
Chapter 36:  Functions 
•  Motivation:  Ultimately, to formulate simple arithmetic as a formal theory. 

Def. 1.  A function f : D → R is a map from one set of objects D to another 
R such that one or more objects in D get mapped to a unique object in R. 
-  Input (one or more objects in D) is called the argument of f. 
-  Output (unique object in R) is called the value of f. 

•  Math convention:  For function f, write "f (x) = y" to mean "f acting on x produces y". 
-  x is the single argument of f (element of D). 
-  y is the value of f (element of R). 

Examples. 
•  Age-in-years function. g : {people} → {integers} 

 g(Gwyneth) = 35 
•  Product function.  h : {integers} → {integers} 

 h(5, 7) = 35 
•  Square function.  s : {integers} → {integers} 

 s(5) = 25 
•  Material conditional function. ⊃ : {truth-values} → {truth-values} 
⊃(T, F) = F 



Def. 2.  Sense versus Extension 
•  The sense of a function f is the rule for correlating objects in D with an object in 

R that defines f. 
•  The extension of an n-place function f is the set of ordered (n+1)-tuples 

{〈argument, value〉, 〈 argument, value〉, ...} that the sense of f determines. 

Def. 3.  Total versus Partial Functions 
•  A total function has a value for all arguments from its domain. 
•  A partial function does not have a value for all arguments from its domain. 

Ex.  Square function.  s : {integers} → {integers}, s(x) = x2 

-  Sense:  Take an integer x and multiply it by itself. 
-  Extension:  {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, ...} 

Ex 1.  Square function.  s : {integers} → {integers}, s(x) = x2 

-  s is a total function.  It has a value x2 for any integer x in its domain. 
Ex 2.  Eldest-son-of function.  fesf : {humans} → {humans} 
-  fesf is a partial function.  It does not have a value for all arguments in its domain 

(some humans don't have an eldest son). 

•  Note:  Two functions can have different senses but same extension. 
-  (x + 1)2 and x2 + 2x + 1 



The Language QLf (an extension of QL=) 
Alphabet of QLf 

m, n, o, ..., ck  individual constants (k ≥ 0) 
w, x, y, z, ..., vk  individual variables (k ≥ 0) 
A, B, C, ..., P0

k  0-place predicates (propositional atoms) (k ≥ 0) 
F, G, H, ..., P1

k  1-place predicates (k ≥ 0) 
L, M, =, ..., P2

k  2-place predicates (k ≥ 0) 
!  !!
Pn

k  n -place predicates (k ≥ 0, n ≥ 0) 
f, g, h, ..., fnk  n -place functions (k ≥ 0, n > 0) 
∧, ∨, ¬, ⊃, ∀, ∃, (, ) connectives, quantifiers, punctuation 
∴ , ∗ argument symbols 

Term of QLf 
(T1f )  An individual constant or individual variable is a term of QLf. 
(T2f )  If fnk is a function symbol, and t1, ..., tn are terms of QLf, then fnk(t1, ..., tn) 

is a term of QLf. 
(T3f )  Nothing else is a term. 

Ex.  For 1-place function f, 2-place function g, the following are terms of QLf. 
f(n),   f(y),  g(m, n),   g(x, f(m)),   f(f(y)),   g(g(m, n), f(m)) 

A closed term of QLf is a term of that does not contain variables. 



Atomic wff of QLf 

(A1f )  If Pn
k is an n -place predicate symbol, n ≥ 0, and t1, ..., tn are terms of 

QLf, then Pn
kt1, ..., tn is an atomic wff of QLf. 

(A2f )  If t1, t2 are terms of QLf, then t1 = t2 is an atomic wff of QLf. 

(A2f )  Nothing else is an atomic wff of QLf. 

Ex.  For 2-place predicate L, the following are atomic wffs of QLf. 
Lxy,   Lxm,  Lmn,   Lmg(g(m, n), f(m)) 

Wff of QLf 
(W1f )  Any atomic wff of QLf is a wff of QLf. 
(W2f )  If A is a wff of QLf, so is ¬A. 
(W3f )  If A, B are wffs of QLf, so is (A ∧ B). 
(W4f )  If A, B are wffs of QLf, so is (A ∨ B). 
(W5f )  If A, B are wffs of QLf, so is (A ⊃ B). 
(W6f )  If A is a wff of QLf and v is a variable which occurs in A (but neither 

∀v nor ∃v occurs in A), then ∀vA is a wff of QLf. 
(W7f )  If A is a wff of QLf and v is a variable which occurs in A (but neither 

∀v nor ∃v occurs in A), then ∃vA is a wff of QLf. 
(W8f )  Nothing else is a wff of QLf.  



(a)  It assigns an object in a domain D to each of the closed terms in V. 

QLf Semantics 

•  Need to modify the semantics for QL= to allow for functions. 

The vocabulary V of a set of QLf wffs is the set of constants, 
predicates and functions that appear in those wffs. 

