
Gödel's 1st Incompleteness Theorem 
Gödel's 1st Incompleteness Theorem. 
Let N be a first-order formal theory of arithmetic that is recursively 
axiomatizable.  If N is consistent, then it is negation incomplete. 

Questions: 
1.  What is a "first-order formal theory of arithmetic"? 

2.  What does it mean to say a first order formal theory of 
arithmetic is "consistent" and "negation incomplete"? 

3.  What does it mean to say a first-order formal theory of 
arithmetic is "recursively axiomatizable"? 

Kurt Gödel 



1.  First-order Formal Theory 

•  Idea:  To formalize arithmetic, we want to demonstrate how all of its true claims 
("theorems") can be derived from a set of basic truths (axioms). 

•  T is first-order if LT only contains variables for individuals, and not variables for 
predicates (2nd-order), or variables for predicates of predicates (3rd-order), etc.  

•  A formal theory of arithmetic is a formal theory whose language can express all the 
claims made about natural numbers in simple arithmetic (addition, subtraction, 
multiplication, division). 

A formal theory T consists of: 
(a)  a formal language LT (alphabet, grammar, semantics), 
(b) a set of axioms (a set of wffs of the langauge), 
(c)  a proof system (a method that allows derivations of 

more complex wffs from the axioms). 



Motivations: 

•  A theorem of T is a wff of LT that is provable in T's proof system. 
-  Notation:  T ⊢ ϕ means "ϕ is a theorem of T ". 

2.  Consistency and Negation Completeness 

•  T is consistent just when, for any wff ϕ in LT, it's not the case that both T ⊢ ϕ 
and T ⊢ ¬ϕ. 

•  T is negation complete just when, for any wff ϕ in LT, either T ⊢ ϕ or T ⊢ ¬ϕ. 

Negation Completeness:  We want our theory of arithmetic to have something to 
say about any claim made about natural numbers. 
-  We want to be able to either prove or refute any such claim. 

Consistency:  We don't want our theory of arithmetic to make contradictory claims. 
- We don't want to be able to prove that 2 is both even and not even. 

•  A logically valid wff of T is a wff of LT that is true in all interpretations. 
-  Notation:  T " ϕ means "ϕ is a logically valid wff of T ". 

•  T is sound just when every theorem of T is logically valid:  
For any wff ϕ of LT, if T ⊢ ϕ, then T " ϕ. 

•  T is semantically complete just when every logically valid wff of T 
is a theorem of T:  For any wff ϕ of LT, if T " ϕ, then T ⊢ ϕ. 

Two more syntactic notions: 



Example: 
•  Let L consist of the alphabet P, Q, R, ∧, ∨, ¬, (, ) 

and the grammar and semantics of PL. 
Idea:  Wffs of L are only those wffs 
of PL that can be formed from P, 
Q, R using the PL connectives. 

•  Consider two theories: 
-  T1, with one axiom:  {¬P}. 
-  T2, with three axioms:  {¬P, Q, ¬R}. 

Idea:  In T1, all tree proofs begin with ¬P 
at the top as given; in T2, all tree proofs 
begin with ¬P, Q, ¬R at the top as givens. 

•  Both T1 and T2 are sound and semantically complete (since PL is). 
•  Both T1 and T2 are consistent. 

Negation complete? 
•  T1:  No!  There are wffs ϕ of L such that neither ϕ nor ¬ϕ is a theorem of T1. 

-  Ex:  (Q ∧ R).  Trees for ¬P ∴  (Q ∧ R) and ¬P ∴  ¬(Q ∧ R) do not close. 

-  Which means:  The "given" ¬P doesn't entail either (Q ∧ R) or ¬(Q ∧ R). 

•  T2:  Yes!  For any wff ϕ of L, there is a closed tree for either ¬P, Q, ¬R ∴  ϕ, or 
¬P, Q, ¬R ∴  ¬ϕ. 

-  The "given" ¬P, Q, ¬R entail any wff formed from P, Q, R, via PL connectives. 

