
Chapter 32:  Identity 

Def 1.  R is transitive just when, if a has 
R to b, and b has R to c, then a has R to c. 

Let R be a two-place relation and suppose a, b, c are objects that stand in it. 

Def 2.  R is symmetric just when, if a has R to b, then b has R to a. 

Def 3.  R is reflexive just when, for any a, a has R to a. 

Exs.  ⎯⎯⎯is heavier than⎯⎯⎯ 

 ⎯⎯⎯is an ancestor of⎯⎯⎯

Exs.  ⎯⎯⎯is married to⎯⎯⎯ 

 ⎯⎯⎯is adjacent to⎯⎯⎯

Exs.  ⎯⎯⎯has a parent in common with⎯⎯⎯ 

 ⎯⎯⎯is as tall as⎯⎯⎯

Def 4. An equivalence relation is a relation 
that is transitive, symmetric, and reflexive. 

Exs.  ⎯⎯⎯is the same age as⎯⎯⎯ 

 ⎯⎯⎯has the same last name as⎯⎯⎯



Let A be a domain of objects and let R be an equivalence relation defined on A. 

Ex1.  Domain = {U.S. citizens} 

 R means ⎯⎯⎯has the same last name as⎯⎯⎯
 - Everyone is in an equivalence class. 

 - No one is in more than one equivalence class.

Ex2.  Domain = {positive integers} 

 R means ⎯⎯⎯differs by a multiple of 3 from⎯⎯⎯
 Three equivalence classes: 

 {0, 3, 6, 9, ...}, {2, 5, 8, 11, ...}, {1, 4, 7, 10, ...}

Then:  (1)  Every object in A is R to something (reflexivity). 

Suppose:  a stands in R to b and a stands in R to c. 

Then:  b stands in R to a (symmetry). 

And:  b stands in R to c (transitivity). 

So:  (2)  If a stands in R to two things, then they stand in R to each other. 

Thus:  R carves up the domain into non-overlapping groups (called 
"equivalence classes") that all stand in R to each other. 



Claim:  The identity relation is the equivalence relation that 
partitions a domain into the smallest equivalence classes. 

Ex.  Clark Kent = Clark Kent.

1. Reflexivity:  For any a, a = a. 

2. Symmetry:  For any a and b, if a = b, then b = a. 

Ex.  If Clark Kent = Superman, then Superman = Clark Kent.

3. Transitivity:  For any a, b, c, if a = b, and b = c, then a = c. 

Ex.  If Clark Kent = Superman, and Superman = the Superhero 
from Krypton, then Clark Kent = the Superhero from Krypton.

•  For any domain on which = is defined, the equivalence classes all consist of single 
elements. 



Leibniz's Law (Indiscernibility of Identicals) 
(LL)  If a and b are identical, then whatever property a has, b has. 

•  True for the identity relation. 

•  Truth depends on the nature of the properties. 

Identity of Indiscernibles 
(IdIn) If a and b share all the same properties, then a and b are identical. 

Ex1.  Two peas in a pod. 

-  Share all monadic properties but differ on relational properties. 

1 mile closed global 
topology 

1 mile open global 
topology 

Ex2.  Two peas in an empty universe. 

-  Share all monadic and relational properties, excluding spatiotemporal ones. 

-  If spatiotemporal properties are relational, then peas agree on these, too. 

-  If spatiotemporal properties are absolute, then whether or not the peas agree 
on them depends on the global topology of spacetime! 



•  Convention:  Use "=" to designate the 2-place identity relation.  Write "n is identical 
to m" as "n = m" and not "=nm" 

•  Goal:  Add identity to QL. 

Chapter 33:  The Language QL= 

Alphabet of QL= 

m, n, o, ..., ck  individual constants (k ≥ 0) 
w, x, y, z, ..., vk  individual variables (k ≥ 0) 
A, B, C, ..., P0

k  0-place predicates (propositional atoms) (k ≥ 0) 
F, G, H, ..., P1

k  1-place predicates (k ≥ 0) 
L, M, =, ..., P2

k  2-place predicates (k ≥ 0) 
!!
Pn

k  n -place predicates (k ≥ 0, n ≥ 0) 
∧, ∨, ¬, ⊃, ∀, ∃, (, ) connectives, quantifiers, punctuation 
∴ , ∗ argument symbols 



Term of QL= 
(T1= )  An individual constant or individual variable is a term of QL=. 
(T2= )  Nothing else is a term. 

