicities in Minkowski spacetime (Sparling 2002, pg. 25).

Remarks: Sparling’s twistorial formulation of the 4-dim QHE suggests that
spacetime arises from the edge of a 4-dim QH liquid. In particular, the edge
corresponds to null twistor space from which (compactified) Minkowski space-
time can be reconstructed. This story comes with two caveats.

First, there is a question of whether spacetime can be said to emerge from the
edge of the Zhang/Hu liquid in the same sense that relativistic fields emerge from
condensed matter systems. In the latter case, such fields emerge in a low-energy
limit (viz., low-energy approximation). On first blush, in the twistor formalism
spacetime 1s reconstructed from the edge, which is identified with null twistor

30More precisely, the correspondence is between PN, the space of null twistors up to a
complex constant (i.e., “projective” null twistors), and compactified Minkowski spacetime
(i.e., Minkowski spacetime with a null cone at infinity). This is a particular restriction of
a general correspondence between projective twistor space [PT and complex compactified
Minkowski spacetime.

31 Technically, this restriction corresponds to a foliation of the 4-sphere with the level surfaces
of the SO(4)-invariant function f(Z%) = £,5Z%ZP. These surfaces are planes spanned by
null twistors (Sparling 2002, pp. 18-19, 22).
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space, and no low-energy limit is assumed 1n this identification. However, there
is a sense in which spacetime can be said to emerge, but in a different type of
limit; namely, the thermodynamic limit.

Tt turns out that the edge ground state of the 4-dim QH liquid is (27 4 1)-fold
degenerate, implying that the bulk liquid has (27 + 1) boundary surfaces.??
Sparling’s preferred interpretation has each edge shrinking in the thermody-
namic limit about a particular projective line in twistor space. This speculation
is based on the fact that “... hyperquadrics lie arbitrarily close to any given
projective line in projective three-space” (Sparling 2002, pg. 28). Under the ba-
sic twistor correspondence, twistor lines correspond to spacetime points; hence
Sparling’s suggestion is that the thermodynamic limit of each edge of the bulk
liquid corresponds to a single spacetime point. The bulk liquid is then inter-
preted as “gluing” the points of spacetime together. One should note however
that this is currently at best a speculation; in particular, the nature of the ther-
modynamic limit in the twistor formulation is still unknown (Sparling 2002, pg.

27).

The second caveat concerns the approach to spacetime in the twistor formalism
in general. Even granted that the 4-dim QHE admits a thoroughly twistorial
formulation, down to the thermodynamic limit, there is still the question of
whether spacetime as currently described by general relativity can be recovered.
It turns out that no consistent twistor descriptions have been given for massive
fields, or for field theories in generally curved spacetimes with matter content.
In general, only conformally invariant field theory, and those general relativistic
spacetimes that are conformally flat, can be completely recovered in the twistor
formalism. This 1s not to say that the twistor connection with the QHE is not a
significant achievement. Advocates view twistors as a route to quantum gravity.
As such, the twistor formulation of the 4-dim QHE points to similarities between
two roads to quantum gravity, via twistors and via condensed matter systems,
that were previously seemingly unrelated.?3

4 Conclusion

To recap, the previous sections have considered a number of examples of EFTs
in (241)- and (34+1)-dim arising in nonrelativistic condensed matter systems. If
these examples are read literally, they suggest that relativistic matter fields and
relativistic gauge potential fields are emergent phenomena, arising as low- energy
fluctuations above the ground state of a nonrelativistic quantum liquid. More
radically such examples suggest that spacetime itself is an emergent phenomenon

32There is one boundary for each isospin direction (Hu and Zhang 2002, pg. 66).

33Note further that the twistor emphasis on conformal invariance is not as restrictive as
might first be thought, in so far as the verdict is still out on whether quantum field theory can
be reformulated in a conformally invariant way. In general, the route to quantum gravity that
stresses conformal structure over metrical structure should not be ignored by philosophers of
spacetime.
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that arises from a nonrelativistic quantum liquid in either a low- energy limit
or an appropriate thermodynamic limit.

