Chapter 34: Definite Descriptions

A <u>definite description</u> is a phrase that doesn't contain a name and that aims to designate a *particular thing*.

<u>Ex.</u>	"The Queen of England"	(vs. "Elizabeth")
	"The smallest prime number"	(<i>vs.</i> "1")
	"The trombone in my basement"	(vs. "Grontor")

Attributing properties to a particular thing using definite descriptions

<u>Russell's translation scheme</u> A sentence of the type "The F is G" is translated into $\mathbf{QL}^{=}$ by the wff (R) $\exists v((Fv \land \forall w(Fw \supset w = v)) \land Gv)$

<u>*Ex1.*</u> "The present king of France is bald." True or false?

<u>*Ex3.*</u> "The president of the U.S. is a grandparent."

 $F \Rightarrow$ _____is a president of the U.S. $G \Rightarrow$ _____is a grandparent

<u>*Ex2.*</u> "The book in Dibner is a logic text."

More Translations:

$b \Rightarrow Bryn$	$G \Rightarrow \is a girl$
$m \Rightarrow Mrs. Jones$	$L \Rightarrow __loves___$
$F \Rightarrow _\{speaks Welsh}$	$M \Rightarrow$ is taller than

<u>Ex1</u>. The Welsh speaker who loves Mrs. Jones is taller than her. There's a Welsh speaker who loves Mrs. Jones, and there's only one, and that one is taller than her. <u>There's an x such that Fx ∧ Lxm</u>, and <u>for all y, (Fy ∧ Lym) ⊃ y = x</u>, and <u>Mxm</u>. $\exists x(((Fx \land Lxm) \land \forall y((Fy \land Lym) ⊃ y = x)) \land Mxm)$

- <u>Ex2</u>.Bryn loves the girl who loves him.There's a girl who loves Bryn, and there's only one, and Bryn loves her.<u>There's an x such that $Gx \land Lxb$, and for all y, $(Gy \land Lyb) \supset y = x$, and <u>Lbx</u>. $\exists x(((Gx \land Lxb) \land \forall y((Gy \land Lyb) \supset y = x)) \land Lbx)$ </u>
- *<u>Ex3</u>.* Bryn only loves the girl who loves him. Bryn loves the girl who loves him (the x-girl), and for any other girl z, if Bryn loves z, then z is the x-girl. $\exists x((((Gx \land Lxb) \land \forall y((Gy \land Lyb) \supset y = x)) \land Lbx) \land \forall z((Gz \land Lbz) \supset z = x))$

<u>More Translations</u>:

$b \Rightarrow Bryn$	$G \Rightarrow __$ is a girl
$m \Rightarrow Mrs.$ Jones	$L \Rightarrow __loves___$
$F \Rightarrow _\{speaks Welsh}$	$M \Rightarrow$ is taller than

 $\underline{Ex4}$. The tallest girl speaks Welsh.

- (a) <u>x is a tallest girl:</u> x is a girl such that she is taller than all other girls $Gx \land \forall y((Gy \land \neg y = x) \supset Mxy)$
- (b) $\underline{\mathbf{x}}$ is the tallest girl:

 $\begin{array}{l} x \ {\rm is \ a \ tallest \ girl, \ and \ for \ any \ other \ tallest \ girl \ z, \ z = x \\ \exists x \{ (Gx \land \forall y ((Gy \land \neg y = x) \supset Mxy)) \\ \land \forall z [(Gz \land \forall v ((Gv \land \neg v = z) \supset Mzv) \supset z = x] \} \end{array}$

There is an \mathbf{X} , such that $\underline{\mathbf{X}}$ is the tallest girl and $\underline{\mathbf{X}}$ speaks Welsh.

$$\begin{aligned} \exists x \{ \{ (Gx \land \forall y ((Gy \land \neg y = x) \supset Mxy)) \\ \land \forall z [(Gz \land \forall v ((Gv \land \neg v = z) \supset Mzv) \supset z = x] \} \land Fx \} \end{aligned}$$

Chapter 35: $QL^{=}$ Trees

New Tree Rule:

(L) Suppose W_1 is of the form $C(\dots m \dots)$ with one or more occurrences of the constant m, and W_2 is either of the form m = n or n = m. Then we can add a *wff* $C(\dots n \dots)$, formed by substituting some or all occurrences of m in W_1 by occurrences of n, to any open branch containing both W_1 and W_2 . Do not check off W_1 and W_2 .

$$C(\dots m \dots)$$

$$m = n \text{ or } n = m$$

$$|$$

$$C(\dots n \dots)$$

- (L) takes two *wffs* as input (compare with other tree rules).
- C(...n..) need not involve substituting all occurrences of m in C(...m...) with n.

