Godel's 1st Incompleteness Theorem (;‘@\}

Godel's 1st Incompleteness Theorem. e

Let N be a first-order formal theory of arithmetic that is recursively A
axiomatizable. If N is consistent, then it is negation incomplete. Kurt Gédel

Questions:

1. What is a "first-order formal theory of arithmetic"?

2. What does it mean to say a first order formal theory of
arithmetic is "consistent" and "negation incomplete"?

3. What does it mean to say a first-order formal theory of
arithmetic is "recursively axiomatizable"?




1. First-order Formal Theory

A formal theory T consists of: LN
(a) a formal language L, (alphabet, grammar, semantics),
(b) a set of axioms (a set of wffs of the langauge),

(c) a proof system (a method that allows derivations of
more complex wffs from the axioms).

o T'is first-order it L, only contains variables for individuals, and not variables for
predicates (2nd-order), or variables for predicates of predicates (3rd-order), etc.

o A formal theory of arithmetic is a formal theory whose language can express all the
claims made about natural numbers in simple arithmetic (addition, subtraction,
multiplication, division).

e [dea: To formalize arithmetic, we want to demonstrate how all of its true claims
("theorems") can be derived from a set of basic truths (axioms).



2. Consistency and Negation Completeness

e A theorem of T'is a wff of L, that is provable in T’s proof system. \N
- Notation: T+ ¢ means " is a theorem of T™".

A logically valid wff of T is a wff of L, that is true in all interpretations.

- Notation: T F ¢ means "o is a logically valid wff of T".

e Tis sound just when every theorem of T'is logically valid:
For any wff ¢ of L, if T+ ¢, then T F ¢.

e T'is semantically complete just when every logically valid wff of T
is a theorem of 1% For any wff ¢ of L, if T F ¢, then T F ¢.

Two more syntactic notions:

e T'is consistent just when, for any wff ¢ in L, it's not the case that both T+ ¢
and T F —op.

e T'is negation complete just when, for any wff ¢ in L, either T'F ¢ or T = —¢.

Motivations:

Consistency: We don't want our theory of arithmetic to make contradictory claims.
- We don't want to be able to prove that 2 is both even and not even.

Negation Completeness: We want our theory of arithmetic to have something to
say about any claim made about natural numbers.

- We want to be able to either prove or refute any such claim.



Example: .

|
e Let L consist of the alphabet P, Q, R, A, V, =, (,) ! Idea: Wiffs of L are only those wffs

and the grammar and semantics of PL. ) O 1P it i oo fomaed. fivoin [P,
l Q, R using the PL connectives.

e Let the proof system be the PL tree rules. 7777777777777 ==7==7=77-

e Consider two theories: A e
1 Idea: In T, all tree proofs begin with —-P

: at the top as given; in 75, all tree proofs
T,, with three axioms: {—.P, Q, —|R}_ ' begin with —P, Q, =R at the top as givens.

T, with one axiom: {—-P}.

e Both T, and T, are sound and semantically complete (since PL is).
e Both 7| and T, are consistent.

Negation complete?

e T,: No! There are wffs ¢ of L such that neither ¢ nor -y is a theorem of T}.
- Ex: (Q AR). Trees for =P . (Q A R) and =P ... =(Q A R) do not close.
- Which means: The "given" =P doesn't entail either (Q A R) or =(Q A R).

e T,: Yes! For any wff ¢ of L, there is a closed tree for either =P, Q, =R ... ¢, or
-P,Q, "R .. —p

- The "given" =P, Q, =R entail any wff formed from P, Q, R, via PL connectives.

Moral: Semantic completeness is distinct from negation completeness.

- T, is not negation complete, but uses a proof system (PL trees) that is semantically complete.
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e Both T, and T, are sound and semantically complete (since PL is).
e Both 7| and T, are consistent.

e T is not negation complete, T, is negation complete.

Note: We can "mechanically decide" what is a wffin 7, and 7}, and hence what
wffs are axioms.

- There 1s a mechanical, step-by-step process in L of building complex wffs from atomic wffs,
and atomic wffs from terms.