•  Recall:  The goal of a q-valuation is to set up an interpretation of a set of wffs with 
vocabulary V. 

•  It does this by the following: 

•  So:  For QLf, need to modify the definition of a q-valuation to include the parts of (a) 
and (b) that refer to functions. 

(b)  It assigns a set of n-tuples of objects in D to each predicate Pn
k in V and a 

set of (n+1)-tuples of objects in D to each function fnk in V. 
-  A set of n-tuples of objects is the extension of an n-place predicate, and 

a set of (n+1)-tuples of objects is the extension of an n-place function. 

-  The closed terms are the names of objects, and now include constants 
ck and functional expressions of the general form fnk(c1, ..., cn). 

•  Recall:  A q-valuation allows us to set up semantic rules that determine the truth-
values, relative to the q-valuation, for atomic wffs of our language, and thus for wffs. 



A q-valuation on a vocabulary V of a set of wffs of QLf 

(1)  specifies a non-empty set of objects as the domain D; 
(2)  assigns to any constant ck in V an object in D as its q-value; 
(3)  assigns a truth-value to any 0-place predicate P0

k in V as its q-value; 
(4)  assigns to any n-place predicate Pn

k in V, n > 0, a set of n-tuples of 
objects {〈m1, ..., mn〉, ...} in D as its q-value; 

(5)  assigns to any n-place function fnk in V a set of (n+1)-tuples of objects 
{〈argument, value〉, ... } in D as its q-value, such that 
(i)  for each n-tuple of objects 〈m1, ..., mn〉 in D, there is an (n+1)-tuple 

of objects 〈m1, ..., mn, o〉 in D; 
(ii)  the set contains no distinct pairs 〈m1, ..., mn, o〉 and 〈m1, ..., mn, o' 〉 

where o is different from o'; 

•  Note 1:  (5i) restricts our attention to total functions. 
•  Note 2:  (5ii) is required since a function must have a unique value for any given 

argument. 

(6)  assigns to any term of the form fnk(c1, ..., cn) in V the unique object o 
as its q-value, such that the (n+1)-tuple formed by taking the q-values 
of c1, ..., cn followed by o is an element of the q-value of fnk. 

•  Note 3:  Recall that an extended q-valuation is a q-valuation that also assigns objects 
to one or more variables.  For QLf, replace "variables" with "open terms". 



(Q0f )  If A is an atomic wff of QLf of the form Pn
kt1, ..., tn, where Pn

k is an n-place 
predicate and t1, ..., tn are terms of QLf, then 
(a)  if n = 0, then A ⇒q T if the q-value of A is T.  Otherwise A ⇒q F. 
(b)  If n > 0, then A ⇒q T if the n-tuple formed by taking the q-values of the terms 

in A in order is an element of the q-value of A.  Otherwise A ⇒q F. 
 If A is an atomic wff of QL= of the form t1 = t2, where t1, t2 are terms of QL=, then 
A ⇒q T if the q-values of the terms t1 and t2 are the same object. Otherwise A ⇒q F. 

The Semantic Rules for QLf 

(Q1f )  For any wff A, ¬A ⇒q T if A ⇒q F; otherwise ¬A ⇒q F. 
(Q2f )  For wffs A, B, (A ∧ B) ⇒q T if both A ⇒q T and B ⇒q T; otherwise (A ∧ B) ⇒q F. 
(Q3=)  For wffs A, B, (A ∨ B) ⇒q F if both A ⇒q F and B ⇒q F; otherwise (A ∨ B) ⇒q T. 
(Q4f )  For wffs A, B, (A ⊃ B) ⇒q F if A ⇒q T and B ⇒q F; otherwise (A ⊃ B) ⇒q T. 
(Q5f )  For wffs A, B, (A ≡ B) ⇒q T if A ⇒q T and B ⇒q T, or if A ⇒q F and B ⇒q F; 

otherwise (A ≡ B) ⇒q F. 
(Q6f )  For wff C(...v...v...) with variable v free, ∀vC(...v...v...) ⇒q T if C(...v...v...) ⇒q+ T 

for every v-variant q+ of q; otherwise ∀vC(...v...v...) ⇒q F. 
(Q7f )  For wff C(...v...v...) with variable v free, ∃vC(...v...v...) ⇒q T if C(...v...v...) ⇒q+ T 

for at least one v-variant q+ of q; otherwise ∃vC(...v...v...) ⇒q F. 

•  Same as for QL=. 



The Tree Rules for QLf 

•  Same as for QL=, but need to modify (∀') in order to allow instantiation with closed 
functional terms 

(∀'')  ∀vC(...v...v...) 
 | 

 C(...c...c...)  [c old or unprecedented] 

Add C(...c...c...) to an open path containing ∀vC(...v...v...), where c is 
either a closed term on that path that hasn't already been used to 
instantiate ∀vC(...v...v...), or c is a new closed term and there are no 
other closed terms appearing on that path.  Do not check it off. 