<u>Ex1</u> .	$(Fm\wedge\forall x(Fx\supset x=m))$	$,(Fn\wedgeGn)\mathrel{.}^{\cdot}Gm$	Only Russell is a great philosopher.
			Bertie is a great philosopher who smokes. So Russell smokes.
(1)	$(Fm \land \forall x(Fx \supset x = r))$	n)) 🗸	
(2)	$(Fn \land Gn) \checkmark$		
(3)	−Gm		
(4)	Fm		(b) on 1.
(5)	$\forall x(Fx \supset x = m)$		
(6)	Fn		(b) on 2.
(7)	Gn		
(8)	$(Fn \supset n = m) \checkmark$		$(\forall') \text{ on } 5, \mathbf{n/x}$
		<u> </u>	
(9)	−Fn	n = m	(g) on 8.
(10)	*	Gm	(L) on 7, 9.
		*	

<u>Ex2</u> .	$m = n, n = o \therefore m = o$	George is Mr. Orwell. Mr. Orwell is Eric Blair.	
(1)	m = n	So George is Eric Blair.	
(2)	n = o		
(3)	$\neg m = o$		
(4)	m = o		(L) on $1, 2$.
	*		

<u>Ex3</u> .	Show that transitivity of the identity relation $\forall x \forall y \forall z((x = y \land y = z) \supset x = z)$	n is a q -logical truth.
(1)	$\neg \forall x \forall y \forall z ((x = y \land y = z) \supset x = z) \checkmark$	
(2)	$\exists x \neg \forall y \forall z ((x = y \land y = z) \supset x = z) \checkmark$	$(\neg \forall)$ on 1.
(3)	$\neg \forall y \forall z ((m = y \land y = z) \supset m = z) \checkmark $	$(\exists) \text{ on } 2, \mathbf{m/x}.$
(4)	$\exists y \neg \forall z ((m = y \land y = z) \supset m = z) \checkmark $	$(\neg \forall)$ on 3.
(5)	$\neg \forall z ((m=n \wedge n=z) \supset m=z) \ \checkmark$	$(\exists) \text{ on } 4, \mathbf{n/y}.$
(6)	$\exists z \neg ((m = n \land n = z) \supset m = z) \ \checkmark$	$(\neg \forall)$ on 5.
(7)	$\neg ((m = n \land n = o) \supset m = o) \ \checkmark$	$(\exists) \text{ on } 6, \mathbf{0/z}.$
$(8) \\ (9)$	$(\mathbf{m} = \mathbf{n} \land \mathbf{n} = \mathbf{o}) \checkmark$ $\neg \mathbf{m} = \mathbf{o}$	(d) on 7.
(10)	m = n	(b) on 8.
(11)	n = o	
(12)	m = o	(L) on 10, 11.
	*	

Modification to Tree Construction Algorithm

If a path in a tree contains two wffs of the form A, $\neg A$, or a *wff* of the form $\neg c = c$, where c is a constant, then close the path with the symbol *.

<u>Ex4</u>. Show that reflexivity of the identity relation is a q-logical truth. $\forall xx = x$

(1) $\neg \forall \mathbf{x} \mathbf{x} = \mathbf{x} \checkmark$ (2) $\exists \mathbf{x} \neg \mathbf{x} = \mathbf{x} \checkmark$ $(\neg \forall) \text{ on } 1.$ (3) $\neg \mathbf{a} = \mathbf{a}$ $(\exists) \text{ on } 2.$

*

<u>*Ex5.*</u> Show that symmetry of the identity relation is a *q*-logical truth. $\forall \mathbf{x} \forall \mathbf{y} (\mathbf{x} = \mathbf{y} \supset \mathbf{y} = \mathbf{x})$

(1)
$$\neg \forall x \forall y (x = y \supset y = x) \checkmark$$

(2) $\exists x \neg \forall y (x = y \supset y = x) \checkmark$ $(\neg \forall) \text{ on } 1.$
(3) $\neg \forall y (a = y \supset y = a) \checkmark$ $(\exists) \text{ on } 2, a/x.$
(4) $\exists y \neg (a = y \supset y = a) \checkmark$ $(\neg \forall) \text{ on } 3.$
(5) $\neg (a = b \supset b = a) \checkmark$ $(\exists) \text{ on } 4, b/y.$
(6) $a = b$ $(d) \text{ on } 5.$
(7) $\neg b = a$
(8) $\neg b = b$ $(L) \text{ on } 6, 7.$