Gödel's 1st Incompleteness Theorem

<u>Gödel's 1st Incompleteness Theorem</u>.

Let N be a first-order formal theory of arithmetic that is recursively axiomatizable. If N is consistent, then it is negation incomplete.

Questions:

- 1. What is a "first-order formal theory of arithmetic"?
- 2. What does it mean to say a first order formal theory of arithmetic is "consistent" and "negation incomplete"?
- 3. What does it mean to say a first-order formal theory of arithmetic is "recursively axiomatizable"?

Kurt Gödel

1. First-order Formal Theory

- A **formal theory** T consists of:
- (a) a formal language L_T (alphabet, grammar, semantics),
- (b) a set of axioms (a set of wffs of the langauge),
- (c) a *proof system* (a method that allows derivations of more complex *wffs* from the axioms).
- T is <u>first-order</u> if L_T only contains variables for individuals, and not variables for predicates (2nd-order), or variables for predicates of predicates (3rd-order), etc.
- A <u>formal theory of arithmetic</u> is a formal theory whose language can express all the claims made about natural numbers in simple arithmetic (addition, subtraction, multiplication, division).
- <u>Idea</u>: To formalize arithmetic, we want to demonstrate how all of its true claims ("theorems") can be derived from a set of basic truths (axioms).

2. Consistency and Negation Completeness

- A <u>theorem</u> of T is a wff of L_T that is provable in T's proof system.
 <u>Notation</u>: T ⊢ φ means "φ is a theorem of T".
- A <u>logically valid</u> wff of T is a wff of L_T that is true in all interpretations.
 - <u>Notation</u>: $T \vDash \varphi$ means " φ is a logically valid wff of T".
- T is <u>sound</u> just when every theorem of T is logically valid: For any wff φ of L_T , if $T \vdash \varphi$, then $T \models \varphi$.
- *T* is <u>semantically complete</u> just when every logically valid wff of *T* is a theorem of *T*: For any wff φ of L_T , if $T \vDash \varphi$, then $T \vdash \varphi$.

Two more syntactic notions:

- T is <u>consistent</u> just when, for any $wff \varphi$ in L_T , it's not the case that both $T \vdash \varphi^{\mathsf{v}}$ and $T \vdash \neg \varphi$.
- T is <u>negation complete</u> just when, for any wff φ in L_T , either $T \vdash \varphi$ or $T \vdash \neg \varphi$.

<u>Motivations</u>:

Consistency: We don't want our theory of arithmetic to make contradictory claims.

- We don't want to be able to prove that 2 is both even and not even.

Negation Completeness: We want our theory of arithmetic to have something to say about any claim made about natural numbers.

- We want to be able to either prove or refute any such claim.

<u>Example</u>:

- Let L consist of the alphabet P, Q, R, ∧, ∨, ¬, (,) and the grammar and semantics of PL.
- Let the proof system be the **PL** tree rules.
- Consider two theories:
 - T_1 , with one axiom: $\{\neg \mathsf{P}\}$.
 - T_2 , with three axioms: $\{\neg \mathsf{P}, \mathsf{Q}, \neg \mathsf{R}\}$.

<u>Idea</u>: Wffs of L are only those wffs of **PL** that can be formed from **P**, **Q**, **R** using the **PL** connectives.

<u>*Idea*</u>: In T_1 , all tree proofs begin with $\neg \mathsf{P}$ at the top as given; in T_2 , all tree proofs begin with $\neg \mathsf{P}, \mathsf{Q}, \neg \mathsf{R}$ at the top as givens.

- Both T_1 and T_2 are sound and semantically complete (since **PL** is).
- Both T_1 and T_2 are consistent.

Negation complete?

- T_1 : No! There are wffs φ of L such that neither φ nor $\neg \varphi$ is a theorem of T_1 .
 - <u>Ex</u>: $(\mathbf{Q} \wedge \mathbf{R})$. Trees for $\neg \mathbf{P} \therefore (\mathbf{Q} \wedge \mathbf{R})$ and $\neg \mathbf{P} \therefore \neg (\mathbf{Q} \wedge \mathbf{R})$ do not close.
 - <u>Which means</u>: The "given" $\neg \mathsf{P}$ doesn't entail either $(\mathsf{Q} \land \mathsf{R})$ or $\neg(\mathsf{Q} \land \mathsf{R})$.
- T_2 : Yes! For any $wff \varphi$ of L, there is a closed tree for either $\neg P, Q, \neg R \therefore \varphi$, or $\neg P, Q, \neg R \therefore \neg \varphi$.
 - The "given" $\neg P$, Q, $\neg R$ entail any wff formed from P, Q, R, via **PL** connectives.