Moral:  Semantic completeness is distinct from negation completeness. 
-  T1 is not negation complete, but uses a proof system (PL trees) that is semantically complete. 

•  Let the proof system be the PL tree rules. 



Note:  We can "mechanically decide" what is a wff in T1 and T2, and hence what 
wffs are axioms. 

Example: 
•  Let L consist of the alphabet P, Q, R, ∧, ∨, ¬, (, ) 

and the grammar and semantics of PL. 
•  Let the proof system be the PL tree rules. 

Idea:  Wffs of L are only those wffs 
of PL that can be formed from P, 
Q, R using the PL connectives. 

•  Consider two theories: 
-  T1, with one axiom:  {¬P}. 
-  T2, with three axioms:  {¬P, Q, ¬R}. 

Idea:  In T1, all tree proofs begin with ¬P 
at the top as given; in T2, all tree proofs 
begin with ¬P, Q, ¬R at the top as givens. 

And:  We can also "mechanically decide" what counts as a proof (a closed tree) in 
T1 and T2, and hence, for any wff, whether it is a theorem of T1 or T2. 

•  Both T1 and T2 are sound and semantically complete (since PL is). 
•  Both T1 and T2 are consistent. 
•  T1 is not negation complete, T2 is negation complete. 

Question:  Can we make the notion of "mechanical decision procedure" more precise? 

-  There is a mechanical, step-by-step process in L of building complex wffs from atomic wffs, 
and atomic wffs from terms. 



3.  Recursively Axiomatizable Formal Theory 

A formal theory T is recursively axiomatizable just when its 
axioms can be encoded as recursive properties of natural numbers. 

•  Motivation:  Makes possible a mechanical decision procedure (algorithm) that can 
decide for any wff of LT, whether it is an axiom of T. 

•  Holy Grail:  To construct a mechanical decision procedure that would decide for any 
wff of LT, whether it is a theorem of T. 

Is the Poincaré Conjecture a theorem? 

Wouldn't it be easier if there were a program that decided 
which statements were theorems and which weren't? 

Proven by Andrew Wiles in 
1993 after 3 centuries of work. 

Supposedly proven by Grigori 
Perelman in 2003 after a 
century and $1million prize. 

For n ≥ 3, there are no whole numbers 
x, y, z such that xn + yn = zn. 

Pierre de Fermat 

Henri Poincaré 

Every simply connected closed 3-manifold 
is homomorphic to the 3-sphere.  (Or:  
the 3-sphere is the only type of bounded 
3-dim space that contains no holes.) 

Is Fermat's Last "Theorem" really a theorem? 



Link between mechanical ("effective") decidability and recursive properties. 
•  A recursive property can be encoded in a primitive recursive (p.r.) function. 
•  And:  P.r. functions are generated by a mechanical algorithm. 

Idea:  Start with three simple functions as your "starter pack": 

Now:  Generate more complex functions from starter pack by one of two methods: 

Examples: 
Sum function.  +(x, y) 
+(x, 0) = x = I 1

1(x) 
+(x, S(y)) = S(+(x, y)) 

Product function.  ×(x, y) 
×(x, 0) = 0 = Z (x) 
×(x, S(y)) = +(×(x, y), x) 

Factorial function.  !(x) 
!(0) = 1 = S (0) 
!(S(y)) = ×(!(x), S(x)) 

(a)  Primitive recursion:  Specify value of function for 0, then specify value for a given 
argument in terms of its value for smaller arguments. 

(b)  Composition:  Generate a new function by composing two already-generated functions. 

(i)  Successor function.  S(x) = successor of x. 
(ii)  Zero function.  Z(x) = 0. 
(iii)  k-place identity function.  Ik

i(x1, ..., xk) = xi   1 ≤ i ≤ k. 

Claim (Church's Thesis): 

A (partial) function on the natural numbers is 
computable by algorithm (mechanically computable) 
if and only if it is a recursive (partial) function. 

