Proposition 4.40

Preliminaries

Suppose we enlarge \mathcal{L} by adding new constants $b_{0}, b_{1}, .$. to form \mathcal{L}^{+}. Let S be an extension of K. Now construct an extension S^{+}of S by including as axioms all axioms of S and all instances of S-axioms that contain any of the new constants b_{0}, b_{1}, \ldots. Example: Axiom (K5) $\left(\forall x_{i}\right) \mathcal{A}\left(x_{i}\right) \rightarrow \mathcal{A}(t)$, where t is a term free for x_{i} in $\mathcal{A}\left(x_{i}\right)$, is an axiom of S^{+}, as is the particular instance $\left(\forall x_{1}\right) A_{1}{ }^{1}\left(x_{1}\right) \rightarrow A_{1}{ }^{1}\left(b_{1}\right)$.

Lemma 1: If S is consistent, so is S^{+}.
Proof: Suppose S is consistent and S^{+}is not.
Then: There's a $w f \mathcal{B}$ such that $\vdash_{S^{+}} \mathcal{B}$ and $\vdash_{S^{+}}(\sim \mathcal{B})$.
Note: These S^{+}-proofs can be converted into S-proofs. Just replace all occurrences of b-constants with a constants that do not occur in the S^{+}-proofs. (There will always be such a-constants available since there is a countable infinity of them, and there can only be a finite number of $w f s$, and hence occurrences of b-constants, in any S^{+}-proof.)
Result: $\vdash_{S} \mathcal{B}$ and $\vdash_{S} \sim(\mathcal{B})$. But S was assumed consistent. Hence S^{+}must also be consistent.

Prop. 4.40. Let S be a consistent extension of K. Then there is an interpretation of \mathcal{L} in which every theorem of S is true.

Outline of Proof:

I. Enlarge \mathcal{L} to \mathcal{L}^{+}by adding new constants b_{0}, b_{1}, \ldots. Extend S to S^{+}as above. Construct a particular consistent extension S_{∞} of S^{+}. Then, by Prop. 4.39, there must be a complete consistent extension of S_{∞}, call it T.
II. Use T to construct an interpretation I of \mathcal{L}^{+}. Prove that for every closed wf \mathcal{A} of $\mathcal{L}^{+}, \vdash_{T} \mathcal{A}$ iff $I \vDash \mathcal{A}$. III. Show that for any (open or closed) $w f \mathcal{B}$ of \mathcal{L}, if $\vdash_{S} \mathcal{B}$, then $I \vDash \mathcal{B}$.

Part I. Let S be a consistent extension of $K . S_{\infty}$ will be the extension of S^{+}that has as its axioms the union of the sets of axioms of a particular sequence of extensions S_{0}, S_{1}, \ldots, of S^{+}. This sequence is constructed in 4 steps:

1. List all $w \mathfrak{f}$ of \mathcal{L}^{+}that contain one free variable: $\mathcal{F}_{0}\left(x_{i 0}\right), \mathcal{F}_{1}\left(x_{i 1}\right), \mathcal{F}_{2}\left(x_{i 2}\right), \ldots$
2. Choose a subset $\left\{c_{0}, c_{1}, \ldots\right\}$ of the b-constants that are free for the $x_{i 0}, x_{i 1}, \ldots$ in the list. Require:
(i) c_{0} doesn't appear in $\mathcal{F}_{0}\left(x_{i 0}\right)$.
(ii) For $n>0, c_{n} \notin\left\{c_{0}, \ldots, c_{n-1}\right\}$ and c_{n} doesn't appear in $\mathcal{F}_{0}\left(x_{i 0}\right), \ldots, \mathcal{F}_{n}\left(x_{i n}\right)$.
3. Let \mathcal{G}_{k} be the $w f \sim\left(\forall x_{i k}\right) \mathcal{F}_{k}\left(x_{i k}\right) \rightarrow \sim \mathcal{F}_{k}\left(c_{k}\right)$.
4. Construct the sequence S_{0}, S_{1}, \ldots as follows:
(i) Let $S_{0}=S^{+}$.
(ii) For each $n \geq 1$, let S_{n} be the extension of S_{n-1} obtained by adding \mathcal{G}_{n-1} as a new axiom.

