
Gödel's 1st Incompleteness Theorem
Gödel's 1st Incompleteness Theorem.
Let N be a first-order formal theory of arithmetic that is recursively
axiomatizable. If N is consistent, then it is negation incomplete.

Questions:
1. What is a "first-order formal theory of arithmetic"?

2. What does it mean to say a first order formal theory of
arithmetic is "consistent" and "negation incomplete"?

3. What does it mean to say a first-order formal theory of
arithmetic is "recursively axiomatizable"?

Kurt Gödel

1. First-order Formal Theory

• Idea: To formalize arithmetic, we want to demonstrate how all of its true claims
("theorems") can be derived from a set of basic truths (axioms).

• T is first-order if LT only contains variables for individuals, and not variables for
predicates (2nd-order), or variables for predicates of predicates (3rd-order), etc.

• A formal theory of arithmetic is a formal theory whose language can express all the
claims made about natural numbers in simple arithmetic (addition, subtraction,
multiplication, division).

A formal theory T consists of:
(a) a formal language LT (alphabet, grammar, semantics),
(b) a set of axioms (a set of wffs of the langauge),
(c) a proof system (a method that allows derivations of

more complex wffs from the axioms).

Motivations:

• A theorem of T is a wff of LT that is provable in T's proof system.
- Notation: T ⊢ ϕ means "ϕ is a theorem of T ".

2. Consistency and Negation Completeness

• T is consistent just when, for any wff ϕ in LT, it's not the case that both T ⊢ ϕ
and T ⊢ ¬ϕ.

• T is negation complete just when, for any wff ϕ in LT, either T ⊢ ϕ or T ⊢ ¬ϕ.

Negation Completeness: We want our theory of arithmetic to have something to
say about any claim made about natural numbers.
- We want to be able to either prove or refute any such claim.

Consistency: We don't want our theory of arithmetic to make contradictory claims.
- We don't want to be able to prove that 2 is both even and not even.

• A logically valid wff of T is a wff of LT that is true in all interpretations.
- Notation: T " ϕ means "ϕ is a logically valid wff of T ".

• T is sound just when every theorem of T is logically valid:
For any wff ϕ of LT, if T ⊢ ϕ, then T " ϕ.

• T is semantically complete just when every logically valid wff of T
is a theorem of T: For any wff ϕ of LT, if T " ϕ, then T ⊢ ϕ.

Two more syntactic notions:

Example:
• Let L consist of the alphabet P, Q, R, ∧, ∨, ¬, (,)

and the grammar and semantics of PL.
Idea: Wffs of L are only those wffs
of PL that can be formed from P,
Q, R using the PL connectives.

• Consider two theories:
- T1, with one axiom: {¬P}.
- T2, with three axioms: {¬P, Q, ¬R}.

Idea: In T1, all tree proofs begin with ¬P
at the top as given; in T2, all tree proofs
begin with ¬P, Q, ¬R at the top as givens.

• Both T1 and T2 are sound and semantically complete (since PL is).
• Both T1 and T2 are consistent.

Negation complete?
• T1: No! There are wffs ϕ of L such that neither ϕ nor ¬ϕ is a theorem of T1.

- Ex: (Q ∧ R). Trees for ¬P ∴ (Q ∧ R) and ¬P ∴ ¬(Q ∧ R) do not close.

- Which means: The "given" ¬P doesn't entail either (Q ∧ R) or ¬(Q ∧ R).

• T2: Yes! For any wff ϕ of L, there is a closed tree for either ¬P, Q, ¬R ∴ ϕ, or
¬P, Q, ¬R ∴ ¬ϕ.

- The "given" ¬P, Q, ¬R entail any wff formed from P, Q, R, via PL connectives.

Moral: Semantic completeness is distinct from negation completeness.
- T1 is not negation complete, but uses a proof system (PL trees) that is semantically complete.

• Let the proof system be the PL tree rules.

Note: We can "mechanically decide" what is a wff in T1 and T2, and hence what
wffs are axioms.

Example:
• Let L consist of the alphabet P, Q, R, ∧, ∨, ¬, (,)

and the grammar and semantics of PL.
• Let the proof system be the PL tree rules.

Idea: Wffs of L are only those wffs
of PL that can be formed from P,
Q, R using the PL connectives.

• Consider two theories:
- T1, with one axiom: {¬P}.
- T2, with three axioms: {¬P, Q, ¬R}.

