The formal language of statement calculus:

1. Symbol alphabet:

statement variables:
punctuation:
p_{1}, p_{2}, \ldots
connectives: (, \rightarrow
2. Grammar: A well-formed formula ($w f$) of statement calculus:
(i) p_{i} is a $w f$, for $i \geq 1$.
(ii) If \mathcal{A} and \mathcal{B} are $w f$, then so are $(\sim \mathcal{A})$ and $(\mathcal{A} \rightarrow \mathcal{B})$.
(iii) Nothing else is a $w f$.

The formal system L of statement calculus: Consists of the formal language of statement calculus plus:
3. Axioms: For any $w f s \mathcal{A}, \mathcal{B}, \mathcal{C}$ of statement calculus,
(L1) $\quad(\mathcal{A} \rightarrow(\mathcal{B} \rightarrow \mathcal{A}))$
(L2) $((\mathcal{A} \rightarrow(\mathcal{B} \rightarrow \mathcal{C})) \rightarrow((\mathcal{A} \rightarrow \mathcal{B}) \rightarrow(\mathcal{A} \rightarrow \mathcal{C})))$
(L3) $\quad(((\sim \mathcal{A}) \rightarrow(\sim \mathcal{B})) \rightarrow(\mathcal{B} \rightarrow \mathcal{A}))$
4. Rule of Deduction: Modus Ponens (MP). From \mathcal{A} and $(\mathcal{A} \rightarrow \mathcal{B})$, one can derive \mathcal{B}, where \mathcal{A}, \mathcal{B} are $w f s$ of L.

The formal language \mathcal{L} of predicate calculus (or the first order language \mathcal{L}):

1. Symbol alphabet:

individual variables:

$$
x_{1}, x_{2}, \ldots
$$

$$
\text { individual constants: } \quad a_{1}, a_{2}, \ldots
$$

$$
\text { predicate letters: } \quad A_{1}{ }^{1}, \ldots, A_{i}{ }^{n}
$$

$$
\text { function letters: } \quad f_{1}^{1}, \ldots, f_{i}^{n}
$$

$$
\text { punctuation: } \quad(,), \text {, }
$$

$$
\text { connectives: } \quad \sim, \rightarrow
$$

$$
\text { quantifier: } \quad \forall
$$

2. Grammar:

(A) A term in \mathcal{L} :
(i) Variables and constants are terms in \mathcal{L}.
(ii) If f_{i}^{n} is a function letter in \mathcal{L} and t_{1}, \ldots, t_{n} are terms in \mathcal{L}, so is $f_{i}^{n}\left(t_{1}, \ldots, t_{n}\right)$.
(iii) Nothing else is a term in \mathcal{L}.
(B) An atomic formula in \mathcal{L} is any expression of the form $A_{i}{ }^{n}\left(t_{1}, \ldots, t_{n}\right)$, where t_{1}, \ldots, t_{n} are terms in \mathcal{L}.
(C) A well-formed formula (wf) of \mathcal{L} :
(i) Any atomic formula is a $w f$ of \mathcal{L}.
(ii) If \mathcal{A} and \mathcal{B} are $w f$ s of \mathcal{L}, so are $(\sim \mathcal{A}),(\mathcal{A} \rightarrow \mathcal{B})$, and $\left(\forall x_{i}\right) \mathcal{A}$, where x_{i} is any variable.
(iii) Nothing else is a $w f$ of \mathcal{L}.

The formal system K of predicate calculus: Consists of the formal language \mathcal{L} plus:
3. Axioms: For any $w f s \mathcal{A}, \mathcal{B}, \mathcal{C}$ of \mathcal{L},
(K1) $(\mathcal{A} \rightarrow(\mathcal{B} \rightarrow \mathcal{A}))$
(K2) $((\mathcal{A} \rightarrow(\mathcal{B} \rightarrow \mathcal{C})) \rightarrow((\mathcal{A} \rightarrow \mathcal{B}) \rightarrow(\mathcal{A} \rightarrow \mathcal{C})))$
(K3) $\quad(((\sim \mathcal{A}) \rightarrow(\sim \mathcal{B})) \rightarrow(\mathcal{B} \rightarrow \mathcal{A}))$
(K4) $\quad\left(\left(\left(\forall x_{i}\right) \mathcal{A} \rightarrow \mathcal{A}\right)\right.$, if x_{i} does not occur free in \mathcal{A}.
(K5) $\quad\left(\left(\forall x_{i}\right) \mathcal{A}\left(x_{i}\right) \rightarrow \mathcal{A}(t)\right)$, if $\mathcal{A}\left(x_{i}\right)$ is a $w f$ of \mathcal{L} and t is a term in \mathcal{L} which is free for x_{i} in $\mathcal{A}\left(x_{i}\right)$.
(K6) $\left(\forall x_{i}\right)(\mathcal{A} \rightarrow \mathcal{B}) \rightarrow\left(\mathcal{A} \rightarrow\left(\forall x_{i}\right) \mathcal{B}\right)$, if \mathcal{A} contains no free occurrence of the variable x_{i}.
4. Rules of Deduction:

Modus Ponens (MP): From \mathcal{A} and $(\mathcal{A} \rightarrow \mathcal{B})$, one can derive \mathcal{B}, where \mathcal{A}, \mathcal{B} are $w f$ s of \mathcal{L}.
Generalization (Gen): From \mathcal{A}, one can derive $\left(\forall x_{i}\right) \mathcal{A}$, where \mathcal{A} is any $w f$ of \mathcal{L} and x_{i} is any variable.