Lemma 2: Each of S_{0}, S_{1}, \ldots, is consistent.
Proof: By (weak) induction on sequence number n.
Base Step: $n=0 . S_{0}=S^{+}$is consistent (Lemma 1).
Induction Step: For $n>0$, suppose S_{n} is consistent. Now show S_{n+1} is consistent.
Suppose S_{n+1} is not consistent.
Then: There's a wf \mathcal{A} of \mathcal{L}^{+}such that $\vdash_{S n+1} \mathcal{A}$ and $\vdash_{S_{n+1}}(\sim \mathcal{A})$.
Note: $\vdash_{S_{n+1}}(\mathcal{A} \rightarrow(\sim \mathcal{A} \rightarrow \sim \mathcal{B}))$. (This is a tautology of L, and hence of \mathcal{L}. By Prop. 4.3, it is a theorem of K, and hence of the extension S_{n+1} of K.)
Thus: $\vdash_{S_{n+1}}(\sim \mathcal{B})$, for any $w f \mathcal{B}$. In particular, $\vdash_{S_{n+1}}\left(\sim \mathcal{G}_{n}\right)$. (Even though \mathcal{G}_{n} is an axiom of S_{n+1} ! This is a consequence of assuming S_{n+1} is not consistent.)
So: $\quad\left\{\mathcal{G}_{n}\right\} \vdash_{S n}\left(\sim \mathcal{G}_{n}\right) .\left(\vdash_{S n+1}\right.$ is the same as $\left.\left\{\mathcal{G}_{n}\right\} \vdash_{S n}.\right)$
Thus: $\vdash_{S_{n}}\left(\mathcal{G}_{n} \rightarrow \sim \mathcal{G}_{n}\right)$. (By the Deduction Theorem for $K . \mathcal{G}_{n}$ is closed so no application of Gen on a free variable in \mathcal{G}_{n} occurs in the deduction $\left\{\mathcal{G}_{n}\right\} \vdash_{S n}\left(\sim \mathcal{G}_{n}\right)$.)
Note: $\vdash_{S_{n}}((\mathcal{A} \rightarrow \sim \mathcal{A}) \rightarrow \sim \mathcal{A})$. (Same reasoning as in above note.)
So: $\quad \vdash_{S_{n}}\left(\sim \mathcal{G}_{n}\right)$. In other words, $\vdash_{S n} \sim\left(\sim\left(\forall x_{i n}\right) \mathcal{F}_{n}\left(x_{i n}\right) \rightarrow \sim \mathcal{F}_{n}\left(c_{n}\right)\right)$.
Note: $\vdash_{S_{n}}(\sim(\sim \mathcal{A} \rightarrow \sim \mathcal{B}) \rightarrow \sim \mathcal{A})$ and $\vdash_{S_{n}}(\sim(\sim \mathcal{A} \rightarrow \sim \mathcal{B}) \rightarrow \mathcal{B})$. (Same reasoning as in first note.)
So: $\quad \vdash_{S_{n}} \sim\left(\forall x_{i n}\right) \mathcal{F}_{n}\left(x_{i n}\right)$ and $\vdash_{S_{n}} \mathcal{F}_{n}\left(c_{n}\right)$.
Now: In the proof of $\mathcal{F}_{n}\left(c_{n}\right)$, we can replace all occurrences of c_{n} with some variable y that doesn't occur in the proof. Since c_{n} doesn't appear in any of the axioms of S_{n} used to derive $\mathcal{F}_{n}\left(c_{n}\right)$, we get a proof in S_{n} of $\left.\mathcal{F}_{n}(y)\right)$.
So: $\quad \vdash_{S n} \mathcal{F}_{n}(y)$.
Thus: $\vdash_{S_{n}}(\forall y) \mathcal{F}_{n}(y)$. (Gen on y.)
So: $\quad \vdash_{S_{n}}\left(\forall x_{i n}\right) \mathcal{F}_{n}\left(x_{i n}\right)$. (Prop. 4.18.) But S_{n} was assumed consistent. Hence S_{n+1} must be consistent.