Idea: In T1, all tree proofs begin with ¬P
at the top as given; in T2, all tree proofs
begin with ¬P, Q, ¬R at the top as givens.

And: We can also "mechanically decide" what counts as a proof (a closed tree) in
T1 and T2, and hence, for any wff, whether it is a theorem of T1 or T2.

• Both T1 and T2 are sound and semantically complete (since PL is).
• Both T1 and T2 are consistent.
• T1 is not negation complete, T2 is negation complete.

Question: Can we make the notion of "mechanical decision procedure" more precise?

- There is a mechanical, step-by-step process in L of building complex wffs from atomic wffs,
and atomic wffs from terms.

3. Recursively Axiomatizable Formal Theory

A formal theory T is recursively axiomatizable just when its
axioms can be encoded as recursive properties of natural numbers.

• Motivation: Makes possible a mechanical decision procedure (algorithm) that can
decide for any wff of LT, whether it is an axiom of T.

• Holy Grail: To construct a mechanical decision procedure that would decide for any
wff of LT, whether it is a theorem of T.

Is the Poincaré Conjecture a theorem?

Wouldn't it be easier if there were a program that decided
which statements were theorems and which weren't?

Proven by Andrew Wiles in
1993 after 3 centuries of work.

Supposedly proven by Grigori
Perelman in 2003 after a
century and $1million prize.

For n ≥ 3, there are no whole numbers
x, y, z such that xn + yn = zn.

Pierre de Fermat

Henri Poincaré

Every simply connected closed 3-manifold
is homomorphic to the 3-sphere. (Or:
the 3-sphere is the only type of bounded
3-dim space that contains no holes.)

Is Fermat's Last "Theorem" really a theorem?

Link between mechanical ("effective") decidability and recursive properties.
• A recursive property can be encoded in a primitive recursive (p.r.) function.
• And: P.r. functions are generated by a mechanical algorithm.

Idea: Start with three simple functions as your "starter pack":

Now: Generate more complex functions from starter pack by one of two methods:

Examples:
Sum function. +(x, y)
+(x, 0) = x = I 1

1(x)
+(x, S(y)) = S(+(x, y))

Product function. ×(x, y)
×(x, 0) = 0 = Z (x)
×(x, S(y)) = +(×(x, y), x)

Factorial function. !(x)
!(0) = 1 = S (0)
!(S(y)) = ×(!(x), S(x))

(a) Primitive recursion: Specify value of function for 0, then specify value for a given
argument in terms of its value for smaller arguments.

(b) Composition: Generate a new function by composing two already-generated functions.

(i) Successor function. S(x) = successor of x.
(ii) Zero function. Z(x) = 0.
(iii) k-place identity function. Ik

i(x1, ..., xk) = xi 1 ≤ i ≤ k.

Claim (Church's Thesis):

A (partial) function on the natural numbers is
computable by algorithm (mechanically computable)
if and only if it is a recursive (partial) function.

Alonzo Church

So: Gödel's 1st Incompleteness theorem says:
 "Any attempt to consistently formalize arithmetic as a first-order theory with
"mechanically" recognizable axioms will be negation incomplete: There will be some
claim about natural numbers that is neither provable nor refutable in the theory."

What's the Big Deal?

A. N.
Whitehead

Bertrand
Russell

• Big Deal if you think there is a formal theory that captures all the claims of
arithmetic.

4. Aspects of the Proof
Peano Arithmetic: A first-order recursively axiomatizable formal theory
of arithmetic; call it N, with language LN.

Grammar of LN: Same as QLf.
- Convention: Write t1 + t2 and t1 × t2, instead of +(t1, t2) and ×(t1, t2).

0 individual constant
x, y, z, ..., vk individual variables (k ≥ 0)
= 2-place predicate (identity)
S 1-place function (successor)
+, × 2-place functions (sum, product)
∧, ∨, ¬, ⊃, ∀, ∃, (,) connectives, quantifiers, punctuation

The Alphabet of LN

Semantics of LN: Same as QLf.

• Intended domain of all q-valuations is the set of natural numbers.
• On this domain:

- The q-value of the constant 0 is the number 0.
- The q-value of = is the set of all 2-tuples of numbers of the form 〈m1, m2〉 where m1 = m2.
- The q-value of S is the set of 2-tuples of numbers {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, ... }.
- The q-value of + is the set of all 3-tuples of numbers of form 〈m1, m2, m3〉 where m1+m2 = m3.
- The q-value of × is the set of all 3-tuples of numbers of form 〈m1, m2, m3〉 where m1×m2 = m3.