And: We can also "mechanically decide" what counts as a proof (a closed tree) in
T, and T, and hence, for any wff, whether it is a theorem of 7, or 7.

Question: Can we make the notion of "mechanical decision procedure" more precise?



3. Recursively Axiomatizable Formal Theory

axioms can be encoded as recursive properties of natural numbers

A formal theory T is recursively axiomatizable just when its j

e Motivation: Makes possible a mechanical decision procedure (algorithm) that can
decide for any wff of L,, whether it is an axiom of T.

e Holy Grail: To construct a mechanical decision procedure that would decide for any
wff of L, whether it is a theorem of T.

Is Fermat's Last "Theorem” really a theorem?

x, Y, zsuch that 2" + y* = 2™

For n > 3, there are no whole numbers!>

S
Pierre de Fermat Proven by Andrew Wiles in
Is the Poincaré Conjecture a theorem? 1993 after 3 centuries of work.

Every simply connected closed 3-manifold
is homomorphic to the 3-sphere. (Or:
the 3-sphere is the only type of bounded
3-dim space that contains no holes.)

Henri Poincaré  Supposedly proven by Grigori
Perelman in 2003 after a

Wouldn't it be easier if there were a program that decided century and $1million prize.
which statements were theorems and which weren't?



Link between mechanical ("effective”) decidability and recursive properties.

e A recursive property can be encoded in a primitive recursive (p.r.) function.
e And: P.r. functions are generated by a mechanical algorithm.

Idea: Start with three simple functions as your "starter pack": \N
(i)  Successor function. S(z) = successor of z.
(ii) Zero function. Z(x) = 0.

(iii) A-place identity function. [*(z, ..., z) =2 1<i<k

7

Now: Generate more complex functions from starter pack by one of two methods:

(a) Primitive recursion: Specify value of function for 0, then specify value for a given
argument in terms of its value for smaller arguments.

(b) Composition: Generate a new function by composing two already-generated functions.

Examples:

Sum function. +(z. y) Product function. x(z. y) Factorial function. !(x)
+(x, 0) = z = I'(2) X(xz, 0) = 0= Z(x) 1(0) =1 = 5(0)

+(z, S(y)) = S(+(z, v)) x(z, S(y)) = +(x(z, y), ) 1(5(y)) = x(I(z), 5(2))

Claim (Church's Thesis):

A (partial) function on the natural numbers is
computable by algorithm (mechanically computable)

if and only if it is a recursive (partial) function.

S

Alonzo Church




So: Godel's 1st Incompleteness theorem says:

"Any attempt to consistently formalize arithmetic as a first-order theory with
"mechanically" recognizable axioms will be negation incomplete: There will be some
claim about natural numbers that is neither provable nor refutable in the theory."

What's the Big Deal?

e Big Deal if you think there is a formal theory that captures all the claims of
arithmetic.

PRINCIPIA
MATHEMATICA

TO «56

A. N. Bertrand
Whitehead Russell




4. Aspects of the Proof

Peano Arithmetic: A first-order recursively axiomatizable formal theory
of arithmetic; call it N, with language L.

The Alphabet of Ly

Giuseppe Peano

0 individual constant

X, ¥y Z,y ey Vo individual variables (k > 0)

= 2-place predicate (identity)

S 1-place function (successor)

+, X 2-place functions (sum, product)

A, V, =D,V 3, () connectives, quantifiers, punctuation

Grammar of Ly: Same as QL.
- Convention: Write t, + t, and ¢, X t,, instead of +(¢;, t,) and x(%, t,).

Semantics of Ly: Same as QL/.

e Intended domain of all ¢-valuations is the set of natural numbers.
e On this domain:



The axioms of N

(N1)  Vx—(0 = Sx) N
(N2) VxVy(Sx =Sy D x=Y)

(N3) Vx(x + 0 = Xx)

(N4)  VUxvy(x +y=Skx+Y))

(N5)  V¥x(x x 0=0)

(N6) WxVy(x x Sy = (X X y) + X)

(N7)  ({¢(0) A ¥X(p(X) D @(Sx)))} D Vxep(x)), for ¢(x) an open wff with X free.

e (N7) is the Axiom of Mathematical Induction.

