Chapter 32: Identity

Let R be a two-place relation and suppose a, b, c are objects that stand in it.

<u>Def 1</u> .	R is	$\underline{transitive}$ just when, if a has	
R to b ,	and	b has R to c , then a has R to c .	

 \underline{Exs} . _____is heavier than_____

___is an ancestor of___

<u>Def 2</u>. R is <u>symmetric</u> just when, if a has R to b, then b has R to a.

<u>Exs</u>. ____is married to_____ ___is adjacent to_____

<u>Def 3</u>. R is <u>reflexive</u> just when, for any a, a has R to a.

<u>Exs</u>. ____has a parent in common with_____

 $__{is as tall as}_{_}$

<u>Def 4</u>. An <u>equivalence relation</u> is a relation that is transitive, symmetric, and reflexive.

 \underline{Exs} . ______is the same age as______

___has the same last name as____

Let A be a domain of objects and let R be an equivalence relation defined on A.

<u>*Then:*</u> (1) Every object in A is R to something (reflexivity).

<u>Suppose</u>: a stands in R to b and a stands in R to c.

- <u>Then</u>: b stands in R to a (symmetry).
- <u>And</u>: b stands in R to c (transitivity).
- <u>So</u>: (2) If a stands in R to two things, then they stand in R to each other.
- Thus:R carves up the domain into non-overlapping groups (called"equivalence classes") that all stand in R to each other.
 - <u>*Ex1*</u>. Domain = {U.S. citizens}

R means _____has the same last name as_____

- Everyone is in an equivalence class.
- No one is in more than one equivalence class.

<u>*Ex2*</u>. Domain = {positive integers}

R means _____differs by a multiple of 3 from_____

Three equivalence classes:

 $\{0,\,3,\,6,\,9,\,\ldots\},\,\{2,\,5,\,8,\,11,\,\ldots\},\,\{1,\,4,\,7,\,10,\,\ldots\}$

<u>Claim</u>: The identity relation is the equivalence relation that partitions a domain into the smallest equivalence classes.

1. <u>Reflexivity</u>: For any a, a = a. <u>Ex.</u> Clark Kent = Clark Kent.

2. <u>Symmetry</u>: For any a and b, if a = b, then b = a.

<u>Ex</u>. If Clark Kent = Superman, then Superman = Clark Kent.

3. <u>Transitivity</u>: For any a, b, c, if a = b, and b = c, then a = c.

<u>Ex</u>. If Clark Kent = Superman, and Superman = the Superhero from Krypton, then <math>Clark Kent = the Superhero from Krypton.

• For any domain on which = is defined, the equivalence classes all consist of single elements.

Leibniz's Law (Indiscernibility of Identicals)

(LL) If a and b are identical, then whatever property a has, b has.

• True for the identity relation.

Identity of Indiscernibles

(IdIn) If a and b share all the same properties, then a and b are identical.

• Truth depends on the nature of the properties.

<u>*Ex1*</u>. Two peas in a pod.

- Share all monadic properties but differ on relational properties.

 $\underline{Ex2}$. Two peas in an empty universe.

- Share all monadic and relational properties, excluding spatiotemporal ones.
- If spatiotemporal properties are relational, then peas agree on these, too.
- If spatiotemporal properties are absolute, then whether or not the peas agree on them depends on the global topology of spacetime!

closed global topology

open global topology

Chapter 33: The Language $QL^=$

- <u>Goal</u>: Add identity to **QL**.
- <u>Convention</u>: Use "=" to designate the 2-place identity relation. Write "n is identical to m" as "n = m" and not "=nm"

<u>Alphabet of $QL^{=}$ </u>

m, n, o, ..., c_k w, x, y, z, ..., v_k A, B, C, ..., P⁰_k F, G, H, ..., P¹_k L, M, =, ..., P²_k ⋮ Pⁿ_k ∧, ∨, ¬, ⊃, ∀, ∃, (,) ∴, * individual constants $(k \ge 0)$ individual variables $(k \ge 0)$ 0-place predicates (propositional atoms) $(k \ge 0)$ 1-place predicates $(k \ge 0)$ 2-place predicates $(k \ge 0)$

n-place predicates $(k \ge 0, n \ge 0)$ connectives, quantifiers, punctuation argument symbols

Term of $QL^=$

 $(T1^{=})$ An individual constant or individual variable is a term of $QL^{=}$.