Giuseppe Peano

The axioms of N

(N1) ∀x¬(0 = Sx)
(N2) ∀x∀y(Sx = Sy ⊃ x = y)
(N3) ∀x(x + 0 = x)
(N4) ∀x∀y(x + y = S(x + y))
(N5) ∀x(x × 0 = 0)
(N6) ∀x∀y(x × Sy = (x × y) + x)
(N7) ({ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(Sx)))} ⊃ ∀xϕ(x)), for ϕ(x) an open wff with x free.

• Now: Let's show that N is recursively axiomatizable.
- Which means: Its axioms can be encoded in recursive functions.

• (N7) is the Axiom of Mathematical Induction.
- It says: "For any property of natural numbers ϕ, if 0 has it, and if, for any number

n, if n has it entails that the succesor of n has it, then all numbers have it."

• To do this, we'll first code the wffs and sequences of wffs of LN as numbers.

Gödel Numbering
• Let the symbols in the alphabet of LN be encoded by numbers by:

∧ ∨ ¬ ⊃ ∀ ∃ () 0 = S + × x y z !

1 3 5 7 9 11 13 15 17 19 21 23 25 2 4 6 !

• Let expression e in LN be the sequence of k+1 symbols s0, s1, ..., sk.

Algorithm to go from an expression e to its Gödel number (g.n.)

1. Take the code number ci for each si.

2. Use ci as an exponent for the (i+1)th prime number πi.

3. Multiply the results to get π0
c0π1

c1π2
c2 ... πk

ck .

• S has g.n. 221.
• SS0 has g.n. 221321517.

• ∃y(SS + y) = SS0 has g.n. 211345137211121132317419152319292131213717!

Algorithm to go from a g.n. to an expression e
(i) Calculate the (unique) prime factorization of the g.n.
(ii) Find the sequence of exponents of the prime factors.

• A proof in N can be written as a sequence of wffs, hence encoded in a g.n.

Ex: Algorithm for rewriting a tree proof as a linear sequence of wffs.
(i) List trunk wffs first.
(ii) At a fork, take left branch, and continue listing wffs that have not yet

appeared in the sequence.
(iii) At the end of a branch, return to the last fork, take the right branch,

and continue listing wffs.
(iv) Repeat (ii) and (iii) until all branches have been followed.

Algorithm to go from a sequence of expressions e0, e1, ..., en to a g.n.

1. Calculate the g.n. of each ei.

2. Use gi as an exponent for the (i+1)th prime number πi.

3. Multiply the results to get π0
g0π1

g1π2
g2 ... πn

gn .

Algorithm to go from a g.n. to a sequence of expressions
(i) Find the sequence of exponents of the prime factors of the g.n.
(ii) Treat these exponents as g.n.s and take their prime factors.

• Gödel numbers let us encode syntactic properties of the language LN in purely
numerical properties of (relations between) of natural numbers.

Claim 1: All of the numerical relations in Table 1 are primitive recursive.

Table 1: Important Examples

Syntactic property Numerical relation

Being a term of LN. Term(n). Holds just when n is the g.n. of a term of LN.

Being an atomic wff of LN. Atom(n). Holds just when n is the g.n of an atomic wff of LN.

Being a wff of LN. Wff(n). Holds just when n is the g.n. of a wff of LN.

Being a closed wff of LN. Sent(n). Holds just when n is the g.n. of a closed wff of LN.
Being an axiom of N. Ax(n). Holds just when n is the g.n. of an axiom of N.

Being a proof in N. Prf(m, n). Holds just when m is the g.n. of a proof in N of the
closed wff with g.n. n.

• To say Term(n) is primitive recursive is to say that there is a p.r. function that computes
Term(n); i.e., that tells us, for a given n, if Term(n) holds.

• Idea: To show this, we have to find p.r. functions that encode the algorithm that goes
from a g.n. to an expression of LN, and we have to find p.r. functions that encode the
algorithm that determines what a term is in LN.

• Note: That Ax(n) is primitive recursive demonstrates that N is recursively axiomatizable.

What this means:

Expressibility in N

A k-place numerical relation P is expressible in N just when there is a wff
ϕ(v1, ..., vk) of LN with free occurances of v1, ..., vk, such that for any natural
numbers n1, ..., nk,

 if n1, ..., nk, stand in relation P to each other, then N ⊢ ϕ(n—1, ..., n
—

k),

 if n1, ..., nk do not stand in relation P to each other, then N ⊢ ¬ϕ(n—1, ..., n
—

k).