Lemma 3: S_{∞} is consistent, for S_{∞} the extension of S^{+}that has as axioms all axioms of S_{0}, S_{1}, \ldots.
Proof: Suppose S_{∞} is not consistent.
Then: There's a $w f \mathcal{A}$ of \mathcal{L}^{+}such that $\vdash_{s \infty} \mathcal{A}$ and $\vdash_{S \infty}(\sim \mathcal{A})$.
Note: These S_{∞}-proofs are finite; so they use only a finite number of axioms of S_{∞}. This means they are also S_{n}-proofs, where S_{n} is the member of the sequence that has as its axioms those that are used in these proofs.
Thus: $\quad \vdash_{S n} \mathcal{A}$ and $\vdash_{S n}(\sim \mathcal{A})$. But S_{n} is consistent, for any n. Hence S_{∞} must be consistent.
Since S_{∞} is consistent, it has a consistent complete extension, call it T (Prop. 4.39).

Recall from the proof of Prop. 4.39 that T is constructed by again enumerating $w f s$ and constructing a sequence of extensions. In this case, however, we enumerate all $w f s$ of \mathcal{L} (not just those with one free variable). And the sequence of extensions begins, in this case, with S. We then go down the list of $w f s$, checking to see if each is a theorem of S. If it is, we do nothing, if it isn't, we add its negation as a new axiom and get a new member of the sequence, and continue checking the list of $w f s$ for theoremhood in the new extension, repeating

Part II. Use T to define an interpretation I of \mathcal{L}^{+}as follows:

1. $D_{I}=\left\{\text { closed terms of } \mathcal{L}^{+}\right\}^{\dagger}$
2. Distinguished elements of D_{I} are the constant letters: \bar{a}_{i} is $a_{i,}$ and \bar{b}_{i} is b_{i}.
3. Relations on D_{I} are defined by:
$\bar{A}_{i}^{n}\left(d_{1}, \ldots, d_{n}\right)$ holds if $\vdash_{T} A_{i}{ }^{n}\left(d_{1}, \ldots, d_{n}\right)$
$\bar{A}_{i}^{n}\left(d_{1}, \ldots, d_{n}\right)$ does not hold if $\vdash_{T} \sim A_{i}^{n}\left(d_{1}, \ldots, d_{n}\right)$, for $d_{1}, \ldots, d_{n} \in D_{I}$.
4. Functions on D_{I} are defined by:
$\bar{f}_{i}^{n}\left(d_{1}, \ldots, d_{n}\right)=f_{i}^{n}\left(d_{1}, \ldots, d_{n}\right)$, for $d_{1}, \ldots, d_{n} \in D_{I}$.

Lemma 4: For any closed wf \mathcal{A} of $\mathcal{L}^{+}, \vdash_{T} \mathcal{A}$ iff $I \vDash \mathcal{A}$.
Proof: By induction on the number n of connectives/quantifiers in \mathcal{A}.
Base Step: $n=0, \mathcal{A}$ is an atomic formula $A_{i}{ }^{\mathrm{n}}\left(d_{1}, \ldots, d_{n}\right)$, where d_{1}, \ldots, d_{n} are closed terms.

1. " \Rightarrow ". Supppose $\vdash_{T} \mathcal{A}$.

