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Turing Machines
A Turing Machine (tm) consists of:
1. An unbounded tape.  Divided into squares, each square containing a symbol from a finite alphabet with

at least 2 symbols:  {S0, S1, S2, ..., Sn}, n ≥ 1.  S0 represents "blank".
2. A read/write scanner.  Programmed with a finite list of internal ("memory") states {q0, q1, ..., qm}, m ≥

0.
3. A program.  Consists of a finite sequence of steps {A0, A1, ..., Ak}, k ≥ 0.  Each step Ai consists of a 4-

tuple (initial state, initial symbol, action, final state).  For initial state and initial symbol (qi, Sj), there
are 3 possible actions, afterwhich the tm enters final state ql:
(i) Replace initial symbol with Sk.  Complete step given by (qi, Sj, Sk, ql).
(ii) Move one square left.  Complete step given by (qi, Sj, L, ql).
(iii) Move one square right.  Complete step given by (qi, Sj, R, ql).

    Comments   :  For any initial pair (qi, Sj), there must be at most one Ai containing it.  Computation
halts when current initial pair doesn't occur in any Ai.

Comments   :  A tm takes in an input tape, and either halts with a modified output tape, or continues
indefinitely (doesn't halt).

Props. 7.20, 7.21.     The set of Turing machines may be effectively enumerated T0, T1, ... in such a way that
each suffix determines effectively and completely the instructions for the corresponding machine.
Proof Outline   :  Any tm is fully specified by a string of symbols from S0, ..., Sn, q0, ..., qm, A1, ..., Ak.  Just
as with first order systems,  a Gödel-numbering system can be constructed to encode such strings uniquely
as natural numbers.  One way:

    Symbol       G       -number   
R 3
L 5
Si 7 + 4i
qi 9 + 4i

G       -numbers for strings   :
For the string u1...uj that represents the tm T, let

   g(T ) = p0

g (u1 ) × ...× pj−1

g (uj )

where p0, ..., pj−1 are the first j primes 2, 3, 5, ...

Consequence   :  Every tm corresponds to an n ∈ N.  And any n ∈ N can be decoded uniquely (via prime
factorization) to see if it's the G-number of a tm, and if so, which one.
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Def. 7.23.     A partial function on N is Turing computable if there's a tm that computes its value.

Comment   :  This definition depends on the conventions dictating how input/output tapes are to represent
the domain and range of functions.  One way to do this is the following:

Note: A tm symbol set must contain at least two symbols S0, S1.

So: Can represent any n1, ..., nk ∈ Nk by the input tape   S1

n1S0S1

n2S0 ...S0S1

nk , where S1
m abbreviates m

S1's.  Call this tape σ[(n1, ..., nk)].
Then: Those tms that represent functions are those that take such σ's as input and output tapes of the

form σ[m] (i.e., just a single m ∈ N).
Thus: A tm T determines a function fTk : Ak → N, Ak ⊆ Nk, by:

If T(σ[(n1, ..., nk)]) = σ[m], k > 0, then fTk(n1, ..., nk) = m.

Comments   :  Technically, a tm T determines a map T : {input tapes for which T halts} → {all possible
(appropriately formated) input tapes}.  So the function fTk it determines is a partial function, defined only
on a subset Ak of Nk (namely, that subset that corresponds to the input tapes for which T halts).

Prop. 7.29.     The Halting Problem for Turing machines is unsolvable; i.e., there is no algorithm which
provides answers to questions from the set {does machine Tm halt with input n? | m, n ∈ N}.

Proof   :  We need to show that the set A = {m, n ∈ N : Tm halts on input n} is not recursive.
Suppose A is recursive.
Then: It's characteristic function cA is recursive, where

   
cA(m,n) =

0   if (m,n) ∈ A

1   if (m,n) ∉ A

⎧
⎨
⎪⎪
⎩⎪⎪

Thus: By Prop. 7.25, cA is Turing computable.  So there's a tm that computes it.
So: We can use cA's tm to construct a tm H such that its output H(n) on input n is given by

   
H(n) =

Tn(n) + 1   if (n,n) ∈ A

0             if (n,n) ∉ A

⎧
⎨
⎪⎪
⎩⎪⎪

Note1: H corresponds to Tm for some m ∈ N.  (The Enumeration Theorem.)
Note2: H halts on every input.  (For any input n, if (n, n) ∈ A, then, since Tn halts, so does H.  If (n, n)

∉ A, then H halts with output 0.)
So: For input m, we have:

H(m) = Tm(m)
= Tm(m) + 1 (Definition of H)

This is a contradiction, so A cannot be recursive.

Prop. 7.30.     The set K = {n ∈ N : Tn halts with input n} is recursively enumerable but not recursive.

Proof   :  Note that we can construct the tm H in the proof of Prop. 7.29 directly from the characteristic
function cK of K.  This shows that K cannot be recursive.  To show K is recursively enumerable, we appeal
to Church's Thesis and the following algorithm:
1. Compute first step of T0 with input 0.
2. Compute first step of T1 with input 1, and second step of T0 with input 0.
3. Compute first step of T2 with input 2, second step of T1 with input 1, and third step of T0 with input

0.
4. Etc...
If and when Ti halts, put i in the enumeration of K.

Comment   :  The set A in Prop. 7.29 is not recursively enumerable.