• Let n— be shorthand for the term SSS...S0 in LN, where S occurs n-times.

Ex. The 1-place numerical relation ev(n) of being even is expressible in N.

• So: To say Prf(m, n) is expressible in N is to say that there is a wff of LN, call it
PF(x, y) which says "x is the g.n. of a proof in N of the wff with g.n. y", such that, for
any numbers m, n:

 if Prf(m, n) holds, then N ⊢ PF(m—, n—),
 if Prf(m, n) does not hold, then N ⊢ ¬PF(m—, n—).

Claim 2: A numerical relation is primitive recursive if and only if it is expressible in N.

• The wff of LN that expresses this is ∃y(2 × y = x), where x occurs free.
• Which means: For any natural number n,

 if n is even, then N ⊢ ∃y(2 × v = n—),
 if n is not even, then N ⊢ ¬∃y(2 × v = n—).

The Gödel Sentence of N

Def. The 2-place numerical relation W(m, n) holds just when m is the g.n. of a
proof in N of the wff ϕ(n—), obtained from the wff ϕ(y) (in which y occurs free)
whose g.n. is n.

• Claim: W(m, n) is primitive recursive.
- So: There's a wff W(x, y) that expresses W(m, n) in N.

Def: The Gödel sentence G is the wff ∀x¬W(x, p—), where p is
the g.n. of the wff U(y) =def ∀x¬W(x, y), in which y occurs free.

Claim 1: G is true if and only if it is unprovable in N.

- If G is true, then "There is no proof of G in N" is true; hence G is unprovable in N.

But: U(p—) is just G!
So: G says: "There is no proof in N of G."

G says: "There is no number m such that m is the g.n. of a proof in N of U(p—)."

- If G is unprovable, then there is no m such that m is the g.n. of a proof in N of G;
so G is true.

Claim 2: If N is sound, then N is not negation complete.

• Idea: We will show that G is a wff of LN such that neither N ⊢ G nor N ⊢ ¬G.

Suppose: N is sound.

• Note: This is a "semantic" proof of N's negation incompleteness (it relies on the notion
of soundness).

• What about a purely "syntactic" proof of N's negation incompleteness?

- Then: For any wff ϕ, if N # ϕ, then N $ ϕ. "If ϕ is false, then ϕ is not provable."
- Now: Suppose N ⊢ G. Suppose G could be proved in N.
- Then: N # G. Since G is provable if and only if it is false

(Claim 1.)
- So: N $ G. From soundness of N.
- Thus: N " G. Claim 1.
- So: N # ¬G. Or ¬G is false.
- So: N $ ¬G. From soundness of N.
- Thus: G is a wff of LN such that neither N ⊢ G nor N ⊢ ¬G.

Thus: N is not negation complete.

Suppose: G is provable in N. Or N ⊢ ∀x¬W(x, p—).

Claim 3: If N is consistent, then there is a wff ϕ of LN such that N $ ϕ;
and if N is ω-consistent, then N $ ¬ϕ.

• First: Show that if N is consistent, then N $ G.

- Then: There is a natural number m such
that m is the g.n. of a proof in N of G.

- So: The 2-place numerical relation W(m, p)
holds, where p is the g.n. of the wff U(y).

Recall that U(p—) is G.

- So: N ⊢ W(m— , p—). Since W(m, n) is expressible in N.

- Now: G entails ¬W(m— , p—). Universal instantiation.

- So: Since N ⊢ G, we have N ⊢ ¬W(m— , p—).

Thus: N is inconsistent. (There is a wff W(m— , p—)
such that both it and its negation are theorems of N.)

Suppose: N is ω-consistent and ¬G is provable in N.

Claim 3: If N is consistent, then there is a wff ϕ of LN such that N $ ϕ;
and if N is ω-consistent, then N $ ¬ϕ.

Def: A theory T with LN as its language is ω-inconsistent just when, for some
open wff ϕ(x), T can prove each ϕ(m—) and T can also prove ¬∀xϕ(x) (i.e., ∃x¬ϕ(x)).

• Or: T can prove ϕ for each natural number, and it can also prove ¬ϕ for some
natural number.

• Now: Show that if N is ω-consistent, then N $ ¬G.