Then: $\bar{A}_{i}^{n}\left(d_{1}, \ldots, d_{n}\right)$ holds in D_{I} (definition of $\left.I.\right)$
So: \quad For every valuation v of I, v satisfies $A_{\mathrm{i}}^{\mathrm{n}}\left(d_{1}, \ldots, d_{n}\right)$. Thus $I \vDash \mathcal{A}$.
2. " \Leftarrow ". Suppose $\nvdash T_{T} \mathcal{A}$.

Then: $\vdash_{T} \sim \mathcal{A}$. (T is complete and \mathcal{A} is closed.)
So: $\quad \bar{A}_{i}^{n}\left(d_{1}, \ldots, d_{n}\right)$ doesn't hold in D_{F}. (definition of I.)
Thus: For every valuation v of I, v doesn't satisfy $A_{\mathrm{i}}^{\mathrm{n}}\left(d_{1}, \ldots, d_{n}\right)$. So $I \nvdash \mathcal{A}$.
Induction Step: Suppose \mathcal{A} has $n>0$ connectives/quantifiers, and for every closed $w f \mathcal{W}$ shorter than \mathcal{A}, $\vdash_{T} \mathcal{W}$ iff $I \vDash \mathcal{W}$.

Case 1: \mathcal{A} has form $(\sim \mathcal{B})$, for \mathcal{B} closed and shorter than \mathcal{A}.

1. " \Rightarrow ". Supppose $\vdash_{T} \mathcal{A}$. $\left(\right.$ i.e.,$\left.\vdash_{T} \sim \mathcal{B}\right)$

Then: $\vdash_{T} \mathcal{B}$. (T is consistent.)
Hence: $I \not \vDash \mathcal{B}$. (Inductive Hypothesis.)
So: $\quad I \vDash \sim \mathcal{B}$. (Cor. 3.34, \mathcal{B} is closed.) Thus $I \vDash \mathcal{A}$.
2. " \Leftarrow ". Suppose $I \vDash \mathcal{A}$. (i.e., $I \vDash \sim \mathcal{B})$

Then: $\quad I \not \models \mathcal{B}$. (Cor. 3.34, \mathcal{B} is closed.)
So: $\quad \vdash_{T} \mathcal{B}$. (Inductive Hypothesis.)
So: $\quad \vdash_{T} \sim \mathcal{B} . \quad\left(T\right.$ is complete.) Thus $\vdash_{T} \mathcal{A}$.
Case 2: \mathcal{A} has form $(\mathcal{B} \rightarrow \mathcal{C})$, for \mathcal{B}, \mathcal{C} closed and shorter than \mathcal{A}.

1. " \Rightarrow ". Suppose $I \not \models \mathcal{A}$.

Then: $\quad I \vDash \mathcal{B}$ and $I \vDash \sim \mathcal{C}$.
So: $\quad \vdash_{T} \mathcal{B}$ and $\vdash_{T} \mathcal{C}$. (Inductive Hypothesis.)
So: $\quad \vdash_{T} \mathcal{B}$ and $\vdash_{T} \sim \mathcal{C} . \quad(T$ is complete. $)$
Note: $\quad \vdash_{T}(\mathcal{B} \rightarrow(\sim \mathcal{C} \rightarrow \sim(\mathcal{B} \rightarrow \mathcal{C})))$. (Tautology of L, hence \mathcal{L}. Thus theorem of T.)
So: $\quad \vdash_{T} \sim(\mathcal{B} \rightarrow \mathcal{C})$. So $\vdash_{T} \sim \mathcal{A}$.
Thus: $\quad \vdash_{T} \mathcal{A} . \quad(T$ is consistent.)
2. " \Leftarrow ". Suppose $\vdash_{T} \mathcal{A}$.

