<u>Recursive Undecidability and Incompleteness of \mathcal{N} </u>

<u>Prop</u>: If \mathcal{N} is consistent and recursively decidable, then any recursively enumerable subset of \mathbb{N} is recursive.

<u>*Proof*</u>: Show that if \mathcal{N} is consistent and recursively decidable, it can be used to construct a method that decides membership in any recursively enumerable subset of \mathbb{N} .

Suppose A is a recursively enumerable subset of \mathbb{N} .

Then: There is a recursive function f such that $A = \{n \in \mathbb{N} : n = f(m), m \in \mathbb{N}\}.$

Thus: Since f is recursive and therefore expressible in \mathcal{N} , there is a $wf \mathcal{A}(x_1, x_2)$ such that

- (i) If f(m) = n, then $\vdash_{\mathcal{N}} \mathcal{A}(0^{(m)}, 0^{(n)})$ or If $\nvDash_{\mathcal{N}} \mathcal{A}(0^{(m)}, 0^{(n)})$, then $f(m) \neq n$
- (ii) If $f(m) \neq n$, then $\vdash_{\mathcal{N}} \sim \mathcal{A}(0^{(m)}, 0^{(n)})$ or If $\nvDash_{\mathcal{N}} \sim \mathcal{A}(0^{(m)}, 0^{(n)})$, then f(m) = n
- Now: If \mathcal{N} is recursively decidable, then for any $wf \mathcal{A}$, there is an effective method that determines if \mathcal{A} is or is not a theorem (by Church's Thesis).
- So: (i) and (ii) determine, for any $n \in \mathbb{N}$, if n is or is not in the set A. For any n, n is not in A just when a certain wf is not a theorem of \mathcal{N} . And n is in A just when the negation of this wf is not a theorem.
- *Note*: If \mathcal{N} is consistent, then this method will always work: there will be no *n* that both *is* and *is not* in A, since for any $wf \mathcal{A}$, we cannot have both $\nvdash_{\mathcal{N}} \mathcal{A}$ and $\nvdash_{\mathcal{N}} \sim \mathcal{A}$.

Corollary:	If \mathcal{N} is	consistent,	then it	cannot	be recursively	decidable.
------------	---------------------	-------------	---------	-------------------------	----------------	------------

<u>*Proof*</u>: Suppose \mathcal{N} is consistent and recursively decidable.

Then: Any recursively enumerable set is recursive (above Prop).

But: K is a recursively enumerable set that is not recursive. (Prop. 7.30.)

<u>Alternative Proof of recursive undecidability of \mathcal{N} :</u>

Suppose \mathcal{N} is consistent and recursively decidable.

Now: Enumerate all *wfs* of $\mathcal{L}_{\mathcal{N}}$ with one free variable: $\mathcal{A}_0(x)$, $\mathcal{A}_1(x)$, ...

Next: Define a 1-place relation D on \mathbb{N} by:

D(n) holds $iff \vdash_{\mathcal{N}} \sim \mathcal{A}_n(0^{(n)})$

Then: Since \mathcal{N} is assumed to be recursively decidable, there is an effective method that determines if D(n) holds; namely, D(n) holds if and only if the $wf \sim \mathcal{A}_n(0^{(n)})$ is a theorem of \mathcal{N} .

So: By Church's Thesis, D is recursive.

Thus: D is expressible in \mathcal{N} , say by the $wf \mathcal{A}^{D}(x)$ such that

- (i) If D(n) holds, then $\vdash_{\mathcal{N}} \mathcal{A}^{D}(0^{(n)})$
- (ii) If D(n) doesn't hold, then $\vdash_{\mathcal{N}} \sim \mathcal{A}^{D}(0^{(n)})$

Now: $\mathcal{A}^{D}(x)$ must appear in the list of *wfs* with one free variable, say $\mathcal{A}^{D}(x) = \mathcal{A}_{m}(x), \in \mathbb{N}$.

So: For the case n = m, we have:

- (1) If D(m) holds, then $\vdash_{\mathcal{N}} \sim \mathcal{A}_m(0^{(m)})$ (definition of D)
- (2) If $\vdash_{\mathcal{N}} \sim \mathcal{A}_m(0^{(m)})$, then D(m) holds (definition of D)
- (3) If D(m) holds, then $\vdash_{\mathcal{N}} \mathcal{A}_m(0^{(m)})$

(expressibility of D (i))

(4) If D(m) doesn't hold, then $\vdash_{\mathcal{N}} \sim \mathcal{A}_m(0^{(m)})$ (expressibility of D (ii))

Now: If \mathcal{N} is consistent, then (1) and (3) entail D(m) cannot hold.

- But: If D(m) doesn't hold, then (2) entails $\nvdash_{\mathcal{N}} \sim \mathcal{A}_m(0^{(m)})$, whereas (4) entails $\vdash_{\mathcal{N}} \sim \mathcal{A}_m(0^{(m)})$.
- So: If \mathcal{N} is consistent, it cannot be recursively decidable.

Prop. If a first order system S is complete, then it is recursively decidable.

<u>*Proof*</u>: Suppose S is complete.

- Then: If S is inconsistent, it is recursively decidable (the set of S-theorems will be identical to the set of all wfs, which is recursively decidable).
- So: Suppose S is consistent.
- Then: The following is an effective method to determine if a $wf \mathcal{A}$ is a theorem of S:
 - 1. Enumerate the theorems of S.
 - 2. Search list until either \mathcal{A} or $\sim \mathcal{A}$ is found.
 - 3. If \mathcal{A} is found, it is a theorem of S. If $\sim \mathcal{A}$ is found, \mathcal{A} is not a theorem of S (by completeness).
- *Thus*: By Church's Thesis, the characteristic function for the set of *G*-numbers of *S*-theorems is recursive; hence the set of *G*-numbers of *S*-theorems is recursive; hence *S* is recursively decidable.

<u>Comment</u>: Recall that the set of theorems of any (recursively axiomatizable) first order system S is recursively enumerable. And this entails that, for any $wf \mathcal{A}$, if \mathcal{A} is an S-theorem, then it will occur somewhere in the list of theorems. But if \mathcal{A} is not an S-theorem, no effective search of the list will halt. If S is complete, then one can search for either \mathcal{A} or $\sim \mathcal{A}$; and such a search is guaranteed to halt eventually.