Functions and Functional Relations 

Def.  An (n+1)-place relation R on a domain for which every n-tuple of objects 
in D stands in R to one and only one object is called a functional relation. 

•  An n-place function and an (n+1)place functional relation can have the same 
extension. 

Ex.  Domain = {integers} 
•  Successor 1-place function.  suc : {integers} → {integers} 

-  Rule:  For any integer x, take its successor.  suc(x) is the successor of x. 
-  Extension:  {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, ... } 

•  Precedes 2-place functional relation.  "⎯⎯precedes⎯⎯" 
-  Extension:  {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, ... } 

Def.  A function f corresponds to a functional 
relation R just when they possess the same extension. 

•  If a function f corresponds to a functional relation R, then f(n) is the unique object x 
such that n stands in relation R to x. 

•  Note:  "The unique object x such that n stands in relation R to x" is a Russellian 
definite description! 

Ex.  Successor 1-place function corresponds to precedes 2-place functional relation. 
So:  suc(n) is the unique integer x such that n stands in the precedes relation to x. 



Russell's translation scheme for definite descriptions 

A sentence of the type "The F is G" is translated into QL= by the wff 

(R)  ∃v((Fv ∧ ∀w(Fw ⊃ w = v)) ∧ Gv) 

•  Claim:  Any expression in QLf with functions corresponds to a more complex 
expression in QL= with functions replaced by functional relations! 

Ex1.  The successor of 0 is odd. 
(a) In QLf:    Gf(n) 

Domain:  {integers} 
n ⇒ 0  G ⇒ ⎯⎯is odd  f ⇒ successor function 
m ⇒ 1  L ⇒ ⎯⎯precedes⎯⎯ 

(b) In QL=: 

The successor of 0 is odd. 
There's an integer such that zero precedes it, and there's only one, and 
that one is odd. 
There's an x such that Lnx, and for all y, Lny ⊃ y = x, and Gx. 
∃x((Lnx ∧ ∀y(Lny ⊃ y = x)) ∧ Gx) 

Translations 



Ex2.  There are integers whose successors are odd. 
(a) In QLf:    ∃zGf(z) 

Domain:  {integers} 
n ⇒ 0  G ⇒ ⎯⎯is odd  f ⇒ successor function 
m ⇒ 1  L ⇒ ⎯⎯precedes⎯⎯ 

(b) In QL=: 

For any integer, there's another that it precedes, and there's only one that it 
precedes, and that one is odd. 
There's a z such that there's an x such that Lzx, and for all y, Lzy ⊃ y = x, 
and Gx. 
∃z∃x((Lzx ∧ ∀y(Lzy ⊃ y = x)) ∧ Gx) 

Ex3.  The successor of 0 is 1. 
(a) In QLf:    f(n) = m 

(b) In QL=: 

There's an integer such that 0 precedes it, and there's only one, and that 
one is 1. 
There's an x such that Lnx, and for all y, Lny ⊃ y = x, and x = m. 
∃x((Lnx ∧ ∀y(Lny ⊃ y = x)) ∧ x = m) 



Domain:  {integers} 
n ⇒ 0  G ⇒ ⎯⎯is odd  f ⇒ successor function 
m ⇒ 1  L ⇒ ⎯⎯precedes⎯⎯ 

Ex4.  Every odd integer has 1 as its successor. 
(a) In QLf:    ∀z(Gz ⊃ f(z) = m) 

(b) In QL=: 

For any integer, if it's odd, then there's another that it precedes, and there's 
only one, and it is 1. 
For all z, if Gz then there's an x such that Lzx and for all y, Lzy ⊃ y = x, 
and x = m. 
∀z(Gz ⊃ ∃x((Lzx ∧ ∀y(Lzy ⊃ y = x)) ∧ x = m)) 



Domain:  {integers} 
n ⇒ 0  G ⇒ ⎯⎯is odd  f ⇒ successor function 
m ⇒ 1  L ⇒ ⎯⎯precedes⎯⎯  h ⇒ sum function 

 S ⇒ ⎯⎯+⎯⎯=⎯⎯ 

Ex5.  The sum of any two integers x, y is equal to the sum of the integers y, x.  
(Addition of integers is symmetric.) 

(a) In QLf:    ∀x∀y(h(x, y) = h(y, x)) 

(b) In QL=: 

For any two integers, there's another that is the sum of the first two, and there's only 
one such, and there's yet another integer that is the sum of the first two in reverse 
order, and there's only one of these, and these last two integers are the same. 
For all x, y, there's a v1 such that Sxyv1, and for all z, Sxyz ⊃ z = v1, and there's a 
v2 such that Syxv2, and for all z, Syxz ⊃ z = v2, and v2 = v1. 

∀x∀y∃v1{(Sxyv1 ∧ ∀z(Sxyz ⊃ z = v1)) ∧ 
 ∃v2[(Syxv2 ∧ ∀z(Syxz ⊃ z = v2)) ∧ v2 = v1]} 