Alonzo Church 



So:  Gödel's 1st Incompleteness theorem says: 
 "Any attempt to consistently formalize arithmetic as a first-order theory with 
"mechanically" recognizable axioms will be negation incomplete:  There will be some 
claim about natural numbers that is neither provable nor refutable in the theory." 

What's the Big Deal? 

A. N. 
Whitehead 

Bertrand 
Russell 

•  Big Deal if you think there is a formal theory that captures all the claims of 
arithmetic. 



4.  Aspects of the Proof 
Peano Arithmetic:  A first-order recursively axiomatizable formal theory 
of arithmetic; call it N, with language LN. 

Grammar of LN:  Same as QLf. 
- Convention:  Write t1 + t2 and t1 × t2, instead of +(t1, t2) and ×(t1, t2). 

0  individual constant 
x, y, z, ..., vk  individual variables (k ≥ 0) 
=  2-place predicate (identity) 
S  1-place function (successor) 
+, ×  2-place functions (sum, product) 
∧, ∨, ¬, ⊃, ∀, ∃, (, ) connectives, quantifiers, punctuation 

The Alphabet of LN 

Semantics of LN:  Same as QLf. 

•  Intended domain of all q-valuations is the set of natural numbers. 
•  On this domain: 

- The q-value of the constant 0 is the number 0. 
- The q-value of = is the set of all 2-tuples of numbers of the form 〈m1, m2〉 where m1 = m2. 
- The q-value of S is the set of 2-tuples of numbers {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, ... }. 
- The q-value of + is the set of all 3-tuples of numbers of form 〈m1, m2, m3〉 where m1+m2 = m3. 
- The q-value of × is the set of all 3-tuples of numbers of form 〈m1, m2, m3〉 where m1×m2 = m3. 

Giuseppe Peano 



The axioms of N 

(N1)  ∀x¬(0 = Sx) 
(N2)  ∀x∀y(Sx = Sy ⊃ x = y) 
(N3)  ∀x(x + 0 = x) 
(N4)  ∀x∀y(x + y = S(x + y)) 
(N5)  ∀x(x × 0 = 0) 
(N6)  ∀x∀y(x × Sy = (x × y) + x) 
(N7)  ({ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(Sx)))} ⊃ ∀xϕ(x)),   for ϕ(x) an open wff with x free. 

•  Now:  Let's show that N is recursively axiomatizable. 
- Which means:  Its axioms can be encoded in recursive functions. 

•  (N7) is the Axiom of Mathematical Induction. 
- It says:  "For any property of natural numbers ϕ, if 0 has it, and if, for any number 

n, if n has it entails that the succesor of n has it, then all numbers have it." 

•  To do this, we'll first code the wffs and sequences of wffs of LN as numbers. 



Gödel Numbering 
•  Let the symbols in the alphabet of LN be encoded by numbers by: 

∧ ∨ ¬ ⊃ ∀ ∃ ( ) 0 = S + × x y z !

1 3 5 7 9 11 13 15 17 19 21 23 25 2 4 6 !

•  Let expression e in LN be the sequence of k+1 symbols s0, s1, ..., sk. 

Algorithm to go from an expression e to its Gödel number (g.n.) 

1.  Take the code number ci for each si. 

2.  Use ci as an exponent for the (i+1)th prime number πi. 

3.  Multiply the results to get π0
c0π1

c1π2
c2 ... πk

ck . 

•  S has g.n. 221. 
•  SS0 has g.n. 221321517. 

•  ∃y(SS + y) = SS0 has g.n. 211345137211121132317419152319292131213717! 

Algorithm to go from a g.n. to an expression e 
(i)  Calculate the (unique) prime factorization of the g.n. 
(ii)  Find the sequence of exponents of the prime factors. 



•  A proof in N can be written as a sequence of wffs, hence encoded in a g.n. 

Ex:  Algorithm for rewriting a tree proof as a linear sequence of wffs. 
(i)  List trunk wffs first. 
(ii)  At a fork, take left branch, and continue listing wffs that have not yet 

appeared in the sequence. 
(iii)  At the end of a branch, return to the last fork, take the right branch, 

and continue listing wffs. 
(iv)  Repeat (ii) and (iii) until all branches have been followed. 

