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Abstract

This essay is concerned with a number of related proposals that claim there is a
link between spacetime topology and quantum entanglement. I indicate the extent
to which these proposals can be understood as stating a duality, and then consider
two general approaches to articulating such a duality: a “state-based” approach, under
which one attempts to identify relevant topological states as dual to quantum entangled
states; and an “observable-based” approach, under which one attempts to identify
relevant topological observables as dual to quantum entangement observables. Both
approaches are faced with issues, essentially due to the ambiguous nature of quantum
entanglement, that remain to be addressed.
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1 Introduction

According to Van Raamsdonk (2010), the connectivity of a bulk spacetime is encoded
in the quantum entanglement of physical systems on its boundary; according to Malda-
cena and Susskind (2013), two physical systems that exhibit quantum entanglement are
connected by an Einstein-Rosen wormhole; and according to Levin and Wen (2006),
and Kitaev and Preskill (2006), the quantum entanglement between degrees of free-
dom of a physical system in regions on either side of a boundary depends on both the
geometry of the boundary and the topology of the regions. What these proposals all
have in common is the claim that quantum entanglement is, in some sense, encoded in
topology. This essay is concerned with some of the implications of this claim. First,
are we to understand it in terms of a “duality”; i.e., a 1-1 correspondence between
topological features of spacetime on the one hand, and quantum entanglement, on
the other? If so, should it be understood as a duality between topological states of a
physical system, and quantum entangled states; or as a duality between topological
and quantum entanglement observables? Moreover, how should we understand the
notion of quantum entanglement it refers to?

With respect to the first question, dualities have become a much discussed topic in
the recent philosophy of physics literature. In that literature, the term “duality” refers
to an isomorphism between two theories under which states and observables of one
theory are bijectively mapped onto those of the other in a way that preserves the dynam-
ics.! Various philosophical topics have been discussed in the context of this concept,
including how best to define a physical theory, and the relation of theoretical equiva-
lence between theories (De Haro et al. 2017), realist interpretative options in the light
of empirically equivalent dual theories (Le Bihan and Read 2018), the relation between
duality and symmetry (De Haro and Butterfield 2019), and the relation between dual-
ity and notions of emergence (De Haro 2017; Teh 2013; Vistarini 2017), to name a
few. In the physics literature, the primary example of duality comes from an approach
to reconciling general relativity and quantum theory under which dualities are sought
between a “bulk” classical theory of gravity and a “boundary” quantum field theory
in one less dimension. The AdS/CFT correspondence is one example of this approach
(see, e.g., Teh 2013; De Haro 2017; Vistarini 2017). Determining the extent to which
the claim that quantum entanglement is encoded in spacetime topology is a duality is
important in order to situate it in both the philosophical and physics literatures. For
instance, as we will see, one motivation for the proposals of van Raamsdonk (2010)
and Maldacena and Susskind (2013) is the AdS/CFT correspondence. Thus, if these
proposals can be understood as stating a duality, they suggest a way of reconciling
general relativity with quantum theory at a fairly fundamental level.

If the alleged relation between topology and quantum entanglement is intended as
a duality, a further question is whether it should be understood as a duality between
states, or as a duality between observables. This distinction may appear to be trivial in
the context of non-relativistic quantum mechanics: the intuition might be that a formu-
lation of the latter in terms of states (i.e., the “Schrodinger picture”) can be shown to

1 See, e.g., de Haro (2017, p. 110); de Haro and Butterfield (2019, p. 20). My use of the term in this essay
is restricted to the entries (states and/or observables) in the “dictionary” that this mapping sets up.
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be equivalent to a formulation in terms of observables, or operators (i.e., the “Heisen-
berg picture”’). However, the distinction becomes less trivial for relativistic quantum
field theories (RQFTs). In that context, the physical systems of interest possess infinite
degrees of freedom, and this problematizes theoretical descriptions in terms of states.
For instance, states that carry unitarily inequivalent representations of the canonical
commutation relations belong to different Hilbert spaces, even though they may only
differ in the boundary conditions (at infinity) they satisfy (see, e.g., Wallace 2006, pp.
56-58). Moreover, as Swanson (2018, p. 9) indicates, the vacuum state of an RQFT
is highly entangled, and this makes it difficult to assign local Hilbert spaces of states
to relativistic spatiotemporal regions. These issues with states can be addressed by
adopting a formalism in which observables are fundamental and states are derivative
(e.g., the algebraic formalism). Alternatively, it might be argued that most of these
issues involve assumptions about the high-energy behavior of RQFTs, and can be
adequately addressed by treating the latter as effective field theories (Wallace 2006).
In any event, the point to make is that an equivalence between state-based approaches
and observable-based approaches should not be taken for granted for RQFTs; thus
the question of whether a given duality claim, understood in the context of RQFTs, is
intended to be about states or observables has non-trivial implications.?

Finally, as Earman (2015) has indicated, the notion of quantum entanglement, a
fundamental concept in quantum theory, is, surprisingly, still little understood (appart
from the simple bipartite case). Proposals that seek a relation between topology and
quantum entanglement thus offer an intriging tool to probe the nature of the latter,
particularly if the relation is intended as a duality. On the other hand, as we will see,
care needs to be taken to keep distinct notions of quantum entanglement separate in
assessing such proposals.

To address these concerns, I will initially focus on van Raamsdonk’s proposal,
which is based on an interpretation of the Ryu-Takayanagi (RT) formula that appears
in the AdS/CFT correspondence. I first motivate the RT formula by comparing it in
Sect. 2.1 with a formula due to Srednicki (1993), according to which the entanglement
entropy of a massless scalar field with respect to a spherical region of spacetime is a
function of the area of the region’s bounding surface. Srednicki’s formula was applied
by Levin and Wen (2006), and, independently, Kitaev and Preskill (2006), to the
case of a 2-dim condensed matter system with an energy gap between its ground
and excited states. According to these authors, the entanglement entropy of such a
system with respect to a bounded region of space depends on both the length of the
boundary and the topology of the region, with the additional topological contribution
referred to as “topological entanglement entropy”. Section 2.2 then considers the RT
formula as an extension of Srednicki’s formula to the AdS/CFT correspondence. As
originally expressed by Ryu and Takayanagi (2006), the RT formula only contained
an area term. A “quantum correction” to the formula was suggested by Faulkner et al.

2 Swanson (2018) indicates that one route to establishing an equivalence between state-based and
observable-based approaches in RQFT requires nothing less than a complete reformulation of algebraic
quantum field theory (AQFT), in which the basic object of the latter, a net of local C*-algebras (the elements
of which represent local observables), is replaced with a presheaf of convex oriented sets (the elements of
which represent local states). To establish a formal equivalence between these objects requires, in addition,
replacing the axioms of AQFT with a set of new axioms that have yet to be fully specified.
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(2013), and in Sect. 2.3, I explain Susskind’s (2016) topological interpretation of this
correction, based on the “ER = EPR” hypothesis of Maldacena and Susskind (2013).
According to the latter, two physical systems in a quantum entangled state (“EPR”)
are connected by an Einstein-Rosen wormhole (“ER”). I point out that Susskind’s
topological interpretation of the quantum correction to the RT formula is analogous to
the topological entanglement entropy correction to Srednicki’s formula, but whereas
the (ER = EPR)-modified RT formula admits an interpretation under which it states a
duality between spacetime topology and quantum entanglement, Srednicki’s formula
with topological correction does not.

Sections 3 and 4 are concerned with how to understand a duality between spacetime
topology and quantum entanglement in terms of states and in terms of observables.
Under a “state-based” approach, one seeks to identify appropriate topological states
as the dual to quantum entangled states; while under an “observable-based” approach,
one seeks to identify appropriate topological observables as the dual to observables
associated with quantum entanglement. An example of the former approach is an
analogy suggested by Aravind (1997) between topologically entangled n-links and
quantum entangled n-partite states. Section 3 considers the extent to which this analogy
can be turned into a 1-1 correspondence that might underwrite a relation of duality,
and concludes that this is not possible, insofar as (i) a topologically entangled n-link
can correspond to many distinct quantum entangled n-partite states, and (ii) a quantum
entangled n-partite state can correspond to many distinct topologically entangled n-
links.

