<u>Turing Machines</u>

A Turing Machine (tm) consists of:

- 1. An unbounded tape. Divided into squares, each square containing a symbol from a finite alphabet with at least 2 symbols: $\{S_0, S_1, S_2, ..., S_n\}, n \ge 1$. S_0 represents "blank".
- 2. A read/write scanner. Programmed with a finite list of internal ("memory") states $\{q_0, q_1, ..., q_m\}, m \ge 0$.
- 3. A program. Consists of a finite sequence of steps $\{A_0, A_1, ..., A_k\}, k \ge 0$. Each step A_i consists of a 4-tuple (*initial state*, *initial symbol*, *action*, *final state*). For initial state and initial symbol (q_i, S_j) , there are 3 possible actions, afterwhich the tm enters final state q_i :
 - (i) Replace initial symbol with S_k . Complete step given by (q_i, S_j, S_k, q_l) .
 - (ii) Move one square left. Complete step given by (q_i, S_j, L, q_l) .
 - (iii) Move one square right. Complete step given by (q_i, S_j, R, q_l) .

<u>Comments</u>: For any initial pair (q_i, S_j) , there must be at most one A_i containing it. Computation halts when current initial pair doesn't occur in any A_i .

<u>Comments</u>: A tm takes in an input tape, and either halts with a modified output tape, or continues indefinitely (doesn't halt).

Props. 7.20, 7.21. The set of Turing machines may be effectively enumerated T_0 , T_1 , ... in such a way that each suffix determines effectively and completely the instructions for the corresponding machine.

<u>Proof Outline</u>: Any tm is fully specified by a string of symbols from $S_0, ..., S_n, q_0, ..., q_m, A_1, ..., A_k$. Just as with first order systems, a Gödel-numbering system can be constructed to encode such strings uniquely as natural numbers. One way:

<u>Symbol</u>	<u>G-number</u>
R	3
L	5
${S}_i$	7 + 4i
q_i	9 + 4i

<u>G-numbers for strings</u>:

For the string $u_1 \dots u_j$ that represents the tm T, let

$$g(T) = p_0^{g(u_1)} \times ... \times p_{j-1}^{g(u_j)}$$

where $p_0, ..., p_{j-1}$ are the first *j* primes 2, 3, 5, ...

<u>Consequence</u>: Every tm corresponds to an $n \in \mathbb{N}$. And any $n \in \mathbb{N}$ can be decoded uniquely (via prime factorization) to see if it's the G-number of a tm, and if so, which one.

Def. 7.23. A partial function on \mathbb{N} is **Turing computable** if there's a *tm* that computes its value.

<u>Comment</u>: This definition depends on the conventions dictating how input/output tapes are to represent the domain and range of functions. One way to do this is the following:

Note: A tm symbol set must contain at least two symbols S_0 , S_1 .

- So: Can represent any $n_1, ..., n_k \in \mathbb{N}^k$ by the input tape $S_1^{n_1}S_0S_1^{n_2}S_0...S_0S_1^{n_k}$, where S_1^m abbreviates $m S_1$'s. Call this tape $\sigma[(n_1, ..., n_k)]$.
- Then: Those tms that represent functions are those that take such σ 's as input and output tapes of the form $\sigma[m]$ (*i.e.*, just a single $m \in \mathbb{N}$).

Thus: A tm T determines a function $f_T^k : A^k \to \mathbb{N}, A^k \subseteq \mathbb{N}^k$, by: If $T(\sigma[(n_1, ..., n_k)]) = \sigma[m], k > 0$, then $f_T^k(n_1, ..., n_k) = m$.

<u>Comments</u>: Technically, a tm T determines a map $T : \{input tapes for which T halts\} \rightarrow \{all possible (appropriately formated) input tapes\}.$ So the function f_T^k it determines is a partial function, defined only on a subset A^k of \mathbb{N}^k (namely, that subset that corresponds to the input tapes for which T halts).

Prop. 7.29. The Halting Problem for Turing machines is unsolvable; *i.e.*, there is no algorithm which provides answers to questions from the set {does machine T_m halt with input n? $| m, n \in \mathbb{N}$ }.

<u>Proof</u>: We need to show that the set $A = \{m, n \in \mathbb{N} : T_m \text{ halts on input } n\}$ is not recursive. Suppose A is recursive.

Then: It's characteristic function c_A is recursive, where

$$c_{\scriptscriptstyle A}(m,n) = \begin{cases} 0 & \text{if } (m,n) \in A \\ 1 & \text{if } (m,n) \notin A \end{cases}$$

Thus: By Prop. 7.25, c_A is Turing computable. So there's a tm that computes it.

So: We can use c_A 's tm to construct a tm H such that its output H(n) on input n is given by

$$H(n) = \begin{cases} T_n(n) + 1 & \text{if } (n, n) \in A \\ 0 & \text{if } (n, n) \notin A \end{cases}$$

Note1: *H* corresponds to T_m for some $m \in \mathbb{N}$. (The Enumeration Theorem.)

Note2: *H* halts on every input. (For any input *n*, if $(n, n) \in A$, then, since T_n halts, so does *H*. If $(n, n) \notin A$, then *H* halts with output 0.)

So: For input m, we have:

 $H(m) = T_m(m)$

 $= T_m(m) + 1$ (Definition of *H*)

This is a contradiction, so A cannot be recursive.

Prop. 7.30. The set $K = \{n \in \mathbb{N} : T_n \text{ halts with input } n\}$ is recursively enumerable but not recursive.

<u>Proof</u>: Note that we can construct the tm H in the proof of Prop. 7.29 directly from the characteristic function c_K of K. This shows that K cannot be recursive. To show K is recursively enumerable, we appeal to Church's Thesis and the following algorithm:

- 1. Compute first step of T_0 with input 0.
- 2. Compute first step of T_1 with input 1, and second step of T_0 with input 0.
- 3. Compute first step of T_2 with input 2, second step of T_1 with input 1, and third step of T_0 with input 0.
- 4. *Etc...*

If and when T_i halts, put *i* in the enumeration of *K*.

<u>Comment</u>: The set A in Prop. 7.29 is not recursively enumerable.