 $(T2^{=})$ Nothing else is a term.

Atomic wff of QL=

- (A1⁼) If P^{n}_{k} is an *n*-place predicate symbol, $n \geq 0$, and $t_{1}, ..., t_{n}$ are terms of $\mathbf{QL}^{=}$, then $\mathsf{P}^{n}_{k}t_{1}, ..., t_{n}$ is an atomic *wff* of $\mathbf{QL}^{=}$.
- (A2⁼) If t_1 , t_2 are terms of $\mathbf{QL}^=$ then $t_1 = t_2$ is an atomic wff of $\mathbf{QL}^=$.
- (A3⁼) Nothing else is an atomic wff of $\mathbf{QL}^{=}$.

Wff of $QL^=$

- (W1⁼) Any atomic wff of $\mathbf{QL}^{=}$ is a wff of $\mathbf{QL}^{=}$.
- (W2⁼) If A is a wff of $\mathbf{QL}^{=}$, so is $\neg A$.
- (W3⁼) If A, B are wffs of $\mathbf{QL}^{=}$, so is $(A \wedge B)$.
- (W4⁼) If A, B are wffs of $\mathbf{QL}^{=}$, so is $(A \lor B)$.
- (W5⁼) If A, B are wffs of $\mathbf{QL}^{=}$, so is $(A \supset B)$.
- (W6⁼) If A is a wff of $\mathbf{QL}^{=}$ and v is a variable which occurs in A (but neither $\forall v \text{ nor } \exists v \text{ occurs in } A$), then $\forall vA$ is a wff of $\mathbf{QL}^{=}$.
- (W7⁼) If A is a wff of $\mathbf{QL}^{=}$ and v is a variable which occurs in A (but neither $\forall v \text{ nor } \exists v \text{ occurs in } A$), then $\exists vA$ is a wff of $\mathbf{QL}^{=}$.
- (W8⁼) Nothing else is a *wff* of $\mathbf{QL}^{=}$.

$QL^{=}$ Semantics

<u>A q-valuation on a vocabulary V of a set of wffs of $QL^{=}$ </u>

- (1) specifies a non-empty set of objects as the domain D;
- (2) assigns to any constant \mathbf{c}_k in V an object in D as its q-value;
- (3) assigns a truth-value to any 0-place predicate P_{k}^{0} in V as its q-value;
- (4) assigns to any *n*-place predicate P^{n}_{k} in V, n > 0, a set of *n*-tuples of objects $\{\langle m_{1}, ..., m_{n} \rangle, ...\}$ in D as its *q*-value;

<u>The Semantic Rules for $QL^{=}$ </u>

(Q0⁼) If A is an atomic wff of QL⁼ of the form Pⁿ_kt₁, ..., t_n, where Pⁿ_k is an n-place predicate and t₁, ..., t_n are terms of QL⁼, then
(a) if n = 0, then A ⇒_q T if the q-value of A is T. Otherwise A ⇒_q F.
(b) If n > 0, then A ⇒_q T if the n-tuple formed by taking the q-values of the terms in A in order is an element of the q-value of A. Otherwise A ⇒_q F. If A is an atomic wff of QL⁼ of the form t₁ = t₂, where t₁, t₂ are terms of QL⁼,

then $A \Rightarrow_q T$ if the q-values of the terms t_1 and t_2 are the same object. Otherwise $A \Rightarrow_q F$.

