<u>Def. 2.12</u>. A valuation of *L* is a function $v : \{w_f \text{s of } L\} \to \{T, F\}$ such that, for any $w_f \text{s } \mathcal{A}, \mathcal{B}$ of *L*, (i) $v(\mathcal{A}) \neq v(\sim \mathcal{A})$ (ii) $v(\mathcal{A} \to \mathcal{B}) = F$ iff $v(\mathcal{A}) = T$ and $v(\mathcal{B}) = F$.

Def. 2.13. A wf \mathcal{A} of L is a **tautology of** L just when $v(\mathcal{A}) = T$ for all valuations of L.

Def. 2.2. A **proof in** L is a finite sequence of $wf_s \mathcal{A}_1, ..., \mathcal{A}_n$ of L such that any member is either an axiom of L or follows from previous members by MP.

If Γ is a set of *wf*s of *L*, a **deduction from** Γ **in** *L* is a proof in *L* in which any member of the sequence can also be an element of Γ .

A $wf \mathcal{A}$ of L is a **theorem of L** if it is the last member of a proof in L.

<u>Notation</u>: $\Gamma \vdash_L \mathcal{A}$ (" \mathcal{A} is deducible from Γ in L" or " Γ syntactically implies \mathcal{A} in L") $\vdash_L \mathcal{A}$ (" \mathcal{A} is a theorem of L")

Prop. 2.8. (Deduction Theorem for <u>L</u>) Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be *wfs* of *L* and let Γ be a (possibly empty) set of *wfs* of *L*. If $\Gamma \cup {\mathcal{A}} \vdash_L \mathcal{B}$, then $\Gamma \vdash_L (\mathcal{A} \to \mathcal{B})$.

Prop. 2.14. (The Soundness Theorem for L) For any $wf \mathcal{A}$ of L, if \mathcal{A} is a theorem of L, then \mathcal{A} is a tautology of L.

Def. 2.15. An extension L^* of L is either L itself or a formal system obtained by adding to or modifying the axioms of L in such a way that each theorem of L is also a theorem of L^* .

<u>Def. 2.16.</u> An extension L^* of L is **consistent** if for no $wf \mathcal{A}$ are both \mathcal{A} and $(\sim \mathcal{A})$ theorems of L^* .

Prop. 2.19. If L^* is a consistent extension of L, and $\nvDash_{L^*} \mathcal{A}$ for some $wf \mathcal{A}$ of L, then the extension L^{**} formed by adding $(\sim \mathcal{A})$ to the axioms of L^* is consistent.

<u>Def. 2.20.</u> An extension L^* of L is **complete** if for each $wf \mathcal{A}$, either $\vdash_L \mathcal{A}$ or $\vdash_L (\sim \mathcal{A})$.

Prop. 2.21. (Lindenbaum's Lemma for L) Let L^* be a consistent extension of L. Then there is a consistent complete extension of L^* .

Prop. 2.22. Let L^* be a consistent extension of L. then there is a valuation of L in which every theorem of L^* takes the value T.

Prop. 2.23. (The Adequacy Theorem for L) If \mathcal{A} is a tautology of L, then \mathcal{A} is a theorem of L.

Prop. 2.24. L is decidable. There is an effective method for deciding, given any $wf \mathcal{A}$ of L, whether it's a theorem of L.