Section 4 then considers an example of an observable-based approach, motivated in
part by Aravind’s analogy, that takes the form of a program initiated by Kaufmann and
Lomonaco (2002). This program seeks to identify a correspondence between quantum
entangling operators, viewed as unitary representations of the braid group, on the one
hand, and link invariants, on the other. Limitations of this program raise the question of
how a quantum entanglement observable should be characterized. According to some
authors, quantum entanglement manifests itself in two distinct ways, one associated
with a violation of an entropic inequality, and another associated with a violation of
a Bell inequality (e.g., Horodecki et al. 2009). This distinction raises the following
concerns, addressed in Sect. 5:

(a) Non-linearity To the extent that quantum entanglement is characterized by a vio-
lation of an entropic inequality, it is non-linear, in the sense that it cannot be
represented by a linear operator; but typical examples of topological observables
are linear in this sense.

(b) Non-locality To the extent that quantum entanglement is characterized by a viola-
tion of a Bell inequality, it is linear, insofar as it can be characterized by a linear
“Bell” operator; however, it is also characterized by a notion of non-locality which
is distinct from the notion of non-locality associated with topological observables.

(c) Correlations The non-locality associated with the violation of a Bell inequality is
exhibited by a particular type of correlation between observables. Correlations can
be characterized in four distinct ways, depending on the type of observable (local
vs. non-local), and the strength of the correlation (short-range vs. long-range). If
topological duals to quantum entanglement observables are required to exhibit
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Bell inequality-violating correlations, care must be taken to keep these different
types of correlation distinct.

These concerns, combined with those raised in Sects. 3 and 4, suggest that caution is
advised in evaluating any proposed duality between spacetime topology and quantum
entanglement.

2 The RT formula

To set the stage for van Raamsdonk’s interpretation of the RT formula, I will first
consider another example of a relation between quantum entanglement and spacetime
topology; namely, a topological correction, due to Levin and Wen (2006), and Kitaev
and Preskill (2006), to Srednicki’s (1993) formula that relates the entanglement entropy
of a massless scalar field to the area of a bounding surface.

2.1 Srednicki’s formula and topological entanglement entropy

Both Srednicki’s formula and the RT formula are expressions for the entanglement
entropy of a physical system. For a bipartite system AB characterized by a density
operator p4p, the entanglement entropy S4 of subsystem A is defined as the von
Neumann entropy S,y of the reduced density operator p4; thus, S4 = Syn(pa) =
—Tr(pa log pa), where pg = Trppap. One can show that if p4p is a pure state, then
it is decomposable if and only if S4 < SUN(,OAB).3 Thus, if a bipartite system is in
a pure state, and if an entangled state is defined as an indecomposable state, then the
entanglement entropy of one of its subsystems is a measure of the extent to which that
subsystem is entangled with the other subsystem.

One might initially be concerned that entanglement entropy, so-defined, is rather
limited in its applicability, constrained to bipartite systems in indecomposable pure
states. To be fair, the establishment of a link between spacetime topology and quan-
tum entanglement restricted to bipartite systems in pure states would be a significant
achievement in its own right. On the other hand, one might be a bit more concerned
with the definition of an entangled state as an indecomposable state. On the surface,
this fails to appreciate an important aspect of entanglement; namely, the type of non-
locality associated with the violation of a Bell inequality.* I will return to this concern
in Sects. 4 and 5 below. For the moment, I will bracket it off, in order to continue with
the exposition.

3A bipartite state p4 g is decomposable if and only if it can be written as a convex combination of product
states, pap = Y_; piply ® P, where 3; p; = 1,and 0 < p; < 1. (Here I follow Earman 2015, p. 311,
in using the term “decomposable” as opposed to “separable”.) For pure states, decomposability reduces to
being a product state, and one can show that the above entropic inequality holds if and only if the bipartite
state is a product state (Nielson and Chuang 2010, p. 514).

4 Indecomposability is, arguably, the standard way of defining quantum entanglement in the physics liter-
ature (see, e.g., Horodecki et al. 2009, p. 873). On the other hand, Earman (2015) considers four distinct
notions of a quantum entangled state, the weakest being a non-product state and the strongest involving a
violation of a Bell inequality, with indecomposability ranked in-between.
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Srednicki (1993) considered a massless scalar field decomposed into degrees of
freedom with support inside and outside a spherical region R of spacetime, and derived
the following expression for the entanglement entropy,

Sg = a|dR| (1

where dR is the boundary of R, |0R] is its area, and « is a constant that depends on
the short wavelength modes of the system.> Equation (1) states that the entanglement
(as expressed by the indecomposability of the composite state) between the degrees of
freedom of the scalar field with support on R and the degrees of freedom with support
on its complement is a function of the area of the boundary of R.

Levin and Wen (2006), and independently Kitaev and Preskill (2006), considered
a version of (1) for a 2-dim condensed matter system with an energy gap between its
ground state and excited states.® The gap property entails that ground state correla-
tions between local observables decay exponentially as a function of their separation
distance; thus if the system is decomposed into degrees of freedom with support inside
and outside a 2-dim region R, the entanglement entropy Sg only gets contributions
from the degrees of freedom in the vicinity of the boundary dR.” This suggests that
Srednicki’s formula (1) should hold (with area replaced by boundary length). More-
over, Levin and Wen, and Kitaev and Preskill, suggested a topological correction I"
to the boundary term in (1), referred to as “topological entanglement entropy”, that
depends on the topology of R,®

Sg =aldR| +T 2)

On first blush, I" is supposed to be an indication of the presence of anyons (i.e.,
physical systems that exhibit fractional exchange statistics). More precisely, I" scales as
log D, where D is the total quantum dimension of the system, defined by D = ,/>" , d2,

where d, is the quantum dimension of an anyon of type a (anyons being distinguished
by the type of fractional statistics they exhibit) (Kitaev and Preskill 2006, p. 1; Levin

5 As Hartman (2015, p. 175) indicates, in a continuum quantum field theory in Minkowski spacetime, there
are high-energy modes at small scales across any surface that divides the system into two regions, and this
requires a regularization scheme to prevent the entanglement entropy defined with respect to the surface
from becoming divergent. Srednicki (1993, p. 669) adopted a high-energy cutoff defined by M = a
where a is the spacing between sites on a discrete lattice, and derived the relation Sg = kM 2 (4711‘2), where
r is the radius of R and « is a constant. This relation holds specifically for a massless scalar field in flat
Minkowski spacetime, and assumedly could be extended (in standard limited cases) to a relation in a curved
spacetime using techniques from quantum field theory in curved spacetimes. Equation (1) is formally similar
to Bekenstein’s formula for the thermodynamic entropy of a black hole, Sy = Area(horizon)/4G.

6 These authors were primarily concerned with gapped systems that exhibit “topological order”. The sub-
sequent notion of “topological entanglement entropy” was proposed as a way of characterizing the latter.
7 More precisely, the gap property entails that the system has a finite correlation length &, and this entails
that for observables A, B with support onregions X, Y, (AB)—(A)(B) ~ e distX.V)/E wheredist(X,Y)
is the distance between X and Y, and expectation values are taken in the ground state. Thus contributions
to Sg should come from a strip on either side of dR of width & (Pachos 2012, p. 179).

8 Equation (2) is due to Kitaev and Preskill (2006), who use the phrase “topological entropy” in referring
toI.
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and Wen 2006, p. 1). The quantum dimension d, is the “asymptotic dimension” of
the Hilbert space 1" of n type-a anyons, in the sense that dim(H\”) — (d,)", as
n — oo. It can be thought of as the number of degrees of freedom of a type-a anyon
(see, e.g., Tong 2016, p. 133). Thus D, and consequently I", can be thought of roughly
as the number of degrees of freedom of a collection of anyons of different types. In
2-dim, the fractional exchange statistics of a collection of anyons encodes aspects of
the topology of the space; thus knowing D, and hence I', gives one information about
the topology of the 2-dim space in which the physical system is localized.