- It says: "For any property of natural numbers ¢, if 0 has it, and if, for any number
n, if n has it entails that the succesor of n has it, then all numbers have it."

e Now: Let's show that N is recursively axiomatizable.
- Which means: Its axioms can be encoded in recursive functions.

e To do this, we'll first code the wffs and sequences of wffs of L, as numbers.



Godel Numbering

e Let the symbols in the alphabet of L, be encoded by numbers by:

AV = DY 3 [(C]|)I[0 |[=|S |+ [x]|x]|y

1 (3 (5 |7 |9 (11 |13 |15 (17 {19 |21 (23 |25 4
Let expression e in Ly be the sequence of k+1 symbols s,, s, ..., s

Algorithm to go from an expression e to its Godel number (g.n.)

1. Take the code number ¢, for each s,

2. Use ¢, as an exponent for the (i+1)th prime number 7.

3. Multiply the results to get m,%m @ my®... m.%. >

S has g.n. 22%,
SSO has g.n. 221321517,

3y(SS + y) = SSO has g.n. 2113451372111211323174191523192921 3121 3717

Alqgorithm to go from a g.n. to an expression e

(i)

\N

Calculate the (unique) prime factorization of the g.n.

(ii) Find the sequence of exponents of the prime factors.




Algorithm to go from a sequence of expressions e, e,. ..., e, to a g.n.

1. Calculate the g.n. of each e,

2. Use g; as an exponent for the (i+1)th prime number 7.

3. Multiply the results to get m % m " % ... 7 9.

Alqgorithm to go from a g.n. to a sequence of expressions X
(i) Find the sequence of exponents of the prime factors of the g.n.

(ii) Treat these exponents as g.n.s and take their prime factors.

e A proof in N can be written as a sequence of wffs, hence encoded in a g.n.

FEz: Algorithm for rewriting a tree proof as a linear sequence of wifs.

(i)  List trunk wffs first.

(ii) At a fork, take left branch, and continue listing wffs that have not yet
appeared in the sequence.

(iii) At the end of a branch, return to the last fork, take the right branch,
and continue listing wffs.

(iv) Repeat (ii) and (iii) until all branches have been followed.




e Godel numbers let us encode syntactic properties of the language L, in purely
numerical properties of (relations between) of natural numbers.

Table 1: Important Examples

Syntactic property Numerical relation

Being a term of L. Term(n). Holds just when n is the g.n. of a term of L.

Being an atomic wff of Ly. Atom(n). Holds just when n is the g.n of an atomic wff of L.

Being a wff of L. Wff(n). Holds just when n is the g.n. of a wff of L,.

Being a closed wff of L. Sent(n). Holds just when n is the g.n. of a closed wff of L.
Being an axiom of N. Ax(n). Holds just when n is the g.n. of an axiom of N.

Being a proof in V. Prf(m, n). Holds just when m is the g.n. of a proof in N of the

closed wff with g.n. n.

Claim 1: All of the numerical relations in Table 1 are primitive recursive.ﬁ
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What this means:

e To say Term(n) is primitive recursive is to say that there is a p.r. function that computes
Term(n); i.e., that tells us, for a given n, if Term(n) holds.

from a g.n. to an expression of Ly, and we have to find p.r. functions that encode the

| |
| 1
I |
| 1
| |
| 1
| o Idea: To show this, we have to find p.r. functions that encode the algorithm that goes |
| |
| 1
! algorithm that determines what a term is in Ly. ;
| |
| 1



Expressibility in N
e Let N be shorthand for the term SSS...S0 in L,, where S occurs n-times.

A k-place numerical relation P is expressible in N just when there is a wff X
©(Vy, ..., V;) of Ly with free occurances of vy, ..., v, such that for any natural
numbers ny, ..., 7y,

if n,, ..., n;, stand in relation P to each other, then N+ ¢(n,, ..., Nn,),

if n,, ..., n, do not stand in relation P to each other, then N+ —p(ny, ..., N,).

