The formal language of statement calculus:

1. Symbol alphabet:

statement variables: $p_1, p_2, ...$ punctuation: (,), ,connectives: \sim, \rightarrow

- 2. Grammar: A well-formed formula (wf) of statement calculus:
 - (i) p_i is a *wf*, for $i \ge 1$.
 - (ii) If \mathcal{A} and \mathcal{B} are *wfs*, then so are $(\sim \mathcal{A})$ and $(\mathcal{A} \to \mathcal{B})$.
 - (iii) Nothing else is a wf.

<u>The formal system *L* of statement calculus:</u> Consists of the formal language of statement calculus plus: 3. Axioms: For any $wf_{\mathcal{B}} \mathcal{A}, \mathcal{B}, \mathcal{C}$ of statement calculus,

- (L1) $(\mathcal{A} \to (\mathcal{B} \to \mathcal{A}))$
- (L2) $((\mathcal{A} \to (\mathcal{B} \to \mathcal{C})) \to ((\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to \mathcal{C})))$
- (L3) $(((\sim \mathcal{A}) \to (\sim \mathcal{B})) \to (\mathcal{B} \to \mathcal{A}))$
- 4. **Rule of Deduction:** Modus Ponens (MP). From \mathcal{A} and $(\mathcal{A} \to \mathcal{B})$, one can derive \mathcal{B} , where \mathcal{A} , \mathcal{B} are *wfs* of *L*.

The formal language \mathcal{L} of predicate calculus (or the first order language \mathcal{L}):

1. Symbol alphabet:

individual variables:	x_1, x_2, \dots
individual constants:	$a_1, a_2,$
predicate letters:	$A_1^{\ 1}, \ A_i^{\ n}$
function letters:	$f_1^{\ 1},\ f_i^{\ n}$
punctuation:	(,), ,
connectives:	\sim, \rightarrow
quantifier:	\forall

2. Grammar:

- (A) A term in \mathcal{L} :
 - (i) Variables and constants are terms in \mathcal{L} .
 - (ii) If f_i^n is a function letter in \mathcal{L} and $t_1, ..., t_n$ are terms in \mathcal{L} , so is $f_i^n(t_1, ..., t_n)$.
 - (iii) Nothing else is a term in \mathcal{L} .
- (B) An **atomic formula** in \mathcal{L} is any expression of the form $A_i^n(t_1, ..., t_n)$, where $t_1, ..., t_n$ are terms in \mathcal{L} .
- (C) A well-formed formula (*wf*) of \mathcal{L} :
 - (i) Any atomic formula is a wf of \mathcal{L} .
 - (ii) If \mathcal{A} and \mathcal{B} are *wfs* of \mathcal{L} , so are $(\sim \mathcal{A})$, $(\mathcal{A} \to \mathcal{B})$, and $(\forall x_i)\mathcal{A}$, where x_i is any variable.
 - (iii) Nothing else is a wf of \mathcal{L} .

The formal system K of predicate calculus: Consists of the formal language \mathcal{L} plus:

- 3. Axioms: For any $wfs \mathcal{A}, \mathcal{B}, \mathcal{C}$ of \mathcal{L} ,
 - (K1) $(\mathcal{A} \to (\mathcal{B} \to \mathcal{A}))$
 - (K2) $((\mathcal{A} \to (\mathcal{B} \to \mathcal{C})) \to ((\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to \mathcal{C})))$
 - (K3) $(((\sim \mathcal{A}) \to (\sim \mathcal{B})) \to (\mathcal{B} \to \mathcal{A}))$
 - (K4) ((($\forall x_i) \mathcal{A} \to \mathcal{A}$), if x_i does not occur free in \mathcal{A} .
 - (K5) $(((\forall x_i)\mathcal{A}(x_i) \to \mathcal{A}(t)))$, if $\mathcal{A}(x_i)$ is a *wf* of \mathcal{L} and *t* is a term in \mathcal{L} which is free for x_i in $\mathcal{A}(x_i)$.
 - (K6) $(\forall x_i)(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to (\forall x_i)\mathcal{B})$, if \mathcal{A} contains no free occurrence of the variable x_i .

4. Rules of Deduction:

Modus Ponens (MP): From \mathcal{A} and $(\mathcal{A} \to \mathcal{B})$, one can derive \mathcal{B} , where \mathcal{A} , \mathcal{B} are *wfs* of \mathcal{L} . Generalization (Gen): From \mathcal{A} , one can derive $(\forall x_i)\mathcal{A}$, where \mathcal{A} is any *wf* of \mathcal{L} and x_i is any variable.