To demonstrate how the topology of R contributes to the entanglement entropy
of the system, Levin and Wen considered the following difference in entanglement
entropies

(S1—52) — (83— S4) 3

of the four versions of R in Figure 1.° If this difference is calculated using Srednicki’s
formula (1), the result is zero (i.e., the difference in the boundary lengths of R; and
R» is the same as the difference in the boundary lengths of Rz and R4). On the other
hand, if one assumes that each connected boundary is associated with a topological
correction I" and uses expression (2) to calculate (3), then the result is 2r.10 According
to Levin and Wen (2006, p. 2), “a nonzero value for [I'] signals the presence of non-
local correlations and topological order”. Intuitively, a nonzero difference (S1 — S2)
comes from observables that contribute to the entanglement associated with region
R and that do not contribute to the entanglement associated with region R». Such
observables have support on R; but do not have support on R,. One example is a
“local” observable with support on a contractible subregion of the upper horizontal
part of R (contractible in the sense of deformable into a point). Another example is
a “non-local” observable with support on a subregion that extends completely around
R1; for example, a loop operator with support on a non-contractible loop that wraps
around the region R (non-contractible in the sense of not being deformable into a
point). Note that whereas there are two types of observable that can find support on
R but not R, (namely, “local” and “non-local”), there is only one type of observable
that can find support on R3 but not R4; namely, “local” observables with support in the
upper horizontal part of R3. In particular, R3 cannot support the sort of “non-local”
loop observables that R; potentially can. Thus, a nonzero difference I' would come
from observables that could be supported on R; but not on R3, and these are “non-
local” (non-contractible loop) observables with support on subregions that extend
completely around Rj. Evidently, a correlation involving such a non-local observable
is what Levin and Wen refer to as a “non-local” correlation.

9 Kitaev and Preskill (2006) reached the same conclusion using a different configuration of regions and a
different linear combination of entanglement entropies.

10 To show that (81 —52)—(S3—S4) = 2I', one notes, for instance, that the region R has two disconnected
boundaries (3R, and dR1p in Fig. 1), and assumes each contributes a separate topological correction I"
to S1. Thus S and S4 each contain two I'’s (R4 also has two disconnected boundaries, d R4, and dR4p),
whereas S and S3 each contain a single I'. The difference (S — S2) — (S3 — S4) thus contains the term
2T, as well as the sum of boundary lengths {(|0R 14| + [0R1p|) — |0R2|} — {|0R3| — (|0R44| + |0R4p1)},
which is zero.
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Fig.1 Regions used to calculate topological entanglement entrophy

The considerations of Levin and Wen (and Kitaev and Preskill) suggest a link
between quantum entanglement, on the one hand, and spacetime topology, on the
other. In particular, according to the discussion above, the extent to which the sub-
systems of a bipartite system are quantum entangled depends on the topology of
the regions of spacetime on which they have support, as well as the type of observ-
ables they are characterized by (local versus non-local), and the type of correlations
these observables enter into (again, local versus non-local). Note that, without further
ado, this link does not appear to be enough to establish a duality between topology
and quantum entanglement. Such a duality should minimally establish a 1-1 relation
between some aspect of spacetime topology and some aspect of quantum entangle-
ment. In the context of formula (2), this would seem to require that a non-zero value
of the entanglement entropy Sg is both necessary and sufficient for some aspect of the
topology of R, and this is not the case. It is not sufficient, since Sg may be non-zero
due solely to the first “geometric” term on the right-hand-side of (2) that depends on
the length of the boundary d R. And it is not necessary, insofar as a non-zero value of
topological entanglement entropy I depends not just on the topology of the region R,
but on the presence of a non-local observable with support on R that, in some sense,
exhibits a “non-local correlation”. An attempt will be made to unpack these notions
in Sect. 5.3 below, but first I'd like to consider the similarities between this initial

@ Springer



Synthese

example of a relation between spacetime topology and quantum entanglement, and
van Raamsdonk’s interpretation of the RT formula.

2.2 The RT formula and the connectedness/entanglement hypothesis

The RT formula was introduced by Ryu and Takayanagi (2006) in the context of the
AdS/CFT correspondence. The latter is a dictionary that relates a (d + 1)-dim “bulk”
theory of gravity in anti-de Sitter (AdS) spacetime, to a d-dim “boundary” conformal
field theory (CFT).!! The RT formula can be thought of as an entry in this dictionary
insofar as it is an expression for the entanglement entropy of a physical system on the
boundary in terms of bulk quantities. Consider a boundary spatial region given by the
intersection of the boundary with a bulk timeslice, and partitioned into a subregion R
and its complement R (see Fig. 2). Let yg be the extremal surface in the bulk with
the same boundary as R, and let Hg be the bulk region bounded by yr U R. The RT
formula is then given by,

Sk = lYr|/4G + Suy “

where Sk is the entanglement entropy of a subsystem of a boundary composite system
with respect to a decomposition into degrees of freedom with support on R and its
complement R, |vr| is the area of yr, G is the Newtonian gravitational constant,
and Sy, is the entanglement entropy of a subsystem of a bulk composite system
with respect to a decomposition into degrees of freedom with support on Hg and its
complement Hg. According to Eq. (4), the entanglement between boundary degrees
of freedom with support on R and R, as measured by Sg, is given by the area of the
extremal bulk surface yr, and by the entanglement (if any) between bulk systems with
support on Hg and Hg.'?

The second term on the right of Eq. (4) does not appear in Ryu and Takayanagi’s
original formula, and was derived by Faulkner et al. (2013) as a “quantum correction”.
The original formula (with the second term missing) was motivated in part by an
analogy with Bekenstein’s formula for the entropy of a black hole (see Footnote 5).
For a bulk (anti-de Sitter) Schwarzschild black hole with support on Hg, in the limit
in which R encompasses the entire boundary timeslice, the extremal bulk surface yg
wraps around the black hole and becomes the event horizon, and the RT formula

1 See, e.g., Teh (2013), De Haro (2017), Vistarini (2017) for reviews of aspects of the AdS/CFT cor-
respondence. See Jaksland (2018) for a discussion of aspects of the RT formula and van Raamsdonk’s
interpretation of it.

12 As Headricks (2019, p. 48) reports, the RT formula (4) without the second term on the right is limited
in three ways: The bulk theory must be a (i) classical (ii) Einsteinian theory of gravity, and (iii) the bulk
spacetime (in addition to being asymptotically AdS) must have a time-reflection symmetry under which
the boundary subregion R is invariant (in order to pick out a bulk timeslice with the relevant properties).
These restrictions can be relaxed in various ways: A covariant version of the RT formula can be derived
for bulk spacetimes without assuming any symmetries (Hubeny et al. 2007). Higher derivative corrections
to the bulk gravitational action can be included for non-Einsteinian theories of gravity, which subsequently
requires including terms beyond the area term. Finally, corrections to the Newtonian gravitational constant
can be included to move away from classical theories. One result of the latter is the second term on the right
in Eq. (4) due to Faulkner et al. (2013).
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SN — ____— R

Fig.2 Regions apperaring in the RT formula

(without the second term) becomes Bekenstein’s formula (Ryu and Takayanagi 2006,
p-4).

Van Raamsdonk’s (2010) interpretation of the RT formula is based on a bipartite
decomposition of the boundary CFT Hilbert space H = Hg ® Hy with respect to
degrees of freedom with support on R and R.'>A CFT boundary state entangled over
these regions can be expressed as

1wy =" pislvly @ 1wk ®)

i,j

where |1ﬂl.R) and |1//11§> are bases for H and H, and the p;; are constants. Consider

the connected bulk timeslice that has boundary R U R and that consists of the union
of the region H with its complement Hg, separated by the extremal surface yg. Now
suppose we ignore the “quantum correction” term in the RT formula (4). Then the latter
entails that as the entanglement entropy of the state (5) decreases, so does the area of
¥R, and in the limit as S goes to zero, yg becomes a point. In this limit, according to
van Raamsdonk, the bulk spatial region Hg U Hp splits into two disconnected pieces,
Hpy and Hpg, and the initially entangled state (5) becomes a product state

@) = (Y alvf) e | ddivh ©)
i J

13 As Hartman (2015, p- 175) notes, “Quantum field theory is strictly speaking not bipartite”. To address
this, Hartman recommends inserting a UV cutoff to render the theory finite. On the other hand, according
to Earman (2015, p. 309), the restriction of any discussion of quantum entanglement to finite tensor product
Hilbert spaces “...is to be deplored because it neglects possibilities that need to be explored”. Moreover,
even granted this restriction, there still remain various ambiguities associated with quantum entanglement.
While I won’t attempt to address Earman’s general concern in this essay, Sect. 5.3 attempts to address some
of the latter concerns.
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where ¢; and d; are constants.'* In this way, the degree of entanglement of the bound-
ary state (5), as encoded in its entanglement entropy, tracks the connectedness of
the corresponding bulk region Hp U Hpg. Van Raamsdonk (2010, p- 2325) suggested
viewing the reverse process that begins with (6) and ends with (5) as one in which
“[c]lassical connectivity arises by entangling the degrees of freedom of the two com-
ponents [of a CFT product state].” Thus, according to what I will refer to as van
Raamsdonk’s Connectedness/Entanglement hypothesis, bulk connectivity is dual to
boundary quantum entanglement.

