Important topics in Chapter 6 (Gödel's Incompleteness Theorem)

\mathcal{N} is the first order system of arithmetic in the language $\mathcal{L}_{\mathcal{N}}$.
N is the (intended) interpretation of $\mathcal{L}_{\mathcal{N}}$ in which $D_{N}=\mathbb{N}$.

Notation:

$0^{(n)}$ is an abbreviation for the closed term in $\mathcal{L}_{\mathcal{N}}$ that is interpreted in N by the natural number n. In particular, $0^{(n)}$ abbreviates the closed term $f_{1}{ }^{1}\left(\ldots f_{1}{ }^{1}\left(a_{1}\right) \ldots\right)$ in which f_{1}^{1} occurs n times.
Comment: In N, a_{1} is interpreted as 0 , and f_{1}^{1} (successor function) is abbreviated by ${ }^{\prime}$. So $0^{(n)}$ is an abbreviation for the term in $\mathcal{L}_{\mathcal{N}}$ corresponding to the number $0^{\prime \prime \prime \cdots \prime}$ (n primes) in \mathbb{N}; i.e., the nth successor of 0 , which is the number n.

Def. 6.3. A k-place relation R defined on \mathbb{N} is expressible in \mathcal{N} if there is a $w f \mathcal{A}\left(x_{1}, \ldots, x_{k}\right)$ of $\mathcal{L}_{\mathcal{N}}$ with k free variables such that for any $n_{1}, \ldots, n_{k} \in \mathbb{N}$,
(i) If $R\left(n_{1}, \ldots, n_{k}\right)$ holds in \mathbb{N}, then $\vdash_{\mathcal{N}} \mathcal{A}\left(0^{\left(n_{1}\right)} \ldots 0^{(n)}\right)$
(ii) If $R\left(n_{1}, \ldots, n_{k}\right)$ doesn't hold in \mathbb{N}, then $\vdash_{\mathcal{N}} \sim \mathcal{A}\left(0^{\left(n_{1}\right)} \ldots 0^{\left(n_{j}\right)}\right)$

Def. 6.5. A k-place function f defined on \mathbb{N} is expressible in \mathcal{N} if there is a $w f \mathcal{A}\left(x_{1}, \ldots, x_{k+1}\right)$ of $\mathcal{L}_{\mathcal{N}}$ with $k+1$ free variables such that for any $n_{1}, \ldots, n_{k+1} \in \mathbb{N}$,
(i) If $f\left(n_{1}, \ldots, n_{k}\right)=n_{k+1}$, then $\vdash_{\mathcal{N}} \mathcal{A}\left(0^{\left(n_{1}\right)} \ldots 0^{\left(n_{k+1}\right)}\right)$
(ii) If $f\left(n_{1}, \ldots, n_{k}\right)=n_{k+1}$, then $\vdash_{\mathcal{N}} \sim \mathcal{A}\left(0^{\left(n_{1}\right)} \ldots 0^{\left(n_{n+1}\right)}\right)$
(iii) $\quad\left(\exists \exists_{1} x_{k+1}\right) \mathcal{A}\left(0^{\left(n_{1}\right)} \ldots 0^{\left(n_{+1}\right)}, x_{k+1}\right)$

Props. 6.10, 6.11. Not all relations and functions defined on \mathbb{N} are expressible in \mathcal{N}.
Prop. 6.12. A relation (or function) defined on \mathbb{N} is expressible in \mathcal{N} iff it is recursive.

Recursive functions:

I. Basic recursive functions

1. The zero function. $z: \mathbb{N} \rightarrow \mathbb{N}, z(n)=0$.
2. The successor function. $s: \mathbb{N} \rightarrow \mathbb{N}, s(n)=n+1$.
3. Projection functions. $p_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}, p_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}$, for all $n_{1}, \ldots, n_{k} \in \mathbb{N}, k \geq 1, i=1 \ldots k$.

II. Rules of Formation

1. Composition: If $g: \mathbb{N}^{j} \rightarrow \mathbb{N}$ and $h_{i}: \mathbb{N}^{k} \rightarrow \mathbb{N}, 1 \leq i \leq j$, are recursive functions, so is $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$, given by

$$
f\left(n_{1}, \ldots, n_{k}\right)=g\left(\mathrm{~h}_{1}\left(n_{1}, \ldots, n_{k}\right), \ldots, h_{j}\left(n_{1}, \ldots, n_{k}\right)\right)
$$

2. Recursion: If $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ are recursive functions, so is $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$, given by

$$
\begin{aligned}
& f\left(n_{1}, \ldots, n_{k}, 0\right)=g\left(n_{1}, \ldots, n_{k}\right) \\
& f\left(n_{1}, \ldots, n_{k}, n+1\right)=h\left(n_{1}, \ldots, n_{k}, n, f\left(n_{1}, \ldots, n_{k}, n\right)\right)
\end{aligned}
$$