<u>Moral</u>: Semantic completeness is distinct from negation completeness. - T_1 is not negation complete, but uses a proof system (**PL** trees) that is semantically complete.

<u>Example</u>:

- Let L consist of the alphabet P, Q, R, ∧, ∨, ¬, (,) and the grammar and semantics of PL.
- Let the proof system be the **PL** tree rules.
- Consider two theories:
 - T_1 , with one axiom: $\{\neg \mathsf{P}\}$.
 - T_2 , with three axioms: $\{\neg \mathsf{P}, \mathsf{Q}, \neg \mathsf{R}\}$.

<u>Idea</u>: Wffs of L are only those wffs of **PL** that can be formed from **P**, **Q**, **R** using the **PL** connectives.

<u>*Idea*</u>: In T_1 , all tree proofs begin with $\neg \mathsf{P}$ at the top as given; in T_2 , all tree proofs begin with $\neg \mathsf{P}, \mathsf{Q}, \neg \mathsf{R}$ at the top as givens.

- Both T_1 and T_2 are sound and semantically complete (since **PL** is).
- Both T_1 and T_2 are *consistent*.
- T_1 is not negation complete, T_2 is negation complete.

<u>Note</u>: We can "mechanically decide" what is a $w\!f\!f$ in T_1 and T_2 , and hence what $w\!f\!f\!s$ are axioms.

- There is a mechanical, step-by-step process in L of building complex wffs from atomic wffs, and atomic wffs from terms.

<u>And</u>: We can also "mechanically decide" what counts as a proof (a closed tree) in T_1 and T_2 , and hence, for any *wff*, whether it is a theorem of T_1 or T_2 .

<u>Question</u>: Can we make the notion of "mechanical decision procedure" more precise?

3. Recursively Axiomatizable Formal Theory

A formal theory T is <u>recursively axiomatizable</u> just when its axioms can be encoded as *recursive properties* of natural numbers.

- <u>Motivation</u>: Makes possible a mechanical decision procedure (algorithm) that can decide for any wff of L_T , whether it is an axiom of T.
- <u>Holy Grail</u>: To construct a mechanical decision procedure that would decide for any wff of L_T , whether it is a theorem of T.

Is Fermat's Last "Theorem" really a theorem?

Is the Poincaré Conjecture a theorem?

For $n \ge 3$, there are no whole numbers x, y, z such that $x^n + y^n = z^n$.

Pierre de Fermat

Proven by Andrew Wiles in 1993 after 3 centuries of work.

Every simply connected closed 3-manifold is homomorphic to the 3-sphere. (Or: the 3-sphere is the only type of bounded 3-dim space that contains no holes.)

Henri Poincaré

Wouldn't it be easier if there were a program that decided which statements were theorems and which weren't?

Link between mechanical ("effective") decidability and recursive properties.

- A recursive property can be encoded in a *primitive recursive* (p.r.) function.
- <u>And</u>: P.r. functions are generated by a mechanical algorithm.

Idea: Start with three simple functions as your "starter pack":

- (i) Successor function. S(x) =successor of x.
- (ii) Zero function. Z(x) = 0.
- (iii) k-place identity function. $I_i^k(x_1, ..., x_k) = x_i$ $1 \le i \le k$.

<u>Now</u>: Generate more complex functions from starter pack by one of two methods:

- (a) *Primitive recursion*: Specify value of function for 0, then specify value for a given argument in terms of its value for smaller arguments.
- (b) Composition: Generate a new function by composing two already-generated functions.