Viability of the Condensed Matter View of Spacetime

The extent to which this condensed matter view of spacetime is viable will de-
pend, to begin with, on how one initially chooses to model spacetime in the
context of contemporary theories. If, for instance, one is satisfied with model-
ing spacetime as the vacuum ground state for quantum field theory, then the
examples of EFTs in 3 He-A may be taken to suggest that the ground state of
the latter effectively models spacetime. If, however, one requires spacetime to
be modeled by solutions to the Einstein equations of general relativity, then the
examples of EFTs in superfluids * He and 3 He-A will be found wanting. Tn par-
ticular, we found that superfluid 4He only models aspects of curved spacetimes
that are independent of the Einstein equations, and that the latter cannot fully
be recovered either in *He or as an induced phenomenon in 2 He-A. Finally, if
one is satisfied with modeling spacetime by conformally flat general relativistic
spacetimes, then spacetime may be taken to arise, via twistors, in an appro-
priate thermodynamic limit of the edge of a 4-dim QH liquid. However, there
remains the worry that the exact nature of this thermodynamic limit 1s still
unknown.

Note that, while most philosophers of spacetime may seek to model spacetime
by solutions to the Einstein equations, the other options suggested by the con-
densed matter view should not be entirely discounted. They may be viewed
with an eye toward the eventual reconciliation of general relativity and quan-
tum theory. Ultimately, it may be that this is where the real significance of
the condensed matter view lies. In this context, the common element in all
condensed matter analogues of spacetime is the claim that both spacetime and
gravity are emergent phenomena of a quantum condensed matter system. This
entails that there is no special relation between spacetime and gravity, and
moreover, that gravity need not be quantized.

Significance to the Substantivalist/Relationalist Debate

Issues of viability to the side, one may ask how the condensed matter view of
spacetime fits into the traditional debate between substantivalists and relation-
alists over the ontological status of spacetime. On first blush, the condensed
matter view might appear to find a home in the substantivalist camp, in so
far as identifying spacetime with a quantum liquid entails a claim that space-
time exists as a physical substance. On the other hand, typical substantivalists
qualify this existence claim with an independence clause; namely, that space-
time exists as a physical substance independently of material constituents it
may contain. On the surface, it may appear that the condensed matter view
denies such independence, in so far as it views both spacetime and its material
constituents as derivative, in an emergentist sense, of the underlying quantum
liquid. There is, however, room to maneuver here, if we recall that the notion
of emergence in the relevant examples involves adopting interpretations under
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which the emergent and host structures are ontologically distinct. It may thus
be possible for a condensed matter substantivalist to formulate a definition of
emergence based on a notion of ontological distinctness strong enough to entail
ontological independence. I leave it to such a substantivalist to flesh out the
details. Minimally, however, the emergent aspect of the condensed matter view
blurs some of the standard distinctions between traditional substantivalism and
relationalism.

Universality and Structural Realism

Beyond the vagaries of the substantivalist/relationalist debate, the condensed
matter view also suggests a structural realist approach to the nature of space-
time.

Note first that the fact that relativistic EFTs arise in the low-energy sector
of many condensed matter systems is no coincidence. Volovik (2003) indicates
that the type of EFT that emerges in the low-energy limit of a given theory is
determined by the topology of the theory’s momentum space; in particular, by
the points, lines or surfaces at which the quasiparticle energy becomes zero (pg.
5). Much of Volovik (2003) is devoted to the topological classification of quan-
tum vacua into “universality classes”.?* Briefly, one might say that momentum
space topology encodes low-energy dynamics; hence common momentum space
topology entails common low-energy dynamics. In the case of 3He-A and the
Standard Model, for instance, the common momentum space topology consists
of the existence of topologically stable fermion zero modes in the vicinity of
Fermi points (Volovik 2003, pg. 462).3% This is an example of universality: The
microscopic details of a particular theory do not affect its momentum space
topology and hence its low-energy behavior. Such details only serve to fix the
“fundamental constants” (i.e., the speed of light, the speed of sound, superfluid
density, particle mass, etc.), and these can always be rescaled (Volovik 2005,

pp. 6-7).

There are many similarities between this account of universality and the stan-
dard account offered by Renormalization Group (RG) Theory. In typical RG
analyses (e.g., Saunders 2003, Huggett and Weingard 1995), universality classes
are defined by the fixed points of the RG flow in the parameter space (i.e., the
space of Hamiltonians, or equivalently, coupling constants). A given fixed point
corresponds to a low-energy theory (an EFT) and defines a universality class
consisting of all theories with RG flows that terminate at the fixed point. Such
theories share the same low-energy behavior. They also behave similarly at crit-
ical temperatures associated with phase transitions, if the latter exist. One can

34More precisely, the classification is based on the topological properties of the 2-particle
correlation function (Feynman propagator) (Volovok 2003, Chapter 8).