Comment: For $k=0$, the function $g: \mathbb{N}^{0} \rightarrow \mathbb{N}$ is simply an element of \mathbb{N}.
3. Least Number Operator $\boldsymbol{\mu}$: If $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is a recursive function and has the property that for all $n_{1}, \ldots, n_{k} \in \mathbb{N}$, there is an $n \in \mathbb{N}$ such that $g\left(n_{1}, \ldots, n_{k}, n\right)=0$, then $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is recursive, where $f\left(n_{1}, \ldots, n_{k}\right)=\min \left\{n \in \mathbb{N} \mid g\left(n_{1}, \ldots, n_{k}, n\right)=0\right\}$

Def. 6.15. A function on \mathbb{N} is recursive if it can be obtained from the basic recursive functions by a finite number of applications of the rules of formation.

Def. 6.17. Let R be a k-place relation on \mathbb{N}. The characteristic function of R, denoted by c_{R}, is defined by $c_{R}\left(n_{1}, \ldots, n_{k}\right)=\left\{\begin{array}{l}0 \text { if } R\left(n_{1}, \ldots, n_{k}\right) \text { holds } \\ 1 \text { if } R\left(n_{1}, \ldots, n_{k}\right) \text { doesn't hold }\end{array}\right.$

Def. 6.18. A relation on \mathbb{N} is recursive if its characteristic function is recursive.

Def. A set of natural numbers is recursive if its characteristic function is recursive. (The characteristic function of a set A is the characteristic function of the membership relation \in for A.)

Prop. 6.29. The 2-place relation W on \mathbb{N} is recursive, where $W(m, n)$ holds $i f f m$ is the Gödel number of a wf $\mathcal{A}\left(x_{1}\right)$ in which x_{1} occurs free, and n is the Gödel number of a proof in \mathcal{N} of $\mathcal{A}\left(0^{(m)}\right)$.

Consequence: There is a $w f \mathcal{W}\left(x_{1}, x_{2}\right)$, with x_{1}, x_{2} free, that expresses $W(m, n)$ in \mathcal{N}.
Def. The Gödel sentence \mathcal{U} for \mathcal{N} is the $w f\left(\forall x_{2}\right) \sim \mathcal{W}\left(0^{(p)}, x_{2}\right)$, where p is the Gödel number of the $w f\left(\forall x_{2}\right) \sim \mathcal{W}\left(x_{1}, x_{2}\right)$, in which x_{1} occurs free.

Comments: \mathcal{U} is interpreted in N by the following:
"For every $n \in \mathbb{N}, W(p, n)$ does not hold."
or
"For every $n \in \mathbb{N}$, it's not the case that (p is the Gödel number of a $w f \mathcal{A}\left(x_{1}\right)$, with x_{1} free, and n is the Gödel number of a proof in \mathcal{N} of $\left.\mathcal{A}\left(0^{(p)}\right)\right)$."
or
"For every $n \in \mathbb{N}, n$ is not the Gödel number of a proof in \mathcal{N} of \mathcal{U}."
where $\mathcal{A}\left(x_{1}\right)$ takes the form $\left(\forall x_{2}\right) \sim \mathcal{W}\left(x_{1}, x_{2}\right)$, and $\mathcal{A}\left(0^{(p)}\right)$ hence taking the form of \mathcal{U}.

Def. 6.30. A first order system S with $\mathcal{L}_{\mathcal{N}}$ as its language is $\boldsymbol{\omega}$-consistent if for any $w f \mathcal{A}$, with free variable x_{1}, for which $\vdash_{\mathcal{N}} \mathcal{A}\left(0^{(n)}\right)$, for all $n \in \mathbb{N}$, then $\vdash_{\mathcal{N}}\left(\exists x_{1}\right) \sim \mathcal{A}$.

Prop. 6.31. Let S be a first order system with $\mathcal{L}_{\mathcal{N}}$ as its language. If S is ω-consistent, then S is consistent.

Prop. 6.32. (Gödel's Incompleteness Theorem)

If \mathcal{N} is ω-consistent, then neither $\vdash_{\mathcal{N}} \mathcal{U}$ nor $\vdash_{\mathcal{N}} \sim \mathcal{U}$ (i.e., if \mathcal{N} is ω-consistent, then \mathcal{N} is not complete).

Prop. 6.36. Let S be any extension of \mathcal{N} such that the set of Gödel numbers of proper axioms of S is recursive (S is "recursively axiomatizable"). If S is consistent, then S is not complete.

Prop. (Gödel's Second Theorem)

Let S be a consistent recursively axiomatizable extension of \mathcal{N}. There is no proof in S of the consistency of S.