Then: $\vdash_{T} \sim \mathcal{A}$. $\left(T\right.$ is complete.) Or $\vdash_{T} \sim(\mathcal{B} \rightarrow \mathcal{C})$.
Note: $\quad \vdash_{T} \sim(\mathcal{B} \rightarrow \mathcal{C}) \rightarrow \mathcal{B}$ and $\vdash_{T} \sim(\mathcal{B} \rightarrow \mathcal{C}) \rightarrow \sim \mathcal{C}$. (Tautologies of L, hence theorems of T.)
So: $\quad \vdash_{T} \mathcal{B}$ and $\vdash_{T} \sim \mathcal{C}$.
So: $\quad \vdash_{T} \mathcal{B}$ and $\vdash_{T} \mathcal{C}$. (T is consistent.)
Hence: $I \vDash \mathcal{B}$ and $I \vDash \sim \mathcal{C}$. (Inductive Hypothesis.)
Thus: $\quad I \not \models(\mathcal{B} \rightarrow \mathcal{C})$. So $I \not \models \mathcal{A}$.
this process until we exhaust the list of $w f$ s. T is then the extension of S that includes as axioms all axioms of sequence members.
Recall: These are terms with no variables: $a, a, \ldots, b, b, \ldots, f(a, b, \ldots)$, etc.

Case 3: \mathcal{A} has form $\left(\forall x_{i}\right) \mathcal{B}\left(x_{i}\right)$, for $\mathcal{B}\left(x_{i}\right)$ shorter than \mathcal{A}.
A. Suppose x_{i} does not occur free in \mathcal{B}.

Then: \mathcal{B} is closed (since \mathcal{A} is closed).
So: $\quad \vdash_{T} \mathcal{B}$ iff $I \vDash \mathcal{B}$. (Inductive Hypothesis.)
Note: $\quad \vdash_{T} \mathcal{B}$ iff $\vdash_{T}\left(\forall x_{i}\right) \mathcal{B}\left(x_{i}\right)$. (Proof: 1. " \Rightarrow ": Gen on x_{i}. 2. " \Leftarrow ": Use (K4) and MP.)
Note: $\quad I \vDash \mathcal{B}$ iff $I \vDash\left(\forall x_{i}\right) \mathcal{B}\left(x_{i}\right)$. (Prop. 3.27.)
So: $\quad \vdash_{T}\left(\forall x_{i}\right) \mathcal{B}\left(x_{i}\right)$ iff $I \vDash\left(\forall x_{i}\right) \mathcal{B}\left(x_{i}\right)$. Thus $\vdash_{T} \mathcal{A}$ iff $I \vDash \mathcal{A}$.
B. Suppose x_{i} occurs free in \mathcal{B}.

Then: $\quad x_{i}$ is the only free variable in \mathcal{B} (since \mathcal{A} is closed).
So: $\quad \mathcal{B}\left(x_{i}\right)$ occurs in the sequence $\mathcal{F}_{0}\left(x_{i 0}\right), \mathcal{F}_{1}\left(x_{i 1}\right), \ldots$, say as $\mathcal{F}_{m}\left(x_{i m}\right)$.
Then: \mathcal{A} has form $\left(\forall x_{i m}\right) \mathcal{F}_{m}\left(x_{i m}\right)$.

1. " \Leftarrow ". Suppose $I \vDash \mathcal{A}$.

