Chapter 34: Definite Descriptions

A definite description is a phrase that doesn't contain a name and that aims to designate a particular thing.

$\underline{E x .}$	"The Queen of England"	(vs. "Elizabeth")
	"The smallest prime number"	$($ vs. "1")
	"The trombone in my basement"	(vs. "Grontor")

Attributing properties to a particular thing using definite descriptions

```
Russell's translation scheme
A sentence of the type "The \(F\) is \(G^{\prime \prime}\) is translated into \(\mathbf{Q L}=\) by the wff
(R) \(\exists v((F v \wedge \forall w(F w \supset w=v)) \wedge G v)\)
```

Ex1. "The present king of France is bald." True or false?
$\mathrm{F} \Rightarrow \quad$ is a present king of France $\quad \mathrm{G} \Rightarrow \quad$ is bald
$\exists x((F x \wedge \forall y(F y \supset y=x)) \wedge G x)$

Ex2. "The book in Dibner is a logic text."
$\mathrm{F} \Rightarrow \quad$ is a book in Dibner $\quad \mathrm{G} \Rightarrow$ _ is a logic text $^{\text {_ }}$
$\exists x((F x \wedge \forall y(F y \supset y=x)) \wedge G x)$

There is a book in Dibner.

false!
Ex3. "The president of the U.S. is a grandparent."

$$
\mathrm{F} \Rightarrow \quad \text { is a president of the U.S. } \quad \mathrm{G} \Rightarrow \quad \text { is a grandparent }
$$

$\mathrm{b} \Rightarrow$ Bryn	$\mathrm{G} \Rightarrow \quad$ is a girl
$\mathrm{m} \Rightarrow$ Mrs. Jones	$\mathrm{L} \Rightarrow \quad$ _loves
$\mathrm{F} \Rightarrow \quad$ speaks Welsh	$\mathrm{M} \Rightarrow \quad$ is taller than_______

Ex1. The Welsh speaker who loves Mrs. Jones is taller than her.
There's a Welsh speaker who loves Mrs. Jones, and there's only one, and that one is taller than her.

There's an x such that $F x \wedge L x m$, and for all y, $(F y \wedge L y m) \supset y=x$, and $M x m$.
$\exists x(((\mathrm{Fx} \wedge \mathrm{Lxm}) \wedge \forall \mathrm{y}((\mathrm{Fy} \wedge \mathrm{Lym}) \supset \mathrm{y}=\mathrm{x})) \wedge \mathrm{Mxm})$
Ex2. Bryn loves the girl who loves him.
There's a girl who loves Bryn, and there's only one, and Bryn loves her.
There's an x such that $G x \wedge L x b$, and for all $y,(G y \wedge L y b) \supset y=x$, and $L b x$.
$\exists x(((G x \wedge L x b) \wedge \forall y((G y \wedge L y b) \supset y=x)) \wedge L b x)$
Ex3. Bryn only loves the girl who loves him.
Bryn loves the girl who loves him (the \mathbf{x}-girl), and for any other girl \mathbf{z}, if Bryn loves \mathbf{z}, then \mathbf{z} is the \mathbf{x}-girl.
$\exists x((($ Gx $\wedge \mathrm{Lxb}) \wedge \forall \mathrm{y}((\mathrm{Gy} \wedge \mathrm{Lyb}) \supset \mathrm{y}=\mathrm{x})) \wedge \mathrm{Lbx}) \wedge \forall \mathrm{z}((\mathrm{Gz} \wedge \mathrm{Lbz}) \supset \mathrm{z}=\mathrm{x}))$

More Translations:

$\mathrm{B} \Rightarrow$ Bryn	$\mathrm{G} \Rightarrow \quad$ is a girl
$\mathrm{m} \Rightarrow$ Mrs. Jones	$\mathrm{L} \Rightarrow \quad$ _loves
$\mathrm{F} \Rightarrow \quad$ speaks Welsh	$\mathrm{M} \Rightarrow \quad$ is taller than______

