Prop. (Gödel's Second Theorem)

Let S be a consistent recursively axiomatizable extension of \mathcal{N} . There is no proof in S of the consistency of S.

Proof Outline

- 1. Construct a $wf \mathcal{C}$ of $\mathcal{L}_{\mathcal{N}}$ that asserts that \mathcal{N} is consistent.
- 2. Demonstrate $\nvdash_{\mathcal{N}} \mathcal{C}$.
- 3. This demonstrates the Prop for \mathcal{N} . For any recursively axiomatizable extension of \mathcal{N} , a corresponding version of \mathcal{C} can be constructed.

<u>Step 1.</u>

Consider the wf $A_1^2(a_1, f_1^1(a_1))$ of \mathcal{L}_N , abbreviated by 0 = 0'.

<u>Note</u>: $\vdash_{\mathcal{N}} \sim (0 = 0')$ (axioms N1, K5)

- <u>So</u>: \mathcal{N} is consistent iff $\nvDash_{\mathcal{N}} 0 = 0'$.
- <u>Now</u>: On \mathbb{N} , there's a recursive relation Pf(m, n) that holds just when m is the *G*-number of a proof of the *wf* whose *G*-number is n. It is expressed in \mathcal{N} by the *wf* $\mathcal{P}f(x_1, x_2)$.
- <u>Thus</u>: The assertion $\not\vdash_{\mathcal{N}} 0 = 0'$ can be expressed in \mathcal{N} by the $wf \sim (\exists x_1) \mathcal{P}f(x_1, 0^{(g(0=0'))})$. This wf expresses the consistency of \mathcal{N} ; call it \mathcal{C} . (In N, it says: "There is no $m \in \mathbb{N}$ such that m is the G-number of a proof of the wf 0 = 0'." In other words, "There is no proof in \mathcal{N} of the wf 0 = 0'.")

<u>Step 2.</u>

<u>Lemma</u>: $\vdash_{\mathcal{N}} \mathcal{C} \to \mathcal{U}$, where \mathcal{U} is the Gödel Sentence for \mathcal{N} . <u>Immediate Consequence</u>: If $\vdash_{\mathcal{N}} \mathcal{C}$, then $\vdash_{\mathcal{N}} \mathcal{U}$. But $\nvDash_{\mathcal{N}} \mathcal{U}$ (by the Incompleteness Theorem). So $\nvDash_{\mathcal{N}} \mathcal{C}$.

Proof of Lemma:

Notation: Let $\exists \mathcal{P}(\mathcal{A})$ abbreviate the $wf(\exists x_1)\mathcal{P}f(x_1, 0^{(g(\mathcal{A}))})$. ("There's a proof in \mathcal{N} of the $wf(\mathcal{A}.")$ \mathcal{C} is then abbreviated by $\sim \exists \mathcal{P}(0 = 0')$.

<u>*Claim*</u>: The following hold. For any wfs \mathcal{A} , \mathcal{B} of $\mathcal{L}_{\mathcal{N}}$,

$$\begin{split} \text{I:} & \text{If } \vdash_{\mathcal{N}} \mathcal{A}, \text{ then } \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A}) \\ \text{II:} & \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A} \to \mathcal{B}) \to (\exists \mathcal{P}(\mathcal{A}) \to \exists \mathcal{P}(\mathcal{B})) \\ \text{III:} & \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A}) \to \exists \mathcal{P}(\exists \mathcal{P}(\mathcal{A})) \\ \text{IV:} & \text{If } \vdash_{\mathcal{N}} \mathcal{A} \to \mathcal{B}, \text{ then } \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A}) \to \exists \mathcal{P}(\mathcal{B}) \quad \text{ (from I and II)} \end{split}$$

<u>Ex. Proof of I</u>. Suppose $\vdash_{\mathcal{N}} \mathcal{A}$. Then $Pf(m, g(\mathcal{A}))$ holds in \mathbb{N} for some $m \in \mathbb{N}$. So $\vdash_{\mathcal{N}} \mathcal{P}f(0^{(m)}, 0^{(g(\mathcal{A}))})$. Hence $\vdash_{\mathcal{N}} (\exists x_1) \mathcal{P}f(x_1, 0^{(g(\mathcal{A}))})$ (since $\vdash_{\mathcal{N}} \mathcal{A}(t) \to (\exists x_i) \mathcal{A}(x_i)$, for t free for x_i in $\mathcal{A}(x_i)$).

Now: $\vdash_{\mathcal{N}} \mathcal{U} \leftrightarrow \sim \exists \mathcal{P}(\mathcal{U})$ (definition of \mathcal{U}) $\vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \to \exists \mathcal{P}(\sim \exists \mathcal{P}(\mathcal{U}))$ $So:^1$ (IV and definition of \leftrightarrow) <u>Note</u>:² $\vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \rightarrow \exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U}))$ (III)<u>Note</u>:³ $\vdash_{\mathcal{N}} \sim \exists \mathcal{P}(\mathcal{U}) \rightarrow (\exists \mathcal{P}(\mathcal{U}) \rightarrow (0 = 0'))$ (since $\sim \mathcal{A} \to (\mathcal{A} \to \mathcal{B})$ is logically valid) <u>So</u>:⁴ $\vdash_{\mathcal{N}} \exists \mathcal{P}(\sim \exists \mathcal{P}(\mathcal{U})) \to \exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U}) \to (0 = 0'))$ (IV)<u>Note</u>: $\vdash_{\mathcal{N}} \exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U}) \to (0 = 0'))$ $\rightarrow (\exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U})) \rightarrow \exists \mathcal{P}(0 = 0'))$ (II) $So:^6$ $\vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \to (\exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U})) \to \exists \mathcal{P}(0=0'))$ (HS, 1, 4, 5) $(2, 6, \text{ and } \{\mathcal{A} \rightarrow \mathcal{B}, \mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{C})\} \vdash_{\mathcal{N}} \mathcal{A} \rightarrow \mathcal{C})$ <u>Thus</u>: $\vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \to \exists \mathcal{P}(0=0')$ $\vdash_{\mathcal{N}} \sim \exists \mathcal{P}(0 = 0') \rightarrow \sim \exists \mathcal{P}(\mathcal{U})$ Or: $\vdash_{\mathcal{N}} \mathcal{C} \to \mathcal{U}$ Or: