Prop. (Gödel's Second Theorem)

Let S be a consistent recursively axiomatizable extension of \mathcal{N}. There is no proof in S of the consistency of S.

Proof Outline

1. Construct a $w f \mathcal{C}$ of $\mathcal{L}_{\mathcal{N}}$ that asserts that \mathcal{N} is consistent.
2. Demonstrate $\vdash_{\mathcal{N}} \mathcal{C}$.
3. This demonstrates the Prop for \mathcal{N}. For any recursively axiomatizable extension of \mathcal{N}, a corresponding version of \mathcal{C} can be constructed.

Step 1.

Consider the wf $A_{1}{ }^{2}\left(a_{1}, f_{1}^{1}\left(a_{1}\right)\right)$ of $\mathcal{L}_{\mathcal{N}}$, abbreviated by $0=0^{\prime}$.
Note: $\quad \vdash_{\mathcal{N}} \sim\left(0=0^{\prime}\right) \quad$ (axioms N1, K5)
So: $\quad \mathcal{N}$ is consistent iff $\not_{\mathcal{N}} 0=0^{\prime}$.
Now: \quad On \mathbb{N}, there's a recursive relation $\operatorname{Pf}(m, n)$ that holds just when m is the G-number of a proof of the $w f$ whose G-number is n. It is expressed in \mathcal{N} by the $w f \mathcal{P} f\left(x_{1}, x_{2}\right)$.
Thus: The assertion $\nvdash \mathcal{N} 0=0^{\prime}$ can be expressed in \mathcal{N} by the $w f \sim\left(\exists x_{1}\right) \mathcal{P} f\left(x_{1}, 0^{(g(0=0))}\right)$. This $w f$ expresses the consistency of \mathcal{N}; call it \mathcal{C}. (In N, it says: "There is no $m \in \mathbb{N}$ such that m is the G-number of a proof of the $w f 0=0^{\prime} . "$ In other words, "There is no proof in \mathcal{N} of the $w f 0=0^{\prime} . "$ ")

Step 2.

Lemma: $\vdash_{\mathcal{N}} \mathcal{C} \rightarrow \mathcal{U}$, where \mathcal{U} is the Gödel Sentence for \mathcal{N}.
Immediate Consequence: If $\vdash_{\mathcal{N}} \mathcal{C}$, then $\vdash_{\mathcal{N}} \mathcal{U}$. But $\vdash_{\mathcal{N}} \mathcal{U}$ (by the Incompleteness Theorem). So $\vdash_{\mathcal{N}} \mathcal{C}$.

Proof of Lemma:

Notation: Let $\exists \mathcal{P}(\mathcal{A})$ abbreviate the $w f\left(\exists x_{1}\right) \mathcal{P} f\left(x_{1}, 0^{(g(\mathcal{A}))}\right)$. ("There's a proof in \mathcal{N} of the $w f \mathcal{A}$.") \mathcal{C} is then abbreviated by $\sim \exists \mathcal{P}\left(0=0^{\prime}\right)$.

Claim: The following hold. For any wfs \mathcal{A}, \mathcal{B} of $\mathcal{L}_{\mathcal{N}}$,
I: \quad If $\vdash_{\mathcal{N}} \mathcal{A}$, then $\vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A})$
II: $\quad \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A} \rightarrow \mathcal{B}) \rightarrow(\exists \mathcal{P}(\mathcal{A}) \rightarrow \exists \mathcal{P}(\mathcal{B}))$
III: $\vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A}) \rightarrow \exists \mathcal{P}(\exists \mathcal{P}(\mathcal{A}))$
IV: If $\vdash_{\mathcal{N}} \mathcal{A} \rightarrow \mathcal{B}$, then $\vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{A}) \rightarrow \exists \mathcal{P}(\mathcal{B}) \quad$ (from I and II)
Ex. Proof of I. Suppose $\vdash_{\mathcal{N}} \mathcal{A}$. Then $\operatorname{Pf}(m, g(\mathcal{A}))$ holds in \mathbb{N} for some $m \in \mathbb{N}$. So $\vdash_{\mathcal{N}} \mathcal{P} f\left(0^{(m)}, 0^{(g(\mathcal{A}))}\right)$. Hence $\vdash_{\mathcal{N}}\left(\exists x_{1}\right) \mathcal{P} f\left(x_{1}, 0^{(g(\mathcal{A}))}\right)\left(\right.$ since $\vdash_{\mathcal{N}} \mathcal{A}(t) \rightarrow\left(\exists x_{i}\right) \mathcal{A}\left(x_{i}\right)$, for t free for x_{i} in $\left.\mathcal{A}\left(x_{i}\right)\right)$.

$$
\text { (defintion of } \mathcal{U} \text {) }
$$

$$
\text { (IV and definition of } \leftrightarrow \text {) }
$$

(since $\sim \mathcal{A} \rightarrow(\mathcal{A} \rightarrow \mathcal{B})$ is logically valid)
(HS, 1, 4, 5)

$$
\begin{align*}
& \text { Now: } \vdash_{\mathcal{N}} \mathcal{U} \leftrightarrow \sim \exists \mathcal{P}(\mathcal{U}) \\
& \text { So: }{ }^{1} \quad \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \rightarrow \exists \mathcal{P}(\sim \exists \mathcal{P}(\mathcal{U})) \\
& \text { Note: }:^{2} \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \rightarrow \exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U})) \tag{III}\\
& \text { Note: }{ }^{3} \vdash_{\mathcal{N}} \sim \exists \mathcal{P}(\mathcal{U}) \rightarrow\left(\exists \mathcal{P}(\mathcal{U}) \rightarrow\left(0=0^{\prime}\right)\right) \\
& \underline{S o}:^{4} \quad \vdash_{\mathcal{N}} \exists \mathcal{P}(\sim \exists \mathcal{P}(\mathcal{U})) \rightarrow \exists \mathcal{P}\left(\exists \mathcal{P}(\mathcal{U}) \rightarrow\left(0=0^{\prime}\right)\right) \\
& \underline{\text { Note }}{ }^{5} \vdash_{\mathcal{N}} \exists \mathcal{P}\left(\exists \mathcal{P}(\mathcal{U}) \rightarrow\left(0=0^{\prime}\right)\right) \\
& \rightarrow\left(\exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U})) \rightarrow \exists \mathcal{P}\left(0=0^{\prime}\right)\right) \tag{II}\\
& \underline{S o}:^{6} \quad \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \rightarrow\left(\exists \mathcal{P}(\exists \mathcal{P}(\mathcal{U})) \rightarrow \exists \mathcal{P}\left(0=0^{\prime}\right)\right) \\
& \text { Thus: } \vdash_{\mathcal{N}} \exists \mathcal{P}(\mathcal{U}) \rightarrow \exists \mathcal{P}\left(0=0^{\prime}\right) \\
& \underline{\text { Or: }}: \quad \vdash_{\mathcal{N}} \sim \exists \mathcal{P}\left(0=0^{\prime}\right) \rightarrow \sim \exists \mathcal{P}(\mathcal{U}) \\
& \underline{O r}: \quad \vdash_{\mathcal{N}} \mathcal{C} \rightarrow \mathcal{U}
\end{align*}
$$