On the other hand, if Faulkner et al.’s (2013) quantum correction to the RT formula
is not ignored, then the Connectedness/Entanglement hypothesis fails to state a 1-1
correspondence between (bulk) spacetime topology and (boundary) quantum entan-
glement. With the quantum correction, boundary entanglement is a necessary, but not
sufficient, condition for bulk connectivity: According to (4), the boundary quantum
entanglement associated with a particular partition R U R of a boundary spatial region
is encoded in both the connectivity of the corresponding bulk timeslice, and in the bulk
quantum entanglement associated with the partition Hz U Hy of the latter. The con-
cern then is that van Raamsdonk’s Connectedness/Entanglement hypothesis cannot be
viewed as a 1-1 duality relation. This concern can be addressed by another proposal
that links spacetime topology with quantum entanglement; namely, Maldacena and
Susskind’s (2013) ER = EPR hypothesis.

2.3 The (ER = EPR)-modified RT formula

Maldacena and Susskind’s (2013) ER = EPR hypothesis states that two physical
systems in a quantum entangled state (EPR) are connected by an Einstein-Rosen
wormhole (ER). This proposal was initially motivated by an example due to Maldacena
(2003) of an AdS/CFT duality between a bulk AdS-Schwarzschild spacetime and a
boundary CFT entangled thermal state.

The general idea behind Maldacena’s example is that a decomposition of a space-
time into regions induces a decomposition of the Hilbert space of a field theory defined
on the spacetime; and for regions separated by a horizon (event horizon or particle
horizon), the corresponding states are entangled. For instance, the Kruskal decompo-
sition of a Schwarzschild spacetime decomposes the latter into four regions separated
by event horizons, with the two asymptotically flat exterior regions connected by an

14 yan Raamsdonk (2010, p- 2326) describes the limit as a process in which “the two regions of space are

pinching off from each other”, but immediately qualifies this by cautioning “Here and below, we should
keep in mind that the spacetime will likely cease to have a completely geometrical description before the
entanglement is strictly zero”. Elsewhere, he suggests that “without entanglement, we have a product state
in two non-interacting systems, and the only possible interpretation would be two disconnected spacetimes”
(van Raasmdonk 2016, p. 22). Further motivation for this interpretation of the limit comes from an argument
that relates the mutual information /(C, D) of subsystems localized in bulk subregions C C Hpg and
D C Hp near the boundary, on the one hand, to the spatiotemporal distance d(p, ¢) between bulk points
p € C and ¢ € D on the other hand: the argument shows that as /(C, D) decreases to zero, d(p, q)
increases to infinity (van Raamsdonk 2010, p. 2327). Thus, insofar as / (C, D) is a measure of the degree
of entanglement of subsystems localized in C and D, as the entanglement near the boundary goes to zero,
the distance between bulk points near the boundary increases. This suggests a process in which “the two
regions of [bulk] spacetime pull apart and pinch off from each other” (van Raamsdonk 2010, p. 2327).
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Einstein-Rosen wormhole (see, e.g., Harlow 2016, p. 4). This decomposition of the
spacetime induces a decomposition of the Hilbert space of a scalar field defined on
the spacetime. With respect to the Hilbert space decomposition, one can show that
the degrees of freedom of the field localized in the exterior regions are in a bipartite
entangled thermal state (Hartle and Hawking 1976; Israel 1976). Another, perhaps
more familiar, example is the Rindler decomposition of Minkowksi spacetime, under
which the latter decomposes into four regions separated by particle horizons. This
induces a decomposition of the Hilbert space of a scalar field defined on Minkowski
spacetime, with respect to which the degrees of freedom of the field localized in the left
and right Rindler wedges (the analogs of the exterior regions in the Kruskal decom-
position) are in a bipartite entangled thermal state (see Harlow 2016, pp. 9-10, 20,
for a comparison of these examples.) In the AdS/CFT correspondence, a bulk AdS
geometry corresponds to a boundary CFT state. Maldacena (2003) showed that the
Kruskal decomposition of an AdS-Schwarzschild spacetime induces a decomposition
of the boundary CFT Hilbert space with respect to which the degrees of freedom of
the boundary CFT that correspond to the bulk exterior regions are in an entangled
thermal state.

In Maldacena’s example, the exterior regions of the bulk AdS-Schwarzschild space-
time are connected by a wormhole, as they are in the Kruskal decomposition of
Schwarzschild spacetime; hence these exterior regions constitute a multiply connected
space. One might be tempted to identify this topologically non-trivial bulk space as the
dual to the corresponding boundary entangled CFT thermal state. However it would
require a rather large leap of intuition to infer from this specific duality between a
particular topologically non-trivial space and a particular entangled state, to a duality
between spacetime topology and quantum entanglement in general, even if we restrict
such a duality to the AdS/CFT correspondence. On the other hand, the RT formula
would provide just this sort of general duality relation in the context of the AdS/CFT
correspondence, if it could be interpreted in a way that made bulk connectivity both
necessary and sufficient for boundary entanglement. Just such a way was proposed by
Susskind (2016) who suggested that ER = EPR provides the basis for a topological
interpretation of the quantum correction term in the RT formula.

According to both Srednicki’s formula (1) and the original RT formula (without
the quantum correction), entanglement entropy is encoded in the area of an extremal
surface. In the original RT formula, boundary entanglement is encoded in the area
of a bulk extremal surface, and one might consider what extremal surface should be
associated with bulk entanglement. Susskind (2016, p. 73) suggested this extremal
surface be identified with the cross-section o of the wormhole that, according to
ER = EPR, connects the two entangled bulk systems (Fig. 3). In particular, Susskind’s
suggestion is that the entanglement entropy S, of a bulk subsystem with support on
Hpy with respect to a bulk subsystem with support on Hp is proportional to the area,
|o|, of . Thus the RT formula (4) can be re-written as

Sk = lyrl/4G +d'|o| (N

for some constant «’. Unlike Eq. (4), Eq. (7) expresses a 1-1 correspondence between
bulk spacetime topology and boundary quantum entanglement. In particular, in Eq. (7),
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Fig.3 Regions appearing in the (ER=)-modified RT formula

bulk connectivity is a necessary and sufficient condition for boundary quantum entan-
glement, as van Raamsdonk observes:

We have argued that entanglement between fundamental degrees of freedom
underlies the connectivity of spacetime. Maldacena and Susskind’s suggestion
in [2013] is that not only is this entanglement a necessary condition for connect-
edness, it is also sufficient. (van Raamsdonk 2016, footnote 25, p. 35.)

3 State-based approaches

As we’ve seen in Sect. 2 above, van Raamsdonk’s Connectedness/Entangle-ment
hypothesis can be viewed as a duality that relates a quantitative measure of quan-
tum entanglement (entanglement entropy), on the one hand, to an aspect of spacetime
topology (connectedness), on the other. In this section and the next, I’d like to consider
two ways of understanding such a duality, one “state-based” and the other “observable-
based”.

In a state-based approach to a duality between spacetime topology and quantum
entanglement, one attempts to identify appropriate topological states that are dual
to quantum entangled states. For instance, Maldacena and Susskind’s ER = EPR
hypothesis suggests that the appropriate topological states are those that characterize
Einstein-Rosen wormhole geometries. The hard work would then involve identifying
the essential characteristics of such states that are dual to relevant aspects of quantum
entangled states.'> To get a sense of some of the issues that can arise with such a
program, the remainder of this section focuses on a more simple example due to
Aravind (1997) who proposed an analogy between quantum entangled n-partite states
and topologically entangled n-links.

15 One way of carrying this out is suggested by Bao et al. (2015a) who attempt to identify “no-go” theorems
for Einstein-Rosen wormholes that are dual to no-go theorems associated with quantum entangled states.
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Fig.4 a The Borromean rings 3-link; b the three-Hopf rings 3-link

An n-link is an embedding of # circles in the 2-dim plane up to ambient isotopy.
The Borromean rings 3-link, for example, consists of three entangled circles with the
feature that, if any one is cut, the other two become disentangled (Fig. 4a). Aravind
(1997, p. 54) suggested that cutting one of the links of the Borromean rings is analogous
to measuring one of the subsystems of a tripartite system in an entangled GHZ state:

1
\/;{I Pl P2l A2y) = 1z 4zl )} ®)

where, e.g., | 1) is an eigenstate of subsystem 1 characterized by spin-up along the z-
axis. A measurement of spin along the z-axis of subsystem 1, for instance, disentangles
subsystems 2 and 3, insofar as the post-measurement state (assuming the projection
postulate) is a product state.