Atomic wff of QL=  
(A1= )  If Pn

k is an n -place predicate symbol, n ≥ 0, and t1, ..., tn are terms of QL= , 
then Pn

kt1, ..., tn is an atomic wff of QL= . 
(A2= )  If t1, t2 are terms of QL=  then t1 = t2 is an atomic wff of QL= . 
(A3= )  Nothing else is an atomic wff of QL= . 

Wff of QL=  
(W1= )  Any atomic wff of QL=  is a wff of QL= . 
(W2= )  If A is a wff of QL= , so is ¬A. 
(W3= )  If A, B are wffs of QL= , so is (A ∧ B). 
(W4= )  If A, B are wffs of QL= , so is (A ∨ B). 
(W5= )  If A, B are wffs of QL= , so is (A ⊃ B). 
(W6= )  If A is a wff of QL=  and v is a variable which occurs in A (but 

neither ∀v nor ∃v occurs in A), then ∀vA is a wff of QL= . 
(W7= )  If A is a wff of QL=  and v is a variable which occurs in A (but 

neither ∀v nor ∃v occurs in A), then ∃vA is a wff of QL= . 
(W8= )  Nothing else is a wff of QL= .  



A q-valuation on a vocabulary V of a set of wffs of QL= 
(1)  specifies a non-empty set of objects as the domain D; 
(2)  assigns to any constant ck in V an object in D as its q-value; 
(3)  assigns a truth-value to any 0-place predicate P0

k in V as its q-value; 
(4)  assigns to any n-place predicate Pn

k in V, n > 0, a set of n-tuples of 
objects {〈m1, ..., mn〉, ...} in D as its q-value; 

QL= Semantics 

(Q0=)  If A is an atomic wff of QL= of the form Pn
kt1, ..., tn, where Pn

k is an n-place 
predicate and t1, ..., tn are terms of QL=, then 
(a)  if n = 0, then A ⇒q T if the q-value of A is T.  Otherwise A ⇒q F. 
(b)  If n > 0, then A ⇒q T if the n-tuple formed by taking the q-values of the 

terms in A in order is an element of the q-value of A.  Otherwise A ⇒q F. 
 If A is an atomic wff of QL= of the form t1 = t2, where t1, t2 are terms of QL=, 
then A ⇒q T if the q-values of the terms t1 and t2 are the same object. 
Otherwise A ⇒q F. 

The Semantic Rules for QL= 



Claim:  The following are q-logical truths in QL=. 
(1)  ∀xx = x  (reflexivity) 

(2)  ∀x∀y(x = y ⊃ y = x)  (symmetry) 

(3)  ∀x∀y∀z((x = y ∧ y = z) ∧ x = z)  (transitivity) 

(Q1=)  For any wff A, ¬A ⇒q T if A ⇒q F; otherwise ¬A ⇒q F. 

(Q2=)  For wffs A, B, (A ∧ B) ⇒q T if both A ⇒q T and B ⇒q T;           
otherwise (A ∧ B) ⇒q F. 

(Q3=)  For wffs A, B, (A ∨ B) ⇒q F if both A ⇒q F and B ⇒q F;           
otherwise (A ∨ B) ⇒q T. 

(Q4=)  For wffs A, B, (A ⊃ B) ⇒q F if A ⇒q T and B ⇒q F; otherwise (A ⊃ B) ⇒q T. 

(Q5=)  For wffs A, B, (A ≡ B) ⇒q T if A ⇒q T and B ⇒q T, or if A ⇒q F and B ⇒q F; 
otherwise (A ≡ B) ⇒q F. 

(Q6=)  For wff C(...v...v...) with variable v free, ∀vC(...v...v...) ⇒q T if C(...v...v...) ⇒q+ T 
for every v-variant q+ of q; otherwise ∀vC(...v...v...) ⇒q F. 

(Q7=)  For wff C(...v...v...) with variable v free, ∃vC(...v...v...) ⇒q T if C(...v...v...) ⇒q+ T 
for at least one v-variant q+ of q; otherwise ∃vC(...v...v...) ⇒q F. 



