Turing Machines

A Turing Machine (tm) consists of:

1. An unbounded tape. Divided into squares, each square containing a symbol from a finite alphabet with at least 2 symbols: $\left\{S_{0}, S_{1}, S_{2}, \ldots, S_{n}\right\}, n \geq 1 . S_{0}$ represents "blank".
2. A read/write scanner. Programmed with a finite list of internal ("memory") states $\left\{q_{0}, q_{1}, \ldots, q_{m}\right\}, m \geq$ 0.
3. A program. Consists of a finite sequence of steps $\left\{A_{0}, A_{1}, \ldots, A_{k}\right\}, k \geq 0$. Each step A_{i} consists of a 4tuple (initial state, initial symbol, action, final state). For initial state and initial symbol $\left(q_{i}, S_{j}\right)$, there are 3 possible actions, afterwhich the $t m$ enters final state q_{l} :
(i) Replace initial symbol with S_{k}. Complete step given by $\left(q_{i}, S_{j}, S_{k}, q_{l}\right)$.
(ii) Move one square left. Complete step given by $\left(q_{i}, S_{j}, L, q_{l}\right)$.
(iii) Move one square right. Complete step given by $\left(q_{i}, S_{j}, R, q_{l}\right)$.

Comments: For any initial pair $\left(q_{i}, S_{j}\right)$, there must be at most one A_{i} containing it. Computation halts when current initial pair doesn't occur in any A_{i}.

Comments: A tm takes in an input tape, and either halts with a modified output tape, or continues indefinitely (doesn't halt).

Props. 7.20, 7.21. The set of Turing machines may be effectively enumerated T_{0}, T_{1}, \ldots in such a way that each suffix determines effectively and completely the instructions for the corresponding machine.
Proof Outline: Any $t m$ is fully specified by a string of symbols from $S_{0}, \ldots, S_{n}, q_{0}, \ldots, q_{m}, A_{1}, \ldots, A_{k}$. Just as with first order systems, a Gödel-numbering system can be constructed to encode such strings uniquely as natural numbers. One way:

Symbol	\underline{G}-number
R	3
L	5
S_{i}	$7+4 i$
q_{i}	$9+4 i$

G-numbers for strings:
For the string $u_{1} \ldots u_{j}$ that represents the $\operatorname{tm} T$, let

$$
g(T)=p_{0}^{g\left(u_{1}\right)} \times \ldots \times p_{j-1}^{g\left(u_{j}\right)}
$$

where p_{0}, \ldots, p_{j-1} are the first j primes $2,3,5, \ldots$
Consequence: Every $t m$ corresponds to an $n \in \mathbb{N}$. And any $n \in \mathbb{N}$ can be decoded uniquely (via prime factorization) to see if it's the G-number of a $t m$, and if so, which one.

Def. 7.23. A partial function on \mathbb{N} is Turing computable if there's a $t m$ that computes its value.
Comment: This definition depends on the conventions dictating how input/output tapes are to represent the domain and range of functions. One way to do this is the following:

Note: A tm symbol set must contain at least two symbols S_{0}, S_{1}.
So: \quad Can represent any $n_{1}, \ldots, n_{k} \in \mathbb{N}^{k}$ by the input tape $S_{1}^{n_{1}} S_{0} S_{1}^{n_{2}} S_{0} \ldots S_{0} S_{1}^{n_{k}}$, where S_{1}^{m} abbreviates m S_{1} 's. Call this tape $\sigma\left[\left(n_{1}, \ldots, n_{k}\right)\right]$.
Then: Those tms that represent functions are those that take such σ 's as input and output tapes of the form $\sigma[m]$ (i.e., just a single $m \in \mathbb{N}$).
Thus: A $t m T$ determines a function $f_{T}^{k}: A^{k} \rightarrow \mathbb{N}, A^{k} \subseteq \mathbb{N}^{k}$, by:
If $T\left(\sigma\left[\left(n_{1}, \ldots, n_{k}\right)\right]\right)=\sigma[m], k>0$, then $f_{T}^{k}\left(n_{1}, \ldots, n_{k}\right)=m$.
Comments: Technically, a tm T determines a map $T:\{$ input tapes for which T halts $\} \rightarrow\{$ all possible (appropriately formated) input tapes $\}$. So the function f_{T}^{k} it determines is a partial function, defined only on a subset A^{k} of \mathbb{N}^{k} (namely, that subset that corresponds to the input tapes for which T halts).

Prop. 7.29. The Halting Problem for Turing machines is unsolvable; i.e., there is no algorithm which provides answers to questions from the set $\left\{\right.$ does machine T_{m} halt with input n ? $\left.\mid m, n \in \mathbb{N}\right\}$.
Proof: We need to show that the set $A=\left\{m, n \in \mathbb{N}: T_{m}\right.$ halts on input $\left.n\right\}$ is not recursive.
Suppose A is recursive.
Then: It's characteristic function c_{A} is recursive, where

$$
c_{A}(m, n)= \begin{cases}0 & \text { if }(m, n) \in A \\ 1 & \text { if }(m, n) \notin A\end{cases}
$$

Thus: By Prop. 7.25, c_{A} is Turing computable. So there's a $t m$ that computes it.
So: \quad We can use c_{A}^{\prime} 's $t m$ to construct a $t m H$ such that its output $H(n)$ on input n is given by

$$
H(n)= \begin{cases}T_{n}(n)+1 & \text { if }(n, n) \in A \\ 0 & \text { if }(n, n) \notin A\end{cases}
$$

Note1: H corresponds to T_{m} for some $m \in \mathbb{N}$. (The Enumeration Theorem.)
Note2: H halts on every input. (For any input n, if $(n, n) \in A$, then, since T_{n} halts, so does H. If (n, n) $\notin A$, then H halts with output 0 .)
So: \quad For input m, we have:

$$
\begin{aligned}
H(m) & =T_{m}(m) \\
& =T_{m}(m)+1 \quad(\text { Definition of } H)
\end{aligned}
$$

This is a contradiction, so A cannot be recursive.

Prop. 7.30. The set $K=\left\{n \in \mathbb{N}\right.$: T_{n} halts with input $\left.n\right\}$ is recursively enumerable but not recursive.
Proof: Note that we can construct the $t m H$ in the proof of Prop. 7.29 directly from the characteristic function c_{K} of K. This shows that K cannot be recursive. To show K is recursively enumerable, we appeal to Church's Thesis and the following algorithm:

1. Compute first step of T_{0} with input 0 .
2. Compute first step of T_{1} with input 1 , and second step of T_{0} with input 0 .
3. Compute first step of T_{2} with input 2 , second step of T_{1} with input 1 , and third step of T_{0} with input 0.
4. Etc...

If and when T_{i} halts, put i in the enumeration of K.