To make this analogy more precise, one would like a formal definition of a topolog-
ically entangled n-link. Towards this end, first recall that the n-strand braid group B,

is the group generated by n — 1 generators o1, .. ., 0,1 that satisfy the braid relations
(see, e.g., Alagic et al. 2016, p. 2):

(a) ojoj =0jo;foralli, j=1,...,n—1,with|i — j| >2

(b) 0;0j4+10; = 0;4+10;0;41 i = 1, R (A 2

Under the intended interpretation, elements of B, act on “n-strands” (n vertical line
segments). In particular, the action of the ith element o; is to braid the ith strand
counterclockwise about the (i + 1)th strand, and the action of its inverse, crl._l, is to
braid the ith strand clockwise about the (i + 1)th strand. An n-braid, expressed as a
sequence 0;00k... of elements of B,, where i, j, k € 1,...,n — 1, can be defined as
an n-strand that carries a representation of B,,.

Every n-link can be represented by a closed n-braid.'® The Borromean rings 3-link,
for instance, is the closure of the 3-braid o, 10102_ 10102_ 101, and the trivial 2-link is
the closure of the 2-braid o0 ! (Fig. 5). These examples suggest that an n-braid can
be said to be topologically entangled just when it contains at least one pairwise set of
terms o0;0; such that o;0; # 1. Thus the 3-braid 051010510105101 is topologically
entangled, whereas the 2-braid o0 !'is not. This suggests the following definition of
a topologically entangled n-link:

16 See, e.g., Alagic et al. (2016, p. 2) for a discussion of this theorem due to Alexander.
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Fig.5 n-links as the closure of n-braids

Def. 1. An n-link is topologically entangled just when it is the closure of a
topologically entangled n-braid.

Under this definition, the Borromean rings 3-link is topologically entangled, whereas
the trivial 2-link is not. Def. 1 might be compared with a typical definition of a quantum
entangled n-partite state:

Def. 2. A vector |{y) € H is quantum entangled with respect to an n-partite
decomposition H = V| ® ... ® V, just when it cannot be expressed as a product
of n terms |¥/) = |v1) ® ... ® |v,), where |v;) € V;.17

Given these definitions, one can now ask, is topological entanglement of n-links the
dual of quantum entanglement of n-partite state vectors? Alas, no; to the extent that
the duality requires a 1-1 correspondence. Aravind (1997) provided examples of the
following claims:

17 This definition of a quantum entangled state vector (i.e., a pure state) as a non-product state is sufficient
for the purpose of an initial comparison with Def. 1. However, it does not fully capture the sense of non-
locality associated with the correlations that subsystems in a quantum entangled state may exhibit, as Sect. 5
below indicates.
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(1) A topologically entangled n-link can correspond to more than one quantum entan-
gled n-partite state.

(i1) A quantum entangled n-partite state can correspond to more than one topologically
entangled n-link.

Aravind’s (1997, pp. 54-55) example of (i) is the three-Hopf rings 3-link, which has
the feature that if any of its links is cut, the other two remain entangled (Fig. 4b).
Under Aravind’s analogy, this single topologically entangled 3-link corresponds to an
infinite number of distinct quantum entangled tripartite states of the general form

of Ta I To) |l Tos) = 1 )l dos)t 4+ Bl da )l To2)l To3) + 1 o) L3} (9)

where a, b are arbitrary spin axes inclined at some angle 6 with respect to each other,
and «, B are constants determined by 6 and constrained by |«|> + ||> = 1. These
states have the feature in common with the three-Hopf rings that, if a measurement is
performed on any one subsystem, the other subsystems remain in a quantum entangled
state.

Aravind’s (1997, p. 56) example of (ii) is the tripartite state

1
\/;{I P2 ([ Padl dzg) + 1) 123) + 1z 12| 1230} (10)

In this state, if a measurement is performed on subsystem 1, there is a probability
of 2/3 that the outcome will be spin-up, and a probability of 1/3 that it will be spin-
down. Moreover, if the measurement outcome is spin-up, the other subsystems remain
entangled, which corresponds, under Aravind’s analogy, to the three-Hopf rings 3-link;
whereas if the measurement outcome is spin-down, the other subsystems disentangle,
which corresponds to the Borromean rings 3-link. Thus the quantum entangled tripar-
tite state (10) corresponds to the three-Hopf rings with a probability of 2/3, and to the
Borromean rings 3-link with a probability of 1/3.

Claims (i) and (ii) indicate that there is no 1-1 correspondence between topologically
entangled n-links and quantum entangled n-partite states, according to Definitions 1
and 2; and this problematizes a state-based duality between topological entanglement
and quantum entanglement. This does not rule out state-based approaches in general,
but it does suggest additional constraints may be required to support a 1-1 duality
relation based on states. In any event, the next section considers an alternative approach
in which the focus is on observables, as opposed to states.

4 Observable-based approaches

Our sample proposal for a duality between spacetime topology and quantum entan-
glement was based on the RT formula, and it suggests a duality between a topological
property (bulk connectivity), and a property associated with quantum entanglement
(entanglement entropy). Thus perhaps a more direct approach to this type of duality
should focus on properties (i.e., observables), as opposed to states.
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An example of an observable-based approach is a research program initiated by
Kauffman and Lomonaco (2002) that seeks correspondences between quantum entan-
gling operators, identified with unitary representations of the braid group, and aspects
of n-links. This program was motivated in part by Aravind’s (1997) analogy, discussed
in Sect. 3 above. Concerns with the limitations of this analogy prompted Kauffman
and Lomonaco to switch the focus from states to operators (viz., observables):

The main point for the exploration of the analogy is that, from the point of view
of a braid representation, each braid is seen as an operator rather than a state
(Kauffman and Lomonaco 2002, p. 5).

A unitary representation of the braid group B,, on the vector space V ®" is a map p,gR)

from elements of B, to unitary operators on V ®” such that, for each o} € B,,
p,(,R)(Gk) — [®k—1 ® R ® [®n—k—1 (1 1)

where [ is the identityon V,and R : V ® V — V ® V is a unitary invertible bipartite
operator that satisfies the Yang—Baxter equation

RINUSR)(RRI)=URR)(RIII ®R) (12)

Under a unitary representation of B,, an n-strand is associated with two copies
of V®" (one for each set of its endpoints), and each elementary braid generator oy, is
associated with a unitary bipartite operator R (referred to as a Yang—Baxter operator).'8
Given a unitary representation of B, one can construct a representation of an n-braid
b by replacing each occurance of oy in the expression for b with p,(lR) (o1). The result is
an n-partite unitary operator ,O,SR) (b) on V®" Let an n-partite operator O be “quantum

entangling” just when there is a vector |®) in V®” such that |®) is a product state
and O|®) is an entangled state. We can now pose the question, /s p,(lR)(b) quantum
entangling if and only if b is topologically entangled?'®

‘We might not expect this to be the case, since we know from Sect. 3 that there is no
1-1 correspondence between topologically entangled n-links and quantum entangled
n-partite states. Indeed, Kauffman and Lomonaco (2002, p. 6) consider the case V =
C? and an explicit matrix form of R given by

@000
0080
R=10,00 (13)

0008

One can show that (13) is unitary, invertible, and satisfies the Yang—Baxter equation
(12), hence it induces a unitary representation of B, on 2 C2 Moreover, there are

18 gee, e.g., Alagic et al. (2016). Conditions (11) and (12) guarantee that R satisfies the braiding relations
in the definition of B, in Sect. 3 above.

19 Recall from Sect. 3 that an n-braid is topologically entangled just when it contains at least one pairwise
setof terms 0; 0 such thato;0; # 1. Recall, too, that we are (still!) bracketing off the concern over defining
an entangled state as a non-product state.
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product states |®) in C2® C? such that the action of (13) on | ®) produces an entangled
state, provided a8 # 8y .20 But for af = 8y, R is not quantum entangling. In particu-
lar, we should expect that, for R given by (13) with 8 = §y, a unitary representation
of a topologically entangled 2-braid is not a quantum entangling operator on C> ® C2.