<u>Examples</u> :		
Sum function. $+(x, y)$	<u>Product function. $\times(x, y)$</u>	<u>Factorial function. $!(x)$</u>
$+(x, 0) = x = I_{1}^{1}(x)$	$\times(x, 0) = 0 = Z(x)$!(0) = 1 = S(0)
+(x, S(y)) = S(+(x, y))	$\times(x, S(y)) = +(\times(x, y), x)$	$!(S(y)) = \times (!(x), S(x))$

<u>Claim (Church's Thesis)</u>:

A (partial) function on the natural numbers is computable by algorithm (mechanically computable) *if and only if* it is a recursive (partial) function.

Alonzo Church

<u>So</u>: Gödel's 1st Incompleteness theorem says:

"Any attempt to consistently formalize arithmetic as a first-order theory with "mechanically" recognizable axioms will be negation incomplete: There will be some claim about natural numbers that is neither provable nor refutable in the theory."

What's the Big Deal?

• Big Deal if you think there is a formal theory that captures all the claims of arithmetic.

A. N. Whitehead

Bertrand Russell

4. Aspects of the Proof

<u>Peano Arithmetic</u>: A first-order recursively axiomatizable formal theory of arithmetic; call it N, with language L_N .

<u>The Alphabet of L_N </u>

0	individual constant
$\mathbf{X}, \mathbf{Y}, \mathbf{Z},, \mathbf{V}_k$	individual variables $(k \ge 0)$
=	2-place predicate (identity)
S	1-place function (successor)
+, ×	2-place functions (sum, product)
$\land,\lor,\neg,\supset,\forall,\exists,(,)$	connectives, quantifiers, punctuation

 $Giuseppe\ Peano$

<u>Grammar of L_N </u>: Same as \mathbf{QL}^f .

- Convention: Write $t_1 + t_2$ and $t_1 \times t_2$, instead of $+(t_1, t_2)$ and $\times(t_1, t_2)$.

<u>Semantics of L_N </u>: Same as \mathbf{QL}^f .

- Intended domain of all *q*-valuations is the set of natural numbers.
- On this domain:

- The q-value of the constant $\mathbf{0}$ is the number 0.

- The q-value of = is the set of all 2-tuples of numbers of the form $\langle m_1, m_2 \rangle$ where $m_1 = m_2$.
- The q-value of **S** is the set of 2-tuples of numbers $\{\langle 0,1\rangle, \langle 1,2\rangle, \langle 2,3\rangle, \langle 3,4\rangle, \dots \}$.
- The q-value of + is the set of all 3-tuples of numbers of form $\langle m_1, m_2, m_3 \rangle$ where $m_1 + m_2 = m_3$.
- The q-value of \times is the set of all 3-tuples of numbers of form $\langle m_1, m_2, m_3 \rangle$ where $m_1 \times m_2 = m_3$.

The axioms of N

(N1)	$\forall \mathbf{x} \neg (0 = \mathbf{S} \mathbf{x})$	
(N2)	$\forall x \forall y (Sx = Sy \supset x = y)$	
(N3)	$\forall \mathbf{x}(\mathbf{x} + 0 = \mathbf{x})$	
(N4)	$\forall \mathbf{x} \forall \mathbf{y} (\mathbf{x} + \mathbf{y} = \mathbf{S} (\mathbf{x} + \mathbf{y}))$	
(N5)	$\forall \mathbf{x} (\mathbf{x} \times 0 = 0)$	
(N6)	$\forall \mathbf{x} \forall \mathbf{y} (\mathbf{x} \times \mathbf{S} \mathbf{y} = (\mathbf{x} \times \mathbf{y}) + \mathbf{x})$	
(N7)	$(\{\varphi(0) \land \forall \mathbf{x}(\varphi(\mathbf{x}) \supset \varphi(\mathbf{S}\mathbf{x})))\} \supset \forall \mathbf{x}\varphi(\mathbf{x})),$	for $\varphi(\mathbf{x})$ an open <i>wff</i> with \mathbf{x} free.

• (N7) is the Axiom of Mathematical Induction.

- <u>It says</u>: "For any property of natural numbers φ , if 0 has it, and if, for any number n, if n has it entails that the successor of n has it, then all numbers have it."
- <u>Now</u>: Let's show that N is recursively axiomatizable.
 - <u>Which means</u>: Its axioms can be encoded in recursive functions.
- To do this, we'll first code the *wffs* and sequences of *wffs* of L_N as numbers.