Algorithm to go from a sequence of expressions e0, e1, ..., en to a g.n. 

1.  Calculate the g.n. of each ei. 

2.  Use gi as an exponent for the (i+1)th prime number πi. 

3.  Multiply the results to get π0
g0π1

g1π2
g2 ... πn

gn . 

Algorithm to go from a g.n. to a sequence of expressions 
(i)  Find the sequence of exponents of the prime factors of the g.n. 
(ii)  Treat these exponents as g.n.s and take their prime factors. 



•  Gödel numbers let us encode syntactic properties of the language LN in purely 
numerical properties of (relations between) of natural numbers. 

Claim 1:  All of the numerical relations in Table 1 are primitive recursive.  

Table 1:  Important Examples 

Syntactic property   Numerical relation 

Being a term of LN.  Term(n).  Holds just when n is the g.n. of a term of LN. 

Being an atomic wff of LN.  Atom(n).  Holds just when n is the g.n of an atomic wff of LN. 

Being a wff of LN.  Wff(n).  Holds just when n is the g.n. of a wff of LN. 

Being a closed wff of LN.  Sent(n).  Holds just when n is the g.n. of a closed wff of LN. 
Being an axiom of N.  Ax(n).  Holds just when n is the g.n. of an axiom of N. 

Being a proof in N.  Prf(m, n).  Holds just when m is the g.n. of a proof in N of the 
closed wff with g.n. n. 

•  To say Term(n) is primitive recursive is to say that there is a p.r. function that computes 
Term(n); i.e., that tells us, for a given n, if Term(n) holds. 

•  Idea:  To show this, we have to find p.r. functions that encode the algorithm that goes 
from a g.n. to an expression of LN, and we have to find p.r. functions that encode the 
algorithm that determines what a term is in LN. 

•  Note:  That Ax(n) is primitive recursive demonstrates that N is recursively axiomatizable. 

What this means: 



Expressibility in N 

A k-place numerical relation P is expressible in N just when there is a wff 
ϕ(v1, ..., vk) of LN with free occurances of v1, ..., vk, such that for any natural 
numbers n1, ..., nk, 

 if n1, ..., nk, stand in relation P to each other, then N ⊢ ϕ(n—1, ..., n
—

k), 

 if n1, ..., nk do not stand in relation P to each other, then N ⊢ ¬ϕ(n—1, ..., n
—

k). 

•  Let n— be shorthand for the term SSS...S0 in LN, where S occurs n-times. 

Ex.  The 1-place numerical relation ev(n) of being even is expressible in N. 

•  So:  To say Prf(m, n) is expressible in N is to say that there is a wff of LN, call it 
PF(x, y) which says "x is the g.n. of a proof in N of the wff with g.n. y", such that, for 
any numbers m, n: 

 if Prf(m, n) holds, then N ⊢ PF(m—, n—), 
 if Prf(m, n) does not hold, then N ⊢ ¬PF(m—, n—). 

Claim 2:  A numerical relation is primitive recursive if and only if it is expressible in N.  

•  The wff of LN that expresses this is ∃y(2 × y = x), where x occurs free. 
•  Which means:  For any natural number n, 

 if n is even, then N ⊢ ∃y(2 × v = n—), 
 if n is not even, then N ⊢ ¬∃y(2 × v = n—). 



The Gödel Sentence of N 

Def.  The 2-place numerical relation W(m, n) holds just when m is the g.n. of a 
proof in N of the wff ϕ(n—), obtained from the wff ϕ(y) (in which y occurs free) 
whose g.n. is n. 

•  Claim:  W(m, n) is primitive recursive. 
-  So:  There's a wff W(x, y) that expresses W(m, n) in N. 

Def:  The Gödel sentence G is the wff ∀x¬W(x, p—), where p is 
the g.n. of the wff U(y) =def ∀x¬W(x, y), in which y occurs free. 

Claim 1:  G is true if and only if it is unprovable in N. 

-  If G is true, then "There is no proof of G in N" is true; hence G is unprovable in N. 