35This assumes that the Standard Model can be viewed as a low-energy EFT, which is
arguably justifiable in so far as its “quasiparticle” energies are extremely small compared to
its cut-off energy (viz., the Planck energy). For (341)-dim fermionic vacua, Volovik (2003, pp.
86-87) indicates that there are three universality classes: Vacua with Fermi surfaces, vacua
with Fermi points, and vacua with a fully gapped energy spectrum.
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thus associate a phase with a universality class, and a phase transition with a
boundary in the parameter space that separates fixed point regions (i.e., regions
in which all flow lines terminate at a given fixed point). This analysis of critical
phenomena improves on Ginzberg-Landau theory (e.g., Saunders 2003), and,
importantly, is more general: under the RG analysis, phase transitions are not
necessarily characterized by spontaneously broken symmetries. In particular,
there are examples of fixed point theories that share the same symmetries and
yet are separated by a phase transition (see, e.g., Wen 2005, pg. 118). Hence
RG universality classes are not characterized essentially by symmetries.

This is a point also stressed by Volovik: Universality classes characterized by mo-
mentum space topology are not essentially distinguished by symmetries. Volovik
makes this explicit by contrasting the topological classification of EFTs with the
approach to QFTs motivated by Grand Unified Theories (GUTs). Under the
GUT approach, the low energy (relative to the Planck energy cut-off) gauge
symmetries of current QFTs are remnants of a larger unified GUT symmetry
at high energies; and the transition from the GUT to current QFTs is char-
acterized by spontaneous symmetry breaking. In a nutshell, the GUT slogan
claims “..the higher the energy, the higher the symmetry”.3¢ The condensed
matter view inverts this slogan and discards its emphasis on symmetry break-
ing. Under the condensed matter view, high energies (relative to an appropriate
cut-off) are now associated with the less-perfect symmetries of the underlying
condensed matter system, and low energies are associated with the more- per-
fect gauge symmetries of current QFTs, now conceived as EFTs. Importantly,
such EFTs are now classified in terms of topology and not symmetry. Note
that spontaneous symmetry breaking does occur in condensed matter systems:
a quantum liquid (for instance) results from a spontaneously broken symmetry
of a normal liquid at some critical temperature. However, the essential fea-
ture of the condensed matter view involves what happens next: it is in the
subsequent low-energy sector of the quantum liquid that the gauge (and space-
time) symmetries of current QFTs emerge. The condensed matter view thus
stresses topology as opposed to symmetry as the means of defining universality
classes.?” Indeed the condensed matter view involves a two-part rejection of the
ontological prominence of symmetries in quantum field theory: First, it views
the symmetries (both gauge and spacetime) of QFTs not as fundamental, but
as emergent phenomena; and moreover the process of emergence itself is viewed
as a process not essentially governed by spontaneous symmetry breaking.

The connection with structural realism may be made through the notion of a
universality class. Again, such a class consists of systems that share a common

36Volovik (2003, pg. 1). In this context, a “high” GUT symmetry is a gauge symmetry
represented by a single compact Lie group with a minimum of parameters. In contrast, the
low-energy gauge symmetries of the Standard Model are represented by a product group
structure SU(3) x SU(2) x U(1) with a relatively large number of parameters.

37This emphasis on “topological order”, as opposed to a classification of order based on
symmetry is also stressed by Wen (2004, Chapter 8) in a slightly different context.
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low-energy dynamics, irrespective of their “microscopic” details. Such univer-
sality classes might be identified as encoding a common dynamical structure
that may be manifested in different systems via different “individuals-based”
ontologies. In fact, Saunders (2003) has recently proposed such a view based
on RG universality classes. Volovik’s topological classification of universality
classes applied to condensed matter analogues of spacetime extends this view to
spacetime structure. The resulting structural realist interpretation of spacetime
would do away with the underlying quantum liquid of such analogues (i.e., its
microscopic details) in favor of the universality class it belongs to. Of course,
given the qualifications above (in particular, the problem of modeling full-blown
general relativity in a condensed matter system), just what the universality class
best associated with spacetime structure is, is still unknown at present. Never-
theless, the condensed matter view of spacetime in this context deserves further
consideration, if only because it offers, in the form of structural realism, a ter-
tium quid between traditional substantivalism and relationalism.
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