Thus a 1-1 correspondence (and hence a duality) does not exist between quantum
entangling operators and topologically entangled n-braids. What can be shown, how-
ever, is that, under limited circumstances, relations can be obtained between quantum
entangling operators, on the one hand, and certain /ink invariants, on the other. A link
invariant is a function that takes values on links, and that is the same for isotopically
equivalent links. For instance, Kauffman and Lomonaco (2002, p. 11) showed that the
following function on 2-links K is a link invariant:

Zi =2[1 + (y*/a?)F ] (14)

where y, « € C, and [k(K) is the linking number of the two components of K (i.e.,
the number of times each component winds around the other). Moreover, Zx can
be encoded in the expression (13) for a Yang—Baxter operator for the special case
B = «,8 = y. Recall that R is quantum non-entangling just when o8 = §y, or
a® = y? for the special case that encodes Zk . In this quantum non-entangling case,
we thus have Zx = 2(1+ llk(K)) = 4;1.e., Zk is constant for all 2-links K, and hence
is trivial. Thus, if Zg is non-trivial, then the corresponding Yang—Baxter operator R
is quantum entangling. According to Kaufman and Lomonaco (2002, p. 11), “...for
this specialization of the R matrix, the operator R entangles quantum states exactly
when it can detect linking numbers in the topological context.”

This result was generalized by Alagic et al. (2016) in the following way: Let ,o,gR) (b)
be, as above, a representation of an n-braid b, under a unitary representation of B,
generated by a Yang—Baxter operator R. Then one can show that Tr[ p,(,R) (b)-u®isa
link invariant, where i : V' — V is an endomorphism on V such that R commutes with
u®u,and Tro[R - u @] = Tra(R™!- u® i) = pu (where Try is the partial trace over
the second tensor factor).2! Alagic et al. (2016, p. 4) proved that if Tr[,o,sR) (b) - u®
is non-trivial, then R is quantum entangling.

These results, while intriguing, face the following concerns, to the extent one might
appeal to them to underwrite a duality between spacetime topology and quantum
entanglement. First, both results indicate that quantum entanglement is necessary, but
not sufficient, for a non-trivial link invariant.22 Moreover, that a link possesses a non-
trivial link invariant does not necessarily imply that it is topologically entangled. For
instance, the 2-link invariant (14) cannot distinguish between the trivial 2-link and the
Whitehead 2-link, insofar as both have linking number 0; but, by Def. 1 above, the

20 Kauffman and Lomonaco (2002, p. 8). Let {|0), |1)} be a basis for C2, and let |®) = {|0)+ 1) H|0)+]1)}.
Then R|®) = «|00)+y[10)458|01)+B|11). Thisis a product state just when «|00)+y | 10)+8(|01)+B|11) =
{X10) + Y|1)H{X'|0) 4+ Y’|1)}, and this requires « = XX, y = X'Y,§ = XY’, B = YY’. This holds just
when a8 = 8y.

21 The appearance of 4 in the trace ensures that the latter is invariant under the Markov moves, which are
a set of transformations that leave the closure of a braid invariant.

22 Alagic et al. (2016, p. 10) explicitly show this by counterexample.
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trivial 2-link is not topologically entangled, whereas the Whitehead link is.>3 Of course
the advocate of link invariants might respond, so much the worse for any attempt to use
Def. 1 to underwrite the notion of a topological observable that is dual to a quantum
entanglement observable. But even if we grant that link invariants are the appropriate
type of topological observable to focus on, we might question the notion of a quantum
entanglement observable represented simply by a quantum entangling operator. It’s
finally time to address the concern, raised initially in Sect. 2.1, about the nature of
quantum entanglement.

4.1 Two manifestations of quantum entanglement

Quantum entanglement is typically characterized by a type of non-locality associated
with a violation of a Bell inequality, and this is not entirely captured by the notion
of a quantum entangling operator. Indeed, according to Kauffman and Lomonaco
(2009, p. 103), “[t]he Bell inequality violation is an indication of quantum mechanical
entanglement. One’s intuition suggests that it is this sort of entanglement that should
have a topological context.” This suggests that the task of identifying appropriate
dual notions of topological observable and quantum entanglement observable may be
more complicated than the examples we’ve considered so far. Moreover, as Horodecki
et al. (2009) observe, Bell inequality-violating manifestations of entanglement are, in
general, distinct from entropic inequality-violating manifestations. Recall that one
example of an entropic inequality is the relation S4 < Syny(pap) between the von
Neumann entropy of a bipartite system AB, and the entanglement entropy of one of
its subsystems: this inequality is violated if and only if the composite pure state p4p
is indecomposable. More generally, for a bipartite state p4p, an entropic inequality
takes the form S, (p4) < Se(paB), Where Sq (p) = (1 — )~ log Trp® is the -Renyi
entropy, and « > 0 (Horodecki et al. 2009, p. 880). The von Neumann entropy is the
limiting case for the limit as « goes to 1, S| = Syn. Werner (1989) showed that there
are indecomposable mixed states (subsequently called “Werner states”) that cannot
be detected by a Bell inequality. In fact, one can show that there are Werner states
whose indecomposablity can be detected by a Bell inequality but not by an entropic
inequality, and vice-versa, there are Werner states whose indecomposablity can be
detected by an entropic inequality but not by a Bell inequality.
To see this, consider the particular example of a 2-dim Werner state:

pw =ply )+ 1 = p) 2 ®1)/4 15)

where |1/ 7) is the maximally entangled spin-1/2 singlet state, /5 is the identity on
C3, and 0 < p < 1. One can show that, for p > 1/3, py is indecomposable,
for p > 1/4/3 ~ 0.57735, pw violates the @ = 2 entropic inequality, and for
p > 1/3/2 ~ 0.707107, py violates the CHSH Bell inequality (Horodecki et al.
1996, p. 380). Moreover, for p > 0.7476, py violates the von Neumann (¢ = 1)

23 See, e.g., Kauffman and Lomonaco (2002, p. 10). The trivial 2-link can be obtained from the closure of
the 2-braid oj0" 1, which is not topologically entangled. The Whitehead 2-link can be obtained from the

closure of the 3-braid 010, 10‘10‘{ 2, which is topologically entangled.
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entropic inequality (Krammer 2005, p. 24). Thus, if entanglement is defined in terms
of indecomposability, then for 0.57735 < p < 0.707107, the entanglement of py
is detected by an entropic inequality but not a Bell inequality, and for 0.707107 <
p < 0.7476, the entanglement of py is detected by a Bell inequality but not the von
Neumann entropic inequality.

This example raises the question, Where should we seek topological duals to
quantum entanglement: in Bell inequality-violating manifestations of the latter, or in
entropic inequality-violating manifestations? On the surface, this question may seem
moot: Insofar as the RT formula and its relatives reviewed above in Sect. 2 all involve
formal correspondences between entanglement entropy and some aspect of topology,
entropic inequality-violating manifestations of quantum entanglement seem to be the
relevant place to seek topological duals. Moreover, these examples involve bipartite
systems in pure states, and for these simple cases (as opposed to, for instance, mixed
states like (15)), the distinction between entropic inequality-violating manifestations
of quantum entanglement and Bell inequality-violating manifestations breaks down,
to the extent that, for these simple cases, a violation of an entropic inequality is both
necessary and sufficient for a violation of a Bell inequality.?*

On the other hand, a bipartite system in a pure non-product state will typically
decompose into subsystems in mixed states; thus, as Earman (2015, p. 310) notes,
“...even if we deal only with pure states at the composite system level, mixed states
will out at the subsystem level”. Similarly, the assumption that a composite system is in
a pure state entails that it is not itself a subsystem of a larger composite system in a non-
product state, and this seems unlikely if environmental interactions typically produce
composite systems in non-product states. Thus the general case of a mixed composite
state should not be ignored, and for this general case, the distinction between entropic
and Bell inequality-violating measures of quantum entanglement is quantitatively non-
trivial, as the example of Werner states indicates. Moreover, the distinction is also
conceptually non-trivial: Entropic measures involve non-linear logarithmic functions
of a quantum state, whereas Bell inequality-violating measures can be encoded in
linear operators (see below Sect. 5.1); and the latter measures, but not the former, are
explicitly associated with non-local correlations.

Motivated by these concerns, the next section considers three general issues that
any observable-based approach to a spacetime topology/quantum entanglement duality
should address; namely, non-linearity, non-locality, and the nature of a correlation.