Now: $\quad \vdash_{T}\left(\forall x_{i m}\right) \mathcal{F}_{m}\left(x_{i m}\right) \rightarrow \mathcal{F}_{m}\left(c_{m}\right)$. (K5, c_{m} is free for $x_{i m}$ in $\mathcal{F}_{m}\left(x_{i m}\right)$, since c_{m} doesn't occur in $\left.\mathcal{F}_{m}\left(x_{i m}\right).\right)$
So: $\quad I \vDash\left(\forall x_{i m}\right) \mathcal{F}_{m}\left(x_{i m}\right) \rightarrow \mathcal{F}_{m}\left(c_{m}\right)$. (Prop. 4.4. - axioms are logically valid.)
Hence: $\quad I \vDash \mathcal{F}_{m}\left(c_{m}\right)$. (Prop. 3.26.)
Thus: $\quad \vdash_{T} \mathcal{F}_{m}\left(c_{m}\right)$. (Inductive Hypothesis.)
Now: \quad Suppose $\vdash_{T} \mathcal{A}$.
Then: $\quad \vdash_{T} \sim \mathcal{A}$. $\quad\left(T\right.$ is complete.) Or $\vdash_{T} \sim\left(\forall x_{i m}\right) \mathcal{F}_{m}\left(x_{i m}\right)$.
But: $\quad \vdash_{T} \sim\left(\forall x_{i m}\right) \mathcal{F}_{m}\left(x_{i m}\right) \rightarrow \sim \mathcal{F}_{m}\left(c_{m}\right) . \quad\left(\mathcal{G}_{m}\right.$ is an axiom of T.)
So: $\quad \vdash_{T} \sim \mathcal{F}_{m}\left(c_{m}\right)$. But T is consistent. Thus it must be that $\vdash_{T} \mathcal{A}$.
2. " \Rightarrow ". Suppose $\vdash_{T} \mathcal{A}$. Now suppose $I \nvdash \mathcal{A}$.

Then: There's a valuation in I that doesn't satisfy \mathcal{A}.
So: \quad There's a valuation v that doesn't satisfy $\mathcal{F}_{m}\left(x_{i m}\right)$.
Now: $\quad v\left(x_{i m}\right)=d$, for some closed term d in D_{I}.
And: $\quad v(d)=d . \quad$ (Valuations map constants to constants; hence closed terms to closed terms.)
So: $\quad v\left(x_{i m}\right)=v(d)$.
Now: We have the following:

1. $\mathcal{F}_{m}\left(x_{i m}\right)$ is a $w f$ with $x_{i m}$ free.
2. d is a (closed) term free for $x_{i m}$ in $\mathcal{F}_{m}\left(x_{i m}\right)$.
3. $v\left(x_{i m}\right)=v(d)$.
4. $\quad v$ is i-equivalent to itself.

Thus: $\quad v$ satisfies $\mathcal{F}_{m}(d)$ iff v satisfies $\mathcal{F}_{m}\left(x_{i m}\right)$. (Prop. 3.23.)
Hence: v does not satisfy $\mathcal{F}_{m}(d)$.
Thus: $\quad \not \not \not \mathcal{F}_{m}(d)$.
Now: $\quad \vdash_{T}\left(\forall x_{i m}\right) \mathcal{F}_{m}\left(x_{i m}\right)$. (assumption $\vdash_{T} \mathcal{A}$.)
So: $\quad \vdash_{T} \mathcal{F}_{m}(d)$. (K5, d is free for $x_{i m}$ in $\mathcal{F}_{m}\left(x_{i m}\right)$, and MP.)
Hence: $I \vDash \mathcal{F}_{m}(d)$. (Inductive Hypothesis.) So it must be that $I \vDash \mathcal{A}$.

Part III.

Lemma 5: For any (open or closed) wf \mathcal{B} of \mathcal{L}, if $\vdash_{S} \mathcal{B}$, then $I \vDash \mathcal{B}$.
Proof: Suppose $\vdash_{S} \mathcal{B}$, for some $w f \mathcal{B}$ of \mathcal{L}.
If \mathcal{B} is closed, then $\vdash_{T} \mathcal{B}$, hence $I \vDash \mathcal{B}$. (Lemma 4: If \mathcal{B} is a closed $w f$ of \mathcal{L}, it is also a closed $w f$ of \mathcal{L}^{+}.)
Suppose \mathcal{B} is open.
Then: $\vdash_{S} \mathcal{B}^{\prime}$. (Prop. 4.19, \mathcal{B}^{\prime} is the universal closure of \mathcal{B}.)
Hence: $\vdash_{T} \mathcal{B}^{\prime}$.
Thus: $\quad I \vDash \mathcal{B}^{\prime}$. (Lemma 4.)
Hence: $I \vDash \mathcal{B}$. (Cor. 3.28.)