$(Q1^{=})$	For any wff A , $\neg A \Rightarrow_q T$ if $A \Rightarrow_q F$; otherwise $\neg A \Rightarrow_q F$.
$(Q2^{=})$	For wffs $A, B, (A \land B) \Rightarrow_q T$ if both $A \Rightarrow_q T$ and $B \Rightarrow_q T$; otherwise $(A \land B) \Rightarrow_q F$.
$(Q3^{=})$	For wffs $A, B, (A \lor B) \Rightarrow_q F$ if both $A \Rightarrow_q F$ and $B \Rightarrow_q F$; otherwise $(A \lor B) \Rightarrow_q T$.
$(Q4^{=})$	For wffs A, B, $(A \supset B) \Rightarrow_q F$ if $A \Rightarrow_q T$ and $B \Rightarrow_q F$; otherwise $(A \supset B) \Rightarrow_q T$.
$(Q5^{=})$	For wffs A, B, $(A \equiv B) \Rightarrow_q T$ if $A \Rightarrow_q T$ and $B \Rightarrow_q T$, or if $A \Rightarrow_q F$ and $B \Rightarrow_q F$; otherwise $(A \equiv B) \Rightarrow_q F$.
$(Q6^{=})$	For wff $C(vv)$ with variable v free, $\forall vC(vv) \Rightarrow_q T$ if $C(vv) \Rightarrow_{q^+} T$ for every v -variant q^+ of q ; otherwise $\forall vC(vv) \Rightarrow_q F$.
$(Q7^{=})$	For wff $C(vv)$ with variable v free, $\exists v C(vv) \Rightarrow_q T$ if $C(vv) \Rightarrow_{q^+} T$ for at least one v -variant q^+ of q ; otherwise $\exists v C(vv) \Rightarrow_q F$.

<u><i>Claim</i></u> : The following are q -logical truths in $\mathbf{QL}^=$.				
(1) $\forall \mathbf{x} \mathbf{x} = \mathbf{x}$	(reflexivity)			
(2) $\forall \mathbf{x} \forall \mathbf{y} (\mathbf{x} = \mathbf{y} \supset \mathbf{y} = \mathbf{x})$	(symmetry)			
(3) $\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z} ((\mathbf{x} = \mathbf{y} \land \mathbf{y} = \mathbf{z}) \land \mathbf{x} = \mathbf{z})$	(transitivity)			

• Is Leibniz's Law (LL) a q-logical truth in $\mathbf{QL}=?$ (Can it be translated into a $\mathbf{QL}=wff?$)

(LL) $\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{X} (\mathbf{x} = \mathbf{y} \supset (\mathbf{X} \mathbf{x} \supset \mathbf{X} \mathbf{y}))$

where \mathbf{x} , \mathbf{y} range over objects and \mathbf{X} ranges over properties.

- <u>But</u>: $\mathbf{QL}^{=}$ is a "first-order" language.
- <u>Which means</u>: The quantifiers \forall , \exists only range over objects, not properties.
- Formal languages that contain quantifiers that range over properties and objects are called "second-order" languages.
- <u>So</u>: Can only translate Leibniz's Law into $\mathbf{QL}^{=}$ as a *scheme*, and not as a *wff*.

(LS) $\forall v \forall w (v = w \supset (C(\dots v \dots v \dots) \supset C(\dots w \dots w \dots)))$

where v, w are variables and $C(\dots v \dots v \dots)$ is a *wff* with v free, and $C(\dots w \dots w \dots)$ is a *wff* with w free.

• Instances of LS are *wffs* of $\mathbf{QL}^{=}$.

$$\begin{split} &\forall x \forall y (x = y \supset (\mathsf{F} x \supset \mathsf{F} y)) \\ &\forall y \forall z (y = z \supset ((\mathsf{L} a y \land \mathsf{L} b y) \supset (\mathsf{L} a z \land \mathsf{L} b z)) \end{split}$$

- <u>Note</u>: To say all instances of LS are q-logical truths in **QL**⁼ is to say identical objects share every feature expressible in **QL**⁼.
- <u>So</u>: LS is weaker than LL.