•  Is Leibniz's Law (LL) a q-logical truth in QL=?  (Can it be translated into a QL= wff?) 

(LL)  ∀x∀y∀X(x = y ⊃ (Xx ⊃ Xy)) 

where x, y range over objects and X ranges over properties. 

•  But:  QL= is a "first-order" language. 

•  Which means:  The quantifiers ∀, ∃ only range over objects, not properties. 

•  Formal languages that contain quantifiers that range over properties and objects are 
called "second-order" languages. 

•  So:  Can only translate Leibniz's Law into QL= as a scheme, and not as a wff. 

(LS)  ∀v∀w(v = w ⊃ (C(...v...v...) ⊃ C(...w...w...))) 

where v, w are variables and C(...v...v...) is a wff with 
v free, and C(...w...w...) is a wff with w free. 

•  Instances of LS are wffs of QL=. 

∀x∀y(x = y ⊃ (Fx ⊃ Fy)) 

∀y∀z(y = z ⊃ ((Lay ∧ Lby) ⊃ (Laz ∧ Lbz)) 

•  Note:  To say all instances of LS are q-logical truths in QL= is to say identical objects 
share every feature expressible in QL=. 

•  So:  LS is weaker than LL. 



Translating from English to QL= 

a ⇒ Ahgharad  L ⇒ ⎯⎯⎯loves⎯⎯⎯ 

b ⇒ Bryn  G ⇒ ⎯⎯⎯is a girl 

m ⇒ Mrs Jones 

Ex1.  Angharad is none other than Mrs. Jones. 

 a = m

Ex2.  Everyone except Angharad loves Bryn. 

 For all x, if x is not Angharad, then x loves Bryn. 

 For all x, if ¬x = a, then Lxb. 

 ∀x(¬x = a ⊃ Lxb)

Ex3.  Only Mrs. Jones loves Bryn. 

 For all x, if x is not Mrs. Jones, then x doesn't love Bryn. 

 For all x, if ¬x = m, then ¬Lxb. 

 ∀x(¬x = m ⊃ ¬Lxb)    OR    ∀x(Lxb ⊃ x = m)

Ex4.  Every girl other than Angharad loves someone other than Bryn. 

 For all x, if x is a girl and x isn't Angharad, then x loves someone other than Bryn. 

 For all x, if Gx and ¬x = a, then ∃y(Lxy ∧ ¬y = b) 

 ∀x((Gx ∧ ¬x = a) ⊃ ∃y(Lxy ∧ ¬y = b)) 



Numerical Claims 

1.  "There is at most one F." 

   ∀x∀y((Fx ∧ Fy) ⊃ x = y)

2.  "There is at least one F." 

   ∃xFx

3.  "There is exactly one F." 

   (∀x∀y((Fx ∧ Fy) ⊃ x = y) ∧ ∃xFx)

  OR  ∃x(Fx ∧ ∀y(Fy ⊃ y = x))

  OR ∃x∀y(Fy ≡ y = x)

5.  "There are at least two Fs." 

   ∃x∃y((Fx ∧ Fy) ∧ ¬x = y)

4.  "There are at most two Fs." 

   ∀x∀y∀z(((Fx ∧ Fy) ∧ Fy) ⊃ ((x = y ∨ y = z) ∨ z = x)) 

6.  "There are exactly two Fs." 

   ∃x∃y((Fx ∧ Fy) ∧ ¬x = y) ∧ ∀z(Fz ⊃ (z = x ∨ z = y)))



Let ∃nvFv be shorthand for the QL= wff that says "There are exactly n Fs". 

"If there are 2 Fs and 1 G and nothing is both an F and 
a G, then there are 3 things that are either F or G." 

Claim:  The above wff in QL= (fully written out) is a q-logical truth of QL=. 

Questions: 

•  How much more of natural number arithmetic is QL= in disguise? 

•  Can natural number arithmetic be completely reduced to QL=? 

•  If so, is the formal system that results sound?  Is it complete? 

-  Godel:  No! 

•  Can other branches of mathematics be competely reduced to QL= (or some 
appropriate extention of QL=)? 

Consider: 

(((∃2vFv ∧ ∃1vGv) ∧ ¬∃v(Fv ∧ Gv)) ⊃ ∃3v(Fv ∨ Gv)) 