But:  U(p—) is just G! 
So:  G says:  "There is no proof in N of G." 

G says:  "There is no number m such that m is the g.n. of a proof in N of U(p—)." 

-  If G is unprovable, then there is no m such that m is the g.n. of a proof in N of G; 
so G is true. 



Claim 2:  If N is sound, then N is not negation complete. 

•  Idea:  We will show that G is a wff of LN such that neither N ⊢ G nor N ⊢ ¬G. 

Suppose:  N is sound. 

•  Note:  This is a "semantic" proof of N's negation incompleteness (it relies on the notion 
of soundness). 

•  What about a purely "syntactic" proof of N's negation incompleteness? 

-  Then:  For any wff ϕ, if N # ϕ, then N $ ϕ.  "If ϕ is false, then ϕ is not provable." 
-  Now:  Suppose N ⊢ G.  Suppose G could be proved in N. 
-  Then:  N # G.  Since G is provable if and only if it is false 

(Claim 1.) 
-  So:  N $ G.  From soundness of N. 
-  Thus:  N " G.  Claim 1. 
-  So:  N # ¬G.  Or ¬G is false. 
-  So:  N $ ¬G.  From soundness of N. 
-  Thus:  G is a wff of LN such that neither N ⊢ G nor N ⊢ ¬G. 

Thus:  N is not negation complete. 



Suppose:  G is provable in N. Or N ⊢ ∀x¬W(x, p—). 

Claim 3:  If N is consistent, then there is a wff ϕ of LN such that N $ ϕ; 
and if N is ω-consistent, then N $ ¬ϕ. 

•  First:  Show that if N is consistent, then N $ G. 

-  Then:  There is a natural number m such 
that m is the g.n. of a proof in N of G. 

-  So: The 2-place numerical relation W(m, p) 
holds, where p is the g.n. of the wff U(y). 

Recall that U(p—) is G. 

-  So: N ⊢ W(m— , p—). Since W(m, n) is expressible in N. 

-  Now:  G entails ¬W(m— , p—). Universal instantiation. 

-  So:  Since N ⊢ G, we have N ⊢  ¬W(m— , p—). 

Thus:  N is inconsistent.  (There is a wff W(m— , p—) 
such that both it and its negation are theorems of N.) 



Suppose:  N is ω-consistent and ¬G is provable in N. 

Claim 3:  If N is consistent, then there is a wff ϕ of LN such that N $ ϕ; 
and if N is ω-consistent, then N $ ¬ϕ. 

Def:  A theory T with LN as its language is ω-inconsistent just when, for some 
open wff ϕ(x), T can prove each ϕ(m—) and T can also prove ¬∀xϕ(x) (i.e., ∃x¬ϕ(x)). 

•  Or:  T can prove ϕ for each natural number, and it can also prove ¬ϕ for some 
natural number. 

•  Now:  Show that if N is ω-consistent, then N $ ¬G. 

-  Now:  If N is ω-consistent, then it is consistent. 
-  So:  G is not provable. 
-  So:  For any number m, m is not the g.n. of a proof in N of G. 
-  So:  The 2-place numerical relation W(m, p) does not hold, 

where p is the g.n. of the wff U(y). 
-  Which means:  N ⊢ ¬W(m— , p—).  (Since W(m, n) is expressible in N.)  (**) 
-  Note:  (*) and (**) entail N is ω-inconsistent. 
Thus:  ¬G must be unprovable in N. 

-  Then:  N ⊢ ¬∀x¬W(x, p—).  Or:  N ⊢ ∃x¬¬W(x, p—).  (*) 

But:  Claim 3 still doesn't quite say, "If N is consistent, then N is negation complete." 



•  Can show the following: 

I.  If N is consistent, recursviely axiomatizable, and negation complete, 
then it is recursively decidable. 

Proof of (I).  Show how to construct a mechanical procedure that decides, for any wff ϕ 
of LN, whether ϕ is a theorem of N. 

Suppose:  N is consistent, recursively axiomatizable, and negation complete. 