<u>Translating from English to QL=</u>

$\mathbf{a} \Rightarrow \operatorname{Ahgharad}$	$L \Rightarrow __loves___$
$b \Rightarrow Bryn$	$G \Rightarrow __is ~ a ~ girl$
$m \Rightarrow \mathrm{Mrs}$ Jones	

<u>*Ex1*</u>. Angharad is none other than Mrs. Jones.

a = m

- <u>Ex2</u>.Everyone except Angharad loves Bryn.For all \mathbf{x} , if $\underline{\mathbf{x}}$ is not Angharad, then $\underline{\mathbf{x}}$ loves Bryn.For all \mathbf{x} , if $\neg \mathbf{x} = \mathbf{a}$, then Lxb . $\forall \mathbf{x}(\neg \mathbf{x} = \mathbf{a} \supset \mathsf{Lxb})$
- <u>Ex3</u>.Only Mrs. Jones loves Bryn.For all x, if x is not Mrs. Jones, then x doesn't love Bryn.For all x, if $\neg x = m$, then $\neg Lxb$. $\forall x(\neg x = m \supset \neg Lxb)$ OR $\forall x(Lxb \supset x = m)$
- $\underline{Ex4}. Every girl other than Angharad loves someone other than Bryn. For all x, if <u>x is a girl</u> and <u>x isn't Angharad</u>, then <u>x loves someone other than Bryn</u>. For all x, if Gx and <math>\neg x = a$, then $\exists y(Lxy \land \neg y = b)$ $\forall x((Gx \land \neg x = a) \supset \exists y(Lxy \land \neg y = b))$

Numerical Claims

- 1. "There is at most one F." $\forall \mathbf{x} \forall \mathbf{y} ((F\mathbf{x} \land F\mathbf{y}) \supset \mathbf{x} = \mathbf{y})$
- 2. "There is *at least* one F." ∃**xFx**
- 3. "There is *exactly* one F." $(\forall x \forall y((Fx \land Fy) \supset x = y) \land \exists xFx)$
 - $\mathrm{OR} \qquad \exists x(\mathsf{F} x \land \forall y(\mathsf{F} y \supset y = x))$
 - $OR \qquad \exists x \forall y (Fy \equiv y = x)$
- 4. "There are *at most* two Fs." $\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z} (((\mathbf{F}\mathbf{x} \land \mathbf{F}\mathbf{y}) \land \mathbf{F}\mathbf{y}) \supset ((\mathbf{x} = \mathbf{y} \lor \mathbf{y} = \mathbf{z}) \lor \mathbf{z} = \mathbf{x}))$
- 5. "There are *at least* two Fs." $\exists \mathbf{x} \exists \mathbf{y} ((\mathsf{F}\mathbf{x} \land \mathsf{F}\mathbf{y}) \land \neg \mathbf{x} = \mathbf{y})$
- 6. "There are *exactly* two Fs."

 $\exists x \exists y ((\mathsf{F} x \land \mathsf{F} y) \land \neg x = y) \land \forall z (\mathsf{F} z \supset (z = x \lor z = y)))$

Let $\exists_n v \mathbf{F} v$ be shorthand for the $\mathbf{QL}^=$ wff that says "There are exactly $n \mathbf{Fs}$ ".

Consider:

 $(((\exists_2 v \mathsf{F} v \land \exists_1 v \mathsf{G} v) \land \neg \exists v (\mathsf{F} v \land \mathsf{G} v)) \supset \exists_3 v (\mathsf{F} v \lor \mathsf{G} v))$

"If there are 2 Fs and 1 G and nothing is both an F and a G, then there are 3 things that are either F or G."

<u>*Claim*</u>: The above wff in $\mathbf{QL}^{=}$ (fully written out) is a q-logical truth of $\mathbf{QL}^{=}$.

<u>Questions</u>:

- How much more of natural number arithmetic is $\mathbf{QL}^{=}$ in disguise?
- Can natural number arithmetic be completely reduced to $\mathbf{QL}=?$
- If so, is the formal system that results sound? Is it complete?
 - Godel: No!
- Can other branches of mathematics be competely reduced to **QL**⁼ (or some appropriate extention of **QL**⁼)?