Ez. The 1-place numerical relation ev(n) of being even is expressible in N.
e The wff of L, that expresses this is Jy(2 x y = X), where X occurs free.
e Which means: For any natural number n,

if n is even, then N 3Jy(2 x v = n),

if n is not even, then N F —=3dy(2 x v = n).

e So: To say Prf(m, n) is expressible in N is to say that there is a wff of Ly, call it
PF(X, y) which says "X is the g.n. of a proof in N of the wff with g.n. y", such that, for

any numbers m, n:
if Prf{m, n) holds, then N+ PF(m, n),
if Prf(m, n) does not hold, then N+ —PF(m, n).

Clarm 2: A numerical relation is primitive recursive if and only if it is expressible in Nﬁ




The Godel Sentence of N

Def. The 2-place numerical relation W(m, n) holds just when m is the g.n. of ak

proof in N of the wff p(N), obtained from the wff p(y) (in which y occurs free)
whose g.n. is n.

e Claim: W(m, n) is primitive recursive.
- So: There's a wff W(X, y) that expresses W(m, n) in N.

Def The Gddel sentence G is the wff VXx—=W(X, p), where p is
the g.n. of the wff U(Y) =46 VX-W(X, ¥), in which y occurs free.

' G says: "There is no number m such that m is the g.n. of a proof in N of U(p)."
But: U(p) is just g
' So: G says: "There is no proof in N of G."

Claim 1: G is true if and only if it is unprovable in Nﬁ

- If G is true, then "There is no proof of G in N'" is true; hence G is unprovable in N.

- If G is unprovable, then there is no m such that m is the g.n. of a proof in N of G;

so ¢ is true.




Claim 2: If N is sound, then N is not negation completeﬁ

o [dea: We will show that G is a wff of Ly such that neither N+ G nor N —G.

Suppose: N is sound.
- Then: For any wff o, if NF# ¢, then NV . "If © is false, then ¢ is not provable.”

- Now: Suppose N - G. Suppose G could be proved in N.

- Then: NF G. Since G is provable if and only if it is false
(Claim 1.)

- So: NF G. From soundness of N.

- Thus: NE G. Claim 1.

- So: NFE —G. Or =G is false.

- So: NF¥F —G. From soundness of N.

- Thus: G is a wff of L, such that neither N+ G nor N F —G.

Thus: N is not negation complete.

e Note: This is a "semantic" proof of N's negation incompleteness (it relies on the notion
of soundness).

e What about a purely "syntactic" proof of N's negation incompleteness?



Claim 3 If N is consistent, then there is a wff ¢ of Ly such that N ¥ ¢;
and if N is w-consistent, then N ¥ —p.

o [iyrst: Show that if N is consistent, then N ¥ G.

Suppose: G is provable in N. Or N = Vx=-W(X, p).

- Then: There is a natural number m such
that m is the g.n. of a proof in N of G.

- So: The 2-place numerical relation W(m, p) Recall that U(P) is G.

holds, where p is the g.n. of the wff U(y).
- So: NF W(m, p). Since W(m, n) is expressible in N.
- Now: G entails =W(m, p). Universal instantiation.

So: Since N+ G, we have N+ =WW(m, p).

Thus: N is inconsistent. (There is a wff YW(m, p)
such that both it and its negation are theorems of N.)




Claim 3 If N is consistent, then there is a wff ¢ of Ly such that N ¥ ¢;
and if N is w-consistent, then N ¥ —p.

Def: A theory T with Ly as its language is w-tnconsistent just when, for some
open wff p(X), T can prove each (M) and T can also prove =VXp(X) (i.e., Ix—p(X)).

e Or: T can prove ¢ for each natural number, and it can also prove — for some
natural number.

e Now: Show that if NV is w-consistent, then N ¥ —G.

Suppose: N is w-consistent and —G is provable in N.
- Then: NF =Vx-W(X, p). Or: NF Ix=—=W(X, p)- (*)

- Now: If N is w-consistent, then it is consistent.

: G is not provable.

: For any number m, m is not the g.n. of a proof in N of G.

SESES

So: The 2-place numerical relation W(m, p) does not hold,
where p is the g.n. of the wff U(y).