<u>Gödel Numbering</u>

• Let the symbols in the alphabet of L_N be encoded by numbers by:

\wedge	\vee	_	\supset	\forall	Ξ	()	0	_	S	+	×	x	у	z	•••
1	3	5	7	9	11	13	15	17	19	21	23	25	2	4	6	•••

• Let expression e in L_N be the sequence of k+1 symbols $s_0, s_1, ..., s_k$.

Algorithm to go from an expression e to its Gödel number (g.n.)

- 1. Take the code number c_i for each s_i .
- 2. Use c_i as an exponent for the (i+1)th prime number π_i .

3. Multiply the results to get $\pi_0^{c_0} \pi_1^{c_1} \pi_2^{c_2} \dots \pi_k^{c_k}$.

- **S** has g.n. 2²¹.
- **SSO** has g.n. $2^{21}3^{21}5^{17}$.
- $\exists \mathbf{y}(\mathbf{SS} + \mathbf{y}) = \mathbf{SS0}$ has g.n. $2^{11}3^45^{13}7^{21}11^{21}13^{23}17^419^{15}23^{19}29^{21}31^{21}37^{17}!$

<u>Algorithm to go from a g.n. to an expression e</u>

- (i) Calculate the (unique) prime factorization of the g.n.
- (ii) Find the sequence of exponents of the prime factors.

<u>Algorithm to go from a sequence of expressions $e_0, e_1, ..., e_n$ to a g.n.</u>

- 1. Calculate the g.n. of each e_i .
- 2. Use g_i as an exponent for the (i+1)th prime number π_i .
- 3. Multiply the results to get $\pi_0^{g_0} \pi_1^{g_1} \pi_2^{g_2} \dots \pi_n^{g_n}$.

Algorithm to go from a g.n. to a sequence of expressions

- (i) Find the sequence of exponents of the prime factors of the g.n.
- (ii) Treat these exponents as g.n.s and take their prime factors.
- A proof in N can be written as a sequence of *wffs*, hence encoded in a g.n.
 - <u>Ex</u>: Algorithm for rewriting a tree proof as a linear sequence of wffs.
 - (i) List trunk *wffs* first.
 - (ii) At a fork, take left branch, and continue listing *wffs* that have not yet appeared in the sequence.
 - (iii) At the end of a branch, return to the last fork, take the right branch, and continue listing wffs.
 - (iv) Repeat (ii) and (iii) until all branches have been followed.

• Gödel numbers let us encode syntactic properties of the language L_N in purely numerical properties of (relations between) of natural numbers.

<u>Table 1: Important Example</u>	2 <u>.8</u>
<u>Syntactic property</u>	<u>Numerical relation</u>
Being a term of L_N .	$Term(n)$. Holds just when n is the g.n. of a term of L_N .
Being an atomic wff of L_N .	$Atom(n)$. Holds just when n is the g.n of an atomic wff of L_N .
Being a wff of L_N .	$W\!f\!f(n)$. Holds just when n is the g.n. of a $w\!f\!f$ of L_N .
Being a closed wff of L_N .	$Sent(n)$. Holds just when n is the g.n. of a closed wff of L_N .
Being an axiom of N .	Ax(n). Holds just when n is the g.n. of an axiom of N.
Being a proof in N .	Prf(m, n). Holds just when m is the g.n. of a proof in N of the closed wff with g.n. n.

<u>Claim 1</u>: All of the numerical relations in Table 1 are primitive recursive.

What this means:

- To say Term(n) is primitive recursive is to say that there is a p.r. function that computes Term(n); i.e., that tells us, for a given n, if Term(n) holds.
- <u>Idea</u>: To show this, we have to find p.r. functions that encode the algorithm that goes from a g.n. to an expression of L_N , and we have to find p.r. functions that encode the algorithm that determines what a term is in L_N .
- <u>Note</u>: That Ax(n) is primitive recursive demonstrates that N is recursively axiomatizable.

Expressibility in N

• Let $\bar{\mathbf{n}}$ be shorthand for the term SSS...S0 in L_N , where S occurs *n*-times.