-  Let ϕ be an arbitrary wff of LN. 

Note:  This is different from having 
a mechanical procedure that 
determines, for any ϕ, whether it 
will ever turn up in the list! 

II.  If N is consistent and recursively axiomatizable, then it is not 
recursively decidable. 

So:  If N is consistent and recursively axiomatizable, then it is not 
negation complete. 

-  For each number n, check all numbers m to see if 
Prf(m, n) holds. 

-  If it does hold, add the wff whose g.n. is n to the list. 

How to mechanically generate a list of N's theorems 

-  Generate a list of N's theorems.  Since N is recursively axiomatizable. 
-  Either ϕ or ¬ϕ must appear.  Because N is negation complete. 
-  If ϕ appears, then ϕ is a theorem. 
-  If ¬ϕ appears, then ϕ is not a theorem.  Because N is consistent. 



Proof of (II)  If N is consistent and recursively axiomatizable, then it is not recursively decidable. 

Suppose:  N is recursively decidable.  Then N is recursively axiomatizable. 
-  Now:  Show that N is not consistent. 

Proof:  The following is a mechanical procedure that decides if a number n has the property D: 
(i)  For any number n, check if ¬Pn(n

—) is a theorem of N (possible since N is recursively decidable). 
(ii)  If so, then D(n) holds. 

(iii) If not, then D(n) doesn't hold. 

1.  List all the 1-place recursive properties of numbers P0(n), P1(n), ... as recursive sets of numbers: 

 0  1  2  !"

0  no  yes  no  ! 

1  yes  yes  yes  ! 

2  no  yes  yes  ! 

#  #  #  #  $"

Each row represents the extension 
of the property labeled by that row: 
 Extension of P0 is {1, ...} 
 Extension of P1 = {0, 1, 2, ...} 
 Extension of P2 = {1, 2, ...}  

2.  Define a 1-place property D(n) by:  D(n) holds if and only if Pn(n) does not hold. 
 Or:  D(n) holds if and only if ¬Pn(n

—) is a theorem in N,  where Pn(x) expresses Pn(n) in N. 

3.  Claim:  D(n) is a recursive property, so it must be in the list, say D(n) = Pm(n). 



Proof of (II)  If N is consistent and recursively axiomatizable, then it is not recursively decidable. 

Suppose:  N is recursively decidable.  Then N is recursively axiomatizable. 
-  Now:  Show that N is not consistent. 

1.  List all the 1-place recursive properties of numbers P0(n), P1(n), ... as recursive sets of numbers: 

 0  1  2  !"

0  no  yes  no  ! 

1  yes  yes  yes  ! 

2  no  yes  yes  ! 

#  #  #  #  $"

Each row represents the extension 
of the property labeled by that row: 
 Extension of P0 is {1, ...} 
 Extension of P1 = {0, 1, 2, ...} 
 Extension of P2 = {1, 2, ...}  

4.  Question:  Does D(m) hold?   (Does the number m have the property D that it labels?) 

2.  Define a 1-place property D(n) by:  D(n) holds if and only if Pn(n) does not hold. 
 Or:  D(n) holds if and only if ¬Pn(n

—) is a theorem in N,  where Pn(x) expresses Pn(n) in N. 

3.  Claim:  D(n) is a recursive property, so it must be in the list, say D(n) = Pm(n). 

-  Now:  (a) and (c) entail that ¬Pm(m— ) is a theorem in N. 
-  So  (a) entails that D(m) holds. 
-  But:  (b) then entails that Pm(m— ) is a theorem in N. 
Thus:  There's a wff Pm(m— ) of LN such that both it and its negation are theorems in N. 

By definition of D. (a) D(m) holds if and only if ¬Pm(m— ) is a theorem in N. 

Because D(n) = Pm(n) is 
recursive, and hence expressible 
in N by the wff Pm(x)  

(b) If D(m) holds, then Pm(m— ) is a theorem in N. 

(c)  If D(m) doesn't hold, then ¬Pm(m— ) is a theorem in N. 