Which means: Nt —=W(m, p). (Since W(m, n) is expressible in N.) (%)

Note: (*) and (**) entail N is w-inconsistent.

Thus: —G must be unprovable in N.

But: Claim 3 still doesn't quite say, "If N is consistent, then N is negation complete."



e Can show the following:

[. If Nis consistent, recursviely axiomatizable, and negation complete,
then it is recursively decidable.

II. If Nis consistent and recursively ariomatizable, then it is not
recursiwvely decidable.

So: If Nis consistent and recursively ariomatizable, then it is not

negation complete. 7

Proof of (I). Show how to construct a mechanical procedure that decides, for any wff ¢

of L,, whether ¢ is a theorem of N.

Suppose: N is consistent, recursively axiomatizable, and negation complete.

- Let ¢ be an arbitrary wff of L.

Generate a list of N's theorems. Since N 1s recursively axiomatizable.

FEither ¢ or —¢ must appear. Because N 1s negation complete.

If ¢ appears, then ¢ is a theorem.

If = appears, then ¢ is not a theorem. Because N s consistent.

\ How to mechanically generate a list of N's theorems
I - For each number n, check all numbers m to see if
| Prf(m, n) holds.

: - If it does hold, add the wff whose g.n. is n to the list. :

Note: This is different from having :
a mechanical procedure that
determines, for any ¢, whether it
will ever turn up in the list!




Proof of (II) If N is consistent and recursively aziomatizable, then it is not recursively decidable.

Suppose: N is recursively decidable. Then N is recursively axiomatizable.

- Now: Show that N is not consistent.
1. List all the 1-place recursive properties of numbers Py(n), P;(n), ... as recursive sets of numbers:

0 1 2

I Fach row represents the extension
of the property labeled by that row:

I
0 no yes 1o :
Extension of P, is {1, ...} :
I
I
I

1 yes yes  yes
Extension of P, = {0, 1, 2, ...}

2 no yes yes Extension of P, = {1, 2, ...}

2. Define a 1-place property D(n) by: D(n) holds if and only if P (n) does not hold.
Or: D(n) holds if and only if =P,(N) is a theorem in N, where P, (X) expresses P, (n) in N.

3. Claim: D(n) is a recursive property, so it must be in the list, say D(n) = P, (n).

Proof. The following is a mechanical procedure that decides if a number n has the property D:
(i) For any number n, check if =P, (N) is a theorem of N (possible since N is recursively decidable).
(ii) If so, then D(n) holds.



Proof of (II) If N is consistent and recursively aziomatizable, then it is not recursively decidable.

Suppose: N is recursively decidable. Then N is recursively axiomatizable.

- Now: Show that N is not consistent.
1. List all the 1-place recursive properties of numbers Py(n), P;(n), ... as recursive sets of numbers:

0 1 2

I Fach row represents the extension
of the property labeled by that row:

I

0 no yes 1o :
Extension of P, is {1, ...} :
I

I

I

1 yes yes  yes
Extension of P, = {0, 1, 2, ...}

2 no yes yes Extension of P, = {1, 2, ...}

2. Define a 1-place property D(n) by: D(n) holds if and only if P (n) does not hold.
Or: D(n) holds if and only if =P,(N) is a theorem in N, where P, (X) expresses P, (n) in N.

3. Claim: D(n) is a recursive property, so it must be in the list, say D(n) = P, (n).
4. Question: Does D(m) hold? (Does the number m have the property D that it labels?)

(a) D(m) holds if and only if =P, (M) is a theorem in N. : By definition of D. |

(b) If D(m) holds, then P, (M) is a theorem in N. SR 1‘)('”3 ':-};m-(;)-ls- --- —-i

(c¢) If D(m) doesn't hold, then =P, (M) is a theorem in N. | recursive, and hence expressible |
|

' in N by the wff P, (x)
ow: (a) and (c) entail that =P, (M) is a theorem in N. "=~ 7==~====-=-=========-

So (a) entails that D(m) holds.
- But: (b) then entails that P, (M) is a theorem in N.
Thus: There's a wff P,,(M) of Ly such that both it and its negation are theorems in N.

=