A k-place numerical relation P is <u>expressible</u> in N just when there is a wff $\varphi(\mathbf{v}_1, ..., \mathbf{v}_k)$ of L_N with free occurances of $\mathbf{v}_1, ..., \mathbf{v}_k$, such that for any natural numbers $n_1, ..., n_k$,

if $n_1, ..., n_k$, stand in relation P to each other, then $N \vdash \varphi(\bar{\mathbf{n}}_1, ..., \bar{\mathbf{n}}_k)$,

if $n_1, ..., n_k$ do not stand in relation P to each other, then $N \vdash \neg \varphi(\bar{\mathbf{n}}_1, ..., \bar{\mathbf{n}}_k)$.

<u>Ex</u>. The 1-place numerical relation ev(n) of being even is expressible in N.

- The wff of L_N that expresses this is $\exists \mathbf{y}(2 \times \mathbf{y} = \mathbf{x})$, where \mathbf{x} occurs free.
- <u>Which means</u>: For any natural number n, if n is even, then $N \vdash \exists \mathbf{y}(2 \times \mathbf{v} = \overline{\mathbf{n}})$, if n is not even, then $N \vdash \neg \exists \mathbf{y}(2 \times \mathbf{v} = \overline{\mathbf{n}})$.
- <u>So</u>: To say Prf(m, n) is expressible in N is to say that there is a wff of L_N , call it $\mathcal{PF}(\mathbf{x}, \mathbf{y})$ which says " \mathbf{x} is the g.n. of a proof in N of the wff with g.n. \mathbf{y} ", such that, for any numbers m, n:

if Prf(m, n) holds, then $N \vdash \mathcal{PF}(\overline{\mathbf{m}}, \overline{\mathbf{n}})$,

if Prf(m, n) does not hold, then $N \vdash \neg \mathcal{PF}(\overline{\mathbf{m}}, \overline{\mathbf{n}})$.

<u>Claim 2</u>: A numerical relation is primitive recursive if and only if it is expressible in N.

The Gödel Sentence of N

<u>Def.</u> The 2-place numerical relation W(m, n) holds just when m is the g.n. of a proof in N of the wff $\varphi(\bar{\mathbf{n}})$, obtained from the wff $\varphi(\mathbf{y})$ (in which \mathbf{y} occurs free) whose g.n. is n.

- <u>Claim</u>: W(m, n) is primitive recursive.
 - <u>So</u>: There's a wff $\mathcal{W}(\mathbf{x}, \mathbf{y})$ that expresses W(m, n) in N.

<u>Def</u>: The <u>Gödel sentence</u> \mathcal{G} is the wff $\forall \mathbf{x} \neg \mathcal{W}(\mathbf{x}, \overline{\mathbf{p}})$, where p is the g.n. of the wff $\mathcal{U}(\mathbf{y}) =_{def} \forall \mathbf{x} \neg W(\mathbf{x}, \mathbf{y})$, in which \mathbf{y} occurs free.

 $\begin{array}{l} \underline{\mathcal{G} \ says}: \ \text{"There is no number } m \text{ such that } m \text{ is the g.n. of a proof in } N \text{ of } \mathcal{U}(\overline{p})." \\ \underline{But}: \ \mathcal{U}(\overline{p}) \text{ is just } \mathcal{G}! \\ \underline{So}: \ \mathcal{G} \text{ says}: \ \text{"There is no proof in } N \text{ of } \mathcal{G}." \end{array}$

<u>*Claim 1*</u>: \mathcal{G} is true if and only if it is unprovable in N.

- If \mathcal{G} is true, then "There is no proof of \mathcal{G} in N" is true; hence \mathcal{G} is unprovable in N.
- If \mathcal{G} is unprovable, then there is no m such that m is the g.n. of a proof in N of \mathcal{G} ; so \mathcal{G} is true.

<u>Claim 2</u>: If N is sound, then N is not negation complete.

• <u>Idea</u>: We will show that \mathcal{G} is a *wff* of L_N such that neither $N \vdash \mathcal{G}$ nor $N \vdash \neg \mathcal{G}$.