Ex4. The tallest girl speaks Welsh.
(a) \underline{x} is a tallest girl:
x is a girl such that she is taller than all other girls

$$
G x \wedge \forall y((G y \wedge \neg y=x) \supset M x y)
$$

(b) \underline{x} is the tallest girl:
\mathbf{x} is a tallest girl, and for any other tallest girl $\mathbf{z}, \mathbf{z}=\mathbf{x}$
$\exists x\{(G x \wedge \forall y((G y \wedge \neg y=x) \supset M x y))$

$$
\wedge \forall \mathrm{z}[(\mathrm{Gz} \wedge \forall \mathrm{v}((\mathrm{Gv} \wedge \neg \mathrm{v}=\mathrm{z}) \supset \mathrm{Mzv}) \supset \mathrm{z}=\mathrm{x}]\}
$$

$$
\begin{aligned}
& \exists x\{\{(G x \wedge \forall y((G y \wedge \neg y=x) \supset M x y)) \\
& \\
& \quad \wedge \forall z[(G z \wedge \forall v((G v \wedge \neg v=z) \supset M z v) \supset z=x]\} \wedge F x\}
\end{aligned}
$$

Chapter 35: QL $^{=}$Trees

New Tree Rule:
(L) Suppose W_{1} is of the form $C(\ldots m \ldots)$ with one or more occurrences of the constant m, and W_{2} is either of the form $m=n$ or $n=m$. Then we can add a wff $C(\ldots n \ldots)$, formed by substituting some or all occurrences of m in W_{1} by occurrences of n, to any open branch containing both W_{1} and W_{2}. Do not check off W_{1} and W_{2}.

$$
\begin{gathered}
C(\ldots m \ldots) \\
m=n \text { or } n=m \\
\mid \\
C(\ldots n \ldots)
\end{gathered}
$$

- (L) takes two wffs as input (compare with other tree rules).
- $C(\ldots n . .$.$) need not involve substituting all occurrences of m$ in $C(\ldots m . .$.$) with n$.

Ex1. $\quad(\mathrm{Fm} \wedge \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{x}=\mathrm{m})),(\mathrm{Fn} \wedge \mathrm{Gn}) \therefore \mathrm{Gm}$
(10)
$(F m \wedge \forall x(F x \supset x=m)) \checkmark$
$(F n \wedge G n) \checkmark$
$\neg \mathrm{Gm}$
Fm
$\forall x(F x \supset x=m)$
Fn
Gn

Gm
(b) on 1 .
(b) on 2 .
$\left(\forall^{\prime}\right)$ on $5, \mathrm{n} / \mathrm{x}$
(g) on 8 .
(L) on 7, 9 .

Ex2. $\mathrm{m}=\mathrm{n}, \mathrm{n}=\mathrm{o} \therefore \mathrm{m}=\mathrm{o}$	George is Mr. Orwell. Mr. Orwell is Eric Blair. So George is Eric Blair.
(1)	$\mathrm{m}=\mathrm{n}$
(2)	$\mathrm{n}=\mathrm{o}$
(3)	$\neg \mathrm{m}=\mathrm{o}$
(4)	$\mathrm{m}=\mathrm{o}$
	$*$

(L) on 1,2 .

Ex3. Show that transitivity of the identity relation is a q-logical truth.

$$
\forall x \forall y \forall z((x=y \wedge y=z) \supset x=z)
$$

(1) $\quad \neg \forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}((\mathrm{x}=\mathrm{y} \wedge \mathrm{y}=\mathrm{z}) \supset \mathrm{x}=\mathrm{z}) \checkmark$
(2) $\quad \exists \mathrm{x} \neg \forall \mathrm{y} \forall \mathrm{z}((\mathrm{x}=\mathrm{y} \wedge \mathrm{y}=\mathrm{z}) \supset \mathrm{x}=\mathrm{z}) \checkmark$
(3) $\quad \neg \forall \mathrm{y} \forall \mathrm{z}((\mathrm{m}=\mathrm{y} \wedge \mathrm{y}=\mathrm{z}) \supset \mathrm{m}=\mathrm{z}) \checkmark$
(4) $\quad \exists \mathrm{y} \neg \mathrm{Z}((\mathrm{m}=\mathrm{y} \wedge \mathrm{y}=\mathrm{z}) \supset \mathrm{m}=\mathrm{z}) \checkmark$
(5) $\quad \neg \forall \mathrm{z}((\mathrm{m}=\mathrm{n} \wedge \mathrm{n}=\mathrm{z}) \supset \mathrm{m}=\mathrm{z}) \checkmark$
(6) $\quad \exists \mathrm{z} \neg((\mathrm{m}=\mathrm{n} \wedge \mathrm{n}=\mathrm{z}) \supset \mathrm{m}=\mathrm{z}) \checkmark$
(7) $\quad \neg((\mathrm{m}=\mathrm{n} \wedge \mathrm{n}=\mathrm{o}) \supset \mathrm{m}=0) \quad \checkmark$