5 Topological versus quantum entanglement observables

To summarize the discussion at the end of Sect. 4.1 above, the distinction between
entropic inequality-violating manifestations of quantum entanglement and Bell
inequality-violating manifestations raises three concerns for any observable-based

24 For a pure bipartite state, one can show that indecomposability is both necessary and sufficient for
a violation of a Bell inequality (Brunner et al. 2014, p. 437). On the other hand, a pure bipartite state
is indecomposable if and only if it is a non-product state, and “non-productness” is both necessary and
sufficient for a violation of an entropic inequality (Nielson and Chuang 2010, p. 514, as noted above in
footnote 2).
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approach to a duality between spacetime topology and quantum entanglement. These
concerns are

(a) Non-linearity To the extent that quantum entanglement is characterized by an
entropic inequality, it is non-linear, in the sense that it cannot be represented by a
linear operator; whereas typical examples of topological observables are linear in
this sense.

(b) Non-locality To the extent that quantum entanglement is characterized by a Bell
inequality, it exhibits a type of non-locality that is distinct from the non-locality
associated with topological observables.

(c) Correlations The non-locality that characterizes a violation of a Bell inequality is
exhibited by a particular type of correlation between observables. If topological
observables are required to exhibit this type, care must be taken in distinguishing
local versus non-local correlations, on the one hand, and short-range versus long-
range correlations, on the other.

The remainder of this section addresses each of these concerns in turn.

5.1 Non-linearity

Any observable-based approach to a duality between spacetime topology and quantum
entanglement must explain how the typically linear nature of topological observ-
ables can be reconciled with the non-linear aspect of quantum entanglement. This
non-linearity takes a concrete form in entropic inequality-violating manifestations
of quantum entanglement, which, as mentioned above, involve nonlinear logarithmic
functions of a quantum state.>> Some authors identify this non-linearity with the claim
that quantum entanglement cannot be directly represented by a linear operator. Bao et
al. (2015b, p. 2), for instance, observe that the set of all entangled states of a Hilbert
space is not closed under addition, and thus does not form a subspace. Hence there is
no projector onto this set, and hence no corresponding linear observable.?

On the other hand, typical examples of topological observables are represented by
linear operators. Consider the way such observables are represented in topological
quantum field theories (see, e.g., Labastida and Lozano 1997, p. 5). In the functional
integral formalism, a local quantum field theory consists of a smooth manifold M
(i.e., spacetime), a Lorentzian metric g,, on M, a set of fields ¢; (x), and an action
S[¢;] that is a functional of the fields and their derivatives evaluated at the same point.
The observables are vacuum expectation values of products of local linear operators
O|¢;] constructed as functionals of the fields. These are defined by (0;...0,) =
[ D¢; O1...0,e5191] Tn this approach, a topological quantum field theory is a local
quantum field theory in which §/8g,,,(O1...0,) = 0 for some set of local operators. In
words: The vacuum expectation value of these operators is invariant under variations of

25 Statements to this effect can be found in, e.g., Bovino et al. (2005, p. 1), Walborn et al. (2006, p. 1022),
Mintet and Buchleitner (2007, p. 1).

26 Recall that a linear operator O on a Hilbert space M is amap O : H — H such that O (a|¢) + B|v)) =
aOl¢p) + BO|Y), for any o, B € C and any |¢), |¢) € H. Thus if O is linear and responds “yes” to two
entangled states separately, then it should respond “yes” to their sum; but the latter may not be an entangled
state.
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the metric and hence is a topological invariant of M. The point is that such topological
observables are represented by (combinations of) linear operators.

An example of a linear topological observable is a Wilson loop operator W[C],
defined, for gauge field A, and closed spacelike loop C, by W[C] = Tr[P exp (fc A)l,
where P is the path ordering operator. W[C] can be interpreted as adding a loop of
“electric” flux along C to a state. The vacuum expectation value (W[C]) is then the
probability for a loop of electric flux W[C]|0) to annihilate the vacuum. Again, the
point is that, so-defined, a Wilson loop operator is a linear topological observable.?’

Of course the lesson drawn from the non-linear aspect of quantum entanglement
might be just that we should seek the same sort of non-linearity in the choice of
dual topological observable; and if this means typical topological observables have
no quantum entanglement duals, then so be it. Alternatively, one might interpret the
non-linear aspect of quantum entanglement as indicating its non-detectability (the
underlying assumption perhaps being that to be detectable, an observable must be
representable by a linear operator), and then attempt to identify non-detectable topo-
logical duals in the relevant circumstances. An example of this approach is Bao et al.
(2015b): in the context of the ER = EPR hypothesis, they view the fact that there
is no linear observable associated with quantum entanglement as dual to the non-
detectability of an Einstein-Rosen wormhole geometry by an observer in the interior
of a Schwarzschild black hole.

5.2 Non-locality

While entropic inequality-violating manifestations of quantum entanglement are non-
linear, Bell inequality-violating manifestations are linear, at least to the extent that
they can be encoded in a constraint imposed on a linear operator. For instance, the
CHSH inequality is given by

|E(A1, B1) + E(A1, By) + E(Az, B)) — E(A3,By)| <2 (16)

where E(A;, Bj) is the expectation value of the joint outcome A; B; of two pairs of
observables (A, Az) and (B, B>) associated with two spatially separated physical
systems assumed to be conditionally statistically independent of each other. The latter
condition requires that the joint probability of obtaining the values @ and b of A; and
B, respectively, satisfies

pla,blA;, Bj) :/d)LfI()\)P(aMi,)\)P(b|Bj’)\) 7)

where ¢(A) is a probability distribution over a random variable A. One can show
that (16) is violated for expectation values of the joint outcomes of some pairs of

27 The notion of linearity here is that described in the previous footnote 26. Note that a Wilson loop
operator is distinct from a loop state. The latter is a state with respect to which a loop operator has a non-
zero expectation value. Issues concerning how to characterize an appropriate space of loop states (arising
in “loop representations” of gauge theories, and in loop quantum gravity) are distinct from the linear nature
of a loop operator.
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spin-1/2 observables taken with respect to the indecomposable spin-1/2 singlet state
W) = /T/2{|0)1|1)2 — [1)1]0)2}.28 In this sense, a violation of the CHSH inequality
(16) is an indication of quantum entanglement. Moreover, a linear Bell operator can
be defined by

B=A ®(B|+ B2+ A ® (B] — By) (18)

and (16) can then be encoded by the condition |[Tr(Bp)| < 2, for all states p that
satisfy (17).

Thus, to the extent that quantum entanglement is characterized by the violation of a
Bell inequality, it is linear. On the other hand, Bell inequality-violating manifestations
of quantum entanglement are characterized by a type of non-locality that isn’t explicit
in entropic inequality-violating manifestations. The concern then is that this type
of non-locality is very different from the non-locality that topological observables
exhibit.?’

To say an observable satisfies localization is to say it has support on a finite con-
tractible region of spacetime. This notion of localization is motivated by two naive
intuitions: First, the region of support should be sufficiently finite in order to distin-
guish a localizable observable from a global observable that takes non-zero values
everywhere in the spacetime. Second, the region of support should be contractible
(i.e., continuously deformable into a point) in order to avoid finite but topologically
non-trivial regions of support; the intuition being that an observable with support in a
finite disconnected region, or a finite region with one or more missing points, should
not be considered localizable. A failure of localization in this second sense leads to
what might be called topological non-locality:

Def. 3. An observable exhibits topological non-locality just when it has support
on a non-contractible region of spacetime.

Non-contractibility is a characteristic of a disconnected space (i.e., a space in which
there are points that cannot be connected by a curve) and a multiply connected space
(i.e., a space that contains a closed curve that cannot be continuously deformed into a
point), and hence captures the topological aspects of the examples in Sect. 2. So, for
instance, van Raamsdonk’s Connectedness/Entanglement hypothesis states a duality
between entropic inequality-violating manifestations of quantum entanglement on the
boundary, and observables associated with a disconnected bulk region. And similarly,
observables with support on multiply connected regions contribute to the topolog-
ical entanglement entropy of Levin and Wen, and Kitaev and Preskill. In both of
these examples, the relevant topological observables exhibit topological non-locality,
according to Def. 3, and hence violate localization.

The type of non-locality associated with Bell inequality-violating manifestations
of quantum entanglement is exhibited by a correlation between the observables of two

28 For instance, let Ay =81-0,Ay =¢r-0,B1 = —/1/2(é1 +¢é3)-6,and By = —/1/2(—¢1 +¢é») -G,
where ¢, ¢, are any two choices of spin measurement axes, and 6 = (oy, oy, 0z) encodes the Pauli
operators.