<u>Suppose</u> : N is sound.						
- <u>Then</u> : For any $wff \varphi$, if $N \nvDash \varphi$, then $N \nvDash \varphi$.	"If φ is false, then φ is not provable."					
- <u>Now</u> : Suppose $N \vdash \mathcal{G}$.	Suppose \mathcal{G} could be proved in N.					
- <u>Then</u> : $N \nvDash \mathcal{G}$.	Since \mathcal{G} is provable if and only if it is false					
	(Claim 1.)					
- <u>So</u> : $N \nvDash \mathcal{G}$.	From soundness of N.					
- <u>Thus</u> : $N \models \mathcal{G}$.	Claim 1.					
- <u>So</u> : $N \nvDash \neg \mathcal{G}$.	$Or \neg \mathcal{G} \text{ is false.}$					
- <u>So</u> : $N \nvDash \neg \mathcal{G}$.	From soundness of N.					
- <u>Thus</u> : \mathcal{G} is a wff of L_N such that neither $N \vdash \mathcal{G}$ nor $N \vdash \neg \mathcal{G}$.						
<u><i>Thus:</i></u> N is not negation complete.						

- <u>Note</u>: This is a "semantic" proof of N's negation incompleteness (it relies on the notion of soundness).
- What about a purely "syntactic" proof of N's negation incompleteness?

<u>Claim 3</u>: If N is consistent, then there is a wff φ of L_N such that $N \nvDash \varphi$; and if N is ω -consistent, then $N \nvDash \neg \varphi$.

• <u>*First*</u>: Show that if N is consistent, then $N \nvDash \mathcal{G}$.

<u>Suppose</u>: \mathcal{G} is provable in N.

- <u>Then</u>: There is a natural number m such that m is the g.n. of a proof in N of \mathcal{G} .
- <u>So</u>: The 2-place numerical relation W(m, p) holds, where p is the g.n. of the wff $\mathcal{U}(\mathbf{y})$.
- <u>So</u>: $N \vdash \mathcal{W}(\overline{\mathbf{m}}, \overline{\mathbf{p}})$.
- <u>Now</u>: \mathcal{G} entails $\neg \mathcal{W}(\overline{m}, \overline{p})$.
- <u>So</u>: Since $N \vdash \mathcal{G}$, we have $N \vdash \neg \mathcal{W}(\overline{\mathsf{m}}, \overline{\mathsf{p}})$.

<u>Thus</u>: N is inconsistent. (There is a $wff \mathcal{W}(\bar{\mathbf{m}}, \bar{\mathbf{p}})$ such that both it and its negation are theorems of N.)

 $Or \ N \vdash \forall \mathbf{x} \neg \mathcal{W}(\mathbf{x}, \, \overline{\mathbf{p}}).$

Recall that $\mathcal{U}(\bar{p})$ is \mathcal{G} .

Since W(m, n) is expressible in N.

Universal instantiation.

<u>Claim 3</u>: If N is consistent, then there is a wff φ of L_N such that $N \nvDash \varphi$; and if N is ω -consistent, then $N \nvDash \neg \varphi$.

<u>Def</u>: A theory T with L_N as its language is <u> ω -inconsistent</u> just when, for some open wff $\varphi(\mathbf{x})$, T can prove each $\varphi(\overline{\mathbf{m}})$ and T can also prove $\neg \forall \mathbf{x} \varphi(\mathbf{x})$ (i.e., $\exists \mathbf{x} \neg \varphi(\mathbf{x})$).

- <u>Or</u>: T can prove φ for each natural number, and it can also prove $\neg \varphi$ for some natural number.
- <u>Now</u>: Show that if N is ω -consistent, then $N \nvDash \neg \mathcal{G}$.

<u>But</u>: Claim 3 still doesn't quite say, "If N is consistent, then N is negation complete."

- Can show the following:
 - I. If N is consistent, recursively axiomatizable, and negation complete, then it is recursively decidable.
 - II. If N is consistent and recursively axiomatizable, then it is not recursively decidable.
 - So: If N is consistent and recursively axiomatizable, then it is not negation complete.

Proof of (I). Show how to construct a mechanical procedure that decides, for any $wff \varphi$ of L_N , whether φ is a theorem of N.

<u>Suppose</u>: N is consistent, recursively axiomatizable, and negation complete.

- Let φ be an arbitrary wff of L_N .
- Generate a list of N's theorems.
- Either φ or $\neg \varphi$ must appear.
- If φ appears, then φ is a theorem.
- If $\neg \varphi$ appears, then φ is not a theorem. Because N is consistent.