$$
\begin{gather*}
(\mathrm{m}=\mathrm{n} \wedge \mathrm{n}=\mathrm{o}) \tag{8}\\
\neg \mathrm{m}=\mathrm{o} \tag{9}\\
\mathrm{~m}=\mathrm{n} \tag{10}\\
\mathrm{n}=\mathrm{o} \tag{11}\\
\mathrm{~m}=\mathrm{o} \tag{12}
\end{gather*}
$$

$(\neg \forall)$ on 1 .
(\exists) on $2, \mathrm{~m} / \mathrm{x}$.
$(\neg \forall)$ on 3.
(\exists) on $4, \mathrm{n} / \mathrm{y}$.
$(\neg \forall)$ on 5.
(\exists) on $6, \mathrm{o} / \mathrm{z}$.
(d) on 7 .
(b) on 8 .
(L) on 10,11 .

If a path in a tree contains two wffs of the form $A, \neg A$, or a $w f f$ of the form $\neg c=c$, where c is a constant, then close the path with the symbol $*$.

Ex4. Show that reflexivity of the identity relation is a q-logical truth.

$$
\forall \mathrm{xx}=\mathrm{x}
$$

(1) $\quad \neg \forall \mathrm{xx}=\mathrm{x} \checkmark$
(2) $\quad \exists \mathrm{x} \neg \mathrm{x}=\mathrm{x} \checkmark$
(3) $\quad \neg \mathrm{a}=\mathrm{a}$
$(\neg \forall)$ on 1 .
(\exists) on 2 .

Ex5. Show that symmetry of the identity relation is a q-logical truth.

$$
\forall x \forall y(x=y \supset y=x)
$$

(1) $\quad \neg \forall \mathbf{x} \forall \mathrm{y}(\mathrm{x}=\mathrm{y} \supset \mathrm{y}=\mathrm{x})^{\checkmark}$
(2) $\quad \exists \mathrm{x} \neg \mathrm{y}(\mathrm{x}=\mathrm{y} \supset \mathrm{y}=\mathrm{x})^{\checkmark}$
$(\neg \forall)$ on 1 .
(3) $\quad \neg \forall \mathrm{y}(\mathrm{a}=\mathrm{y} \supset \mathrm{y}=\mathrm{a})^{\checkmark}$
(\exists) on $2, \mathrm{a} / \mathrm{x}$.
(4) $\exists \mathrm{y} \neg(a=y \supset \mathrm{y}=\mathrm{a}) \checkmark$

$$
(\neg \forall) \text { on } 3 .
$$

(5) $\quad \neg(\mathrm{a}=\mathrm{b} \supset \mathrm{b}=\mathrm{a})^{\checkmark}$

$$
\begin{gather*}
\mathrm{a}=\mathrm{b} \tag{6}\\
\neg \mathrm{~b}=\mathrm{a} \tag{7}
\end{gather*}
$$

(\exists) on $4, \mathrm{~b} / \mathrm{y}$.
(d) on 5 .

$$
\begin{equation*}
\neg b=b \tag{8}
\end{equation*}
$$

(L) on 6,7 .

Ex6. $\quad \exists \mathrm{x}((\mathrm{Fx} \wedge \forall \mathrm{y}(\mathrm{Fy} \supset \mathrm{y}=\mathrm{x})) \wedge \mathrm{Gx}), \mathrm{Fm} \therefore \mathrm{Gm}$

The present king of France is bald. Louie is the present king of France. So Louie is bald.

$$
\begin{equation*}
\exists x((F x \wedge \forall y(F y \supset y=x)) \wedge G x)^{\checkmark} \tag{1}
\end{equation*}
$$

Fm
$\neg \mathrm{Gm}$
(\exists) on $1, \mathrm{a} / \mathrm{x}$.
(b) on 4 .
(b) on 5 .
$\left(\forall^{\prime}\right)$ on $8, \mathrm{~m} / \mathrm{y}$.
(g) on 9 .
(L) on 3, 10 .