- Now: If N is ω-consistent, then it is consistent.
- So: G is not provable.
- So: For any number m, m is not the g.n. of a proof in N of G.
- So: The 2-place numerical relation W(m, p) does not hold,

where p is the g.n. of the wff U(y).
- Which means: N ⊢ ¬W(m— , p—). (Since W(m, n) is expressible in N.) (**)
- Note: (*) and (**) entail N is ω-inconsistent.
Thus: ¬G must be unprovable in N.

- Then: N ⊢ ¬∀x¬W(x, p—). Or: N ⊢ ∃x¬¬W(x, p—). (*)

But: Claim 3 still doesn't quite say, "If N is consistent, then N is negation complete."

• Can show the following:

I. If N is consistent, recursviely axiomatizable, and negation complete,
then it is recursively decidable.

Proof of (I). Show how to construct a mechanical procedure that decides, for any wff ϕ
of LN, whether ϕ is a theorem of N.

Suppose: N is consistent, recursively axiomatizable, and negation complete.

- Let ϕ be an arbitrary wff of LN.

Note: This is different from having
a mechanical procedure that
determines, for any ϕ, whether it
will ever turn up in the list!

II. If N is consistent and recursively axiomatizable, then it is not
recursively decidable.

So: If N is consistent and recursively axiomatizable, then it is not
negation complete.

- For each number n, check all numbers m to see if
Prf(m, n) holds.

- If it does hold, add the wff whose g.n. is n to the list.

How to mechanically generate a list of N's theorems

- Generate a list of N's theorems. Since N is recursively axiomatizable.
- Either ϕ or ¬ϕ must appear. Because N is negation complete.
- If ϕ appears, then ϕ is a theorem.
- If ¬ϕ appears, then ϕ is not a theorem. Because N is consistent.

Proof of (II) If N is consistent and recursively axiomatizable, then it is not recursively decidable.

Suppose: N is recursively decidable. Then N is recursively axiomatizable.
- Now: Show that N is not consistent.

Proof: The following is a mechanical procedure that decides if a number n has the property D:
(i) For any number n, check if ¬Pn(n

—) is a theorem of N (possible since N is recursively decidable).
(ii) If so, then D(n) holds.

(iii) If not, then D(n) doesn't hold.

1. List all the 1-place recursive properties of numbers P0(n), P1(n), ... as recursive sets of numbers:

 0 1 2 !"

0 no yes no !

1 yes yes yes !

2 no yes yes !

$"

Each row represents the extension
of the property labeled by that row:
 Extension of P0 is {1, ...}
 Extension of P1 = {0, 1, 2, ...}
 Extension of P2 = {1, 2, ...}

2. Define a 1-place property D(n) by: D(n) holds if and only if Pn(n) does not hold.
 Or: D(n) holds if and only if ¬Pn(n

—) is a theorem in N, where Pn(x) expresses Pn(n) in N.

3. Claim: D(n) is a recursive property, so it must be in the list, say D(n) = Pm(n).

Proof of (II) If N is consistent and recursively axiomatizable, then it is not recursively decidable.

Suppose: N is recursively decidable. Then N is recursively axiomatizable.
- Now: Show that N is not consistent.

1. List all the 1-place recursive properties of numbers P0(n), P1(n), ... as recursive sets of numbers:

 0 1 2 !"

0 no yes no !

1 yes yes yes !

2 no yes yes !

$"

Each row represents the extension
of the property labeled by that row:
 Extension of P0 is {1, ...}
 Extension of P1 = {0, 1, 2, ...}
 Extension of P2 = {1, 2, ...}

4. Question: Does D(m) hold? (Does the number m have the property D that it labels?)

2. Define a 1-place property D(n) by: D(n) holds if and only if Pn(n) does not hold.
 Or: D(n) holds if and only if ¬Pn(n

—) is a theorem in N, where Pn(x) expresses Pn(n) in N.

3. Claim: D(n) is a recursive property, so it must be in the list, say D(n) = Pm(n).

- Now: (a) and (c) entail that ¬Pm(m—) is a theorem in N.
- So (a) entails that D(m) holds.
- But: (b) then entails that Pm(m—) is a theorem in N.
Thus: There's a wff Pm(m—) of LN such that both it and its negation are theorems in N.

By definition of D. (a) D(m) holds if and only if ¬Pm(m—) is a theorem in N.

Because D(n) = Pm(n) is
recursive, and hence expressible
in N by the wff Pm(x)

(b) If D(m) holds, then Pm(m—) is a theorem in N.

(c) If D(m) doesn't hold, then ¬Pm(m—) is a theorem in N.