How to mechanically generate a list of N's theorems - For each number n, check all numbers m to see if Prf(m, n) holds. - If it does hold, add the wff whose g.n. is n to the list.

<u>*Note*</u>: This is different from having a mechanical procedure that i determines, for any φ , whether it will ever turn up in the list!

Since N is recursively axiomatizable.

Because N is negation complete.

Proof of (II) If N is consistent and recursively axiomatizable, then it is not recursively decidable.

<u>Suppose</u>: N is recursively decidable. Then N is recursively axiomatizable.

- <u>Now</u>: Show that N is not consistent.

1. List all the 1-place recursive properties of numbers $P_0(n)$, $P_1(n)$, ... as recursive sets of numbers:

	0	1	2	•••	
0	no	yes	no		Each row represents the extension of the property labeled by that row:
1	yes	yes	yes	•••	Extension of P_0 is $\{1,\}$
2	no	yes	yes		Extension of $P_1 = \{0, 1, 2,\}$ Extension of $P_2 = \{1, 2,\}$
:	•	•	•	•••	

2. Define a 1-place property D(n) by: D(n) holds if and only if $P_n(n)$ does not hold. <u>Or</u>: D(n) holds if and only if $\neg \mathcal{P}_n(\bar{\mathbf{n}})$ is a theorem in N, where $\mathcal{P}_n(\mathbf{x})$ expresses $P_n(n)$ in N.

3. <u>Claim</u>: D(n) is a recursive property, so it must be in the list, say $D(n) = P_m(n)$.

<u>Proof</u>: The following is a mechanical procedure that decides if a number n has the property D: (i) For any number n, check if $\neg \mathcal{P}_n(\bar{\mathbf{n}})$ is a theorem of N (possible since N is recursively decidable). (ii) If so, then D(n) holds. (iii) If not, then D(n) doesn't hold. Proof of (II) If N is consistent and recursively axiomatizable, then it is not recursively decidable.

Suppose: N is recursively decidable. Then N is recursively axiomatizable.

<u>Now</u>: Show that N is not consistent.

List all the 1-place recursive properties of numbers $P_0(n)$, $P_1(n)$, ... as recursive sets of numbers: 1.

	0	1	2	•••	
0	no	yes	no		Each row represents the extension of the property labeled by that row:
1	yes	yes	yes	•••	Extension of P_0 is $\{1,\}$
2	no	yes	yes		Extension of $P_1 = \{0, 1, 2,\}$ Extension of $P_2 = \{1, 2,\}$
:		•	•	•.	

- Define a 1-place property D(n) by: D(n) holds if and only if $P_n(n)$ does not hold. 2. <u>Or</u>: D(n) holds if and only if $\neg \mathcal{P}_n(\bar{\mathbf{n}})$ is a theorem in N, where $\mathcal{P}_n(\mathbf{x})$ expresses $P_n(n)$ in N.
- <u>*Claim*</u>: D(n) is a recursive property, so it must be in the list, say $D(n) = P_m(n)$. 3.
- <u>Question</u>: Does D(m) hold? (Does the number m have the property D that it labels?) 4.
 - (a) D(m) holds if and only if $\neg \mathcal{P}_m(\bar{\mathbf{m}})$ is a theorem in N. By definition of D.
- <u>Now</u>: (a) and (c) entail that $\neg \mathcal{P}_m(\bar{\mathbf{m}})$ is a theorem in N.
- So(a) entails that D(m) holds.
- <u>But</u>: (b) then entails that $\mathcal{P}_m(\bar{\mathbf{m}})$ is a theorem in N.

There's a wff $\mathcal{P}_m(\bar{\mathbf{m}})$ of L_N such that both it and its negation are theorems in N. Thus:

(b) If D(m) holds, then $\mathcal{P}_m(\bar{\mathbf{m}})$ is a theorem in N. (c) If D(m) doesn't hold, then $\neg \mathcal{P}_m(\bar{\mathbf{m}})$ is a theorem in N. Now: (a) and (b) entail that $-\mathcal{P}_m(\bar{\mathbf{m}})$ is a theorem in N.