29 Here 1 follow Bain’s (2019, p. 25) distinction between two types of non-locality claimed to be present
in intrinsic topologically ordered condensed matter systems.
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spatially separated physical systems that violates (17). Note that (17) entails that A
screens A; off from B, and vice-versa; hence, when (17) holds, A acts as a common
cause that can explain the correlation between A; and B;. Thus one might say that
a Bell-inequality violating correlation cannot be explained by a common cause (see,
e.g., Bub 2016, p. 74). Moreover, if the distance between the subsystems exceeds
an appropriate bound on causal signal propagation, any correlation between their
observables cannot be explained by a direct cause in the form of a causal signal that
propagates from one subsystem to the other. When this is the case, call the correlation
a “distant correlation”. The upshot is that it is possible for the observables of two
physical systems in an entangled state to exhibit a distant, Bell inequality-violating
correlation; i.e., a correlation that cannot be explained by either a common cause or a
direct cause. This amounts to a second notion of non-locality:°

Def. 4. Two observables exhibit quantum entanglement non-locality just when
they exhibit a distant, Bell inequality-violating correlation.

An observable that exhibits topological non-locality violates localization. On the other
hand, quantum entanglement non-locality is compatible with localization: two observ-
ables can exhibit a distant, Bell inequality-violating correlation, and yet still have
support in finite contractible regions of spacetime.

Thus, if one characterizes quantum entanglement in terms of a violation of a Bell
inequality, then any attempt at articulating a duality between topology and quantum
entanglement must provide an account of the circumstances in which topological non-
locality entails, and is entailed by, quantum entanglement non-locality. In particular,
such an account must explain the sense in which the topological non-locality exhibited
by a topological observable entails, and is entailed by, a distant, Bell inequality-
violating correlation between it and another observable.3!

5.3 Correlations

In what sense can an observable that exhibits topological non-locality enter into a
distant, Bell inequality-violating correlation? Recall that Levin and Wen (20006) refer
to the notion of a “non-local” correlation in explaining the topological contribution to
the formula (2) for the entanglement entropy Sg of a 2-dim gapped condensed matter
system with respect to a bounded region R of space. Can this notion of a “non-local”
correlation be understood in terms of a distant, Bell inequality-violating correlation
involving a topological observable?

According to Levin and Wen (2006), the first boundary term in formula (2) comes
from contributions to Sk from correlations between local observables: such correla-
tions decay exponentially, due to the gap property; hence, any contribution they make
to the entanglement between degrees of freedom inside R and degrees of freedom out-

30 Indeed, the conditional statistical independence condition (17) is sometimes referred to as “Bell locality”,
and the requirement that causal signal propagation not exceed an appropriate bound is sometimes referred
to as “Einstein locality”. Quantum entanglement non-locality, Def. 4, can then be thought of as the denial
of both Bell locality and Einstein locality.

31 There is a limited sense in which topological non-locality entails quantum entanglement non-locality in
condensed matter systems that exhibit topological order (see, e.g., Bain 2019).
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side R must be a function of the size of the boundary. The second term (the “topological
entanglement entropy” I') can arise in cases in which R has non-trivial topology, and
it can then come from contributions to Sg from “non-local” observables with support
in R, one example being an observable with support on a non-contractible loop within
R. According to Levin and Wen (2006, p. 2), the presence of such a non-local observ-
able indicates “non-local correlations”. Evidently this establishes a link between a
topological observable, in the form of a “non-local” observable with support on a
topologically non-trivial region R, on the one hand; and quantum entanglement, as
measured by the entanglement entropy Sg, on the other hand. But is this link enough
to establish a duality? At the end of Sect. 2.1, I argued that it was not, but it may help
to run through the argument again, this time making precise the distinctions between
a local versus a non-local observable, and a local versus a non-local correlation. To
this end, consider the following three questions:

L. In what sense do correlations between observables with support on R and its
complement R contribute to Sg? To say observables A and B are correlated is to
say there is a state |1) with respect to which

(WIABIY) # (VIAIY)(Y|BlY) (19)

This is to say that, with respect to probabilities prescribed by the Born rule, A and
B are statistically dependent. On the other hand, Sg is a measure of the extent to
which the bipartite pure state of the system is indecomposable, and one can show
that statistical dependence holds for any A and B with respect to any pure state,
if and only if that state is indecomposable. Thus, Sg is non-zero if and only if
there are observables with support on R and R, and a pure state |) with respect
to which the observables exhibit a correlation.

2. What is the distinction between a “local” observable and a “non-local” observ-
able? Levin and Wen’s account suggests cashing out this distinction in terms of the
notion of localization in Sect. 5.2; namely, a local observable is an observable with
support on a finite contractible region of spacetime, and a non-local observable is
an observable that is not local (i.e., an observable that does not have support on a
finite contractible region of spacetime).

3. Finally, In what sense can a non-local observable contribute to the entanglement
entropy Sg of a 2-dim gapped condensed matter system with respect to a bounded
region R of space? Given the answer to question #1, observables contribute to Sg
to the extent that they are correlated. So in what sense can a non-local observable
be correlated with other observables? Assumedly, just in the sense of (19). This
suggests the following distinctions:

(1) A local correlation is a correlation between local observables.
(i1) A non-local correlation is a correlation involving at least one non-local observ-
able.

The above senses of correlation should be kept distinct from two more senses:
(iii) A short-range correlation is a correlation that goes to zero at sufficiently large

separation distances.
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(iv) A long-range correlation is a correlation that does not go to zero at sufficiently
large separation distances.

The upshot seems to be that, according to Levin and Wen, for a gapped 2-dim con-
densed matter system decomposed into a bipartite system with respect to the interior
and exterior of a bounded region R, a non-zero value of the entanglement entropy
Sr indicates either local, and hence (due to the gap property) short-range (relative to
the correlation length) correlations along the boundary d R; or non-local, long-range
(relative to the correlation length), correlations far from dR, or both.

Arguably, this is (still) not enough to establish a duality between topologically
non-local observables with support in R, and quantum entanglement on either side
of the boundary dR. Such a duality would seem to require that the presence of a
topological observable inside R be both necessary and sufficient for the presence of
quantum entanglement across the boundary d R, and this has not been established. In
fact, the presence of a non-local observable with support on R is neither necessary
nor sufficient for a non-zero Sg: It is not necessary, since Sg may be non-zero due
solely to local correlations along the boundary; and it is not sufficient since, evidently,
what contributes to the topological entanglement entropy I" isn’t just the presence of
a non-local observable; rather, it is the presence of a non-local correlation. Moreover,
the presence of a non-local correlation is necessary and sufficient for a non-zero I',
and hence is sufficient, but not necessary for a non-zero Sg.

Finally, recall that for mixed states, the distinction between entropic inequality-
violating manifestations of quantum entanglement and Bell inequality-violating
manifestations is non-trivial. In particular, for a mixed state, a non-local correlation is
not sufficient for a Bell inequality-violating manifestation of quantum entanglement.
For mixed states, then, it seems reasonable to return to the question that began this
subsection and request partisans who characterize quantum entanglement in terms of
Bell inequality violations to give an account of the conditions under which a non-local
correlation that involves a topological observable is a distant, Bell inequality-violating
correlation.

6 Conclusion

Is nontrivial spacetime topology the dual of quantum entanglement? More precisely,
are there topological states that are dual to quantum entangled states? Alternatively,
are there topological observables that are dual to quantum entanglement observables?
Despite a number of recent proposals that suggest the answer to these questions, in cer-
tain circumstances, is “yes”, issues associated with the ambiguous nature of quantum
entanglement suggest a fair amount of caution. For a duality between states, even for a
simple pure quantum state, it’s not apparent what the corresponding dual topological
state should be, as Aravind’s analogy indicates. For a duality between observables, if
the duality is meant to capture entropic inequality-violating manifestations of quan-
tum entanglement, then its topological side should reflect the non-linear aspects of its
quantum entanglement side, and it is not entirely clear what the nature of this non-
linearity is with respect to topological observables. On the other hand, if the duality is
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meant to capture Bell inequality-violating manifestations of quantum entanglement,
then non-linearity is not so much of an issue as is non-locality; in particular, it needs to
be shown how the distinct notions of non-locality associated with topological observ-
ables and with distant, Bell inequality-violating correlations can be made compatible.
Finally, exactly how a non-local topological observable might enter into a distant, Bell
inequality-violating correlation remains to be explained.

Acknowledgements Thanks to Gabriela Avila, Sam Granade, and two anonymous reviewers for very
helpful discussion and comments.
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