Chapter 32: Identity

Let R be a two-place relation and suppose a, b, c are objects that stand in it.
Def 1. R is transitive just when, if a has R to b, and b has R to c, then a has R to c.
Exs. __ is heavier than___
is an ancestor of
Def 2. R is symmetric just when, if a has R to b, then b has R to a.

Exs.
is married to___

Def 3. R is reflexive just when, for any a, a has R to a.
Exs. ___ has a parent in common with____ is as tall as___

Def 4. An equivalence relation is a relation that is transitive, symmetric, and reflexive.

Exs. \qquad is the same age as
has the same last name as

Let A be a domain of objects and let R be an equivalence relation defined on A.
Then: (1) Every object in A is R to something (reflexivity).
Suppose: a stands in R to b and a stands in R to c.
Then: $\quad b$ stands in R to a (symmetry).
And: $\quad b$ stands in R to c (transitivity).
So: (2) If a stands in R to two things, then they stand in R to each other.
Thus: $\quad R$ carves up the domain into non-overlapping groups (called "equivalence classes") that all stand in R to each other.

Ex1. \quad Domain $=\{$ U.S. citizens $\}$

 R means ___ has the same last name as \qquad- Everyone is in an equivalence class.
- No one is in more than one equivalence class.

Ex2. \quad Domain $=\{$ positive integers $\}$
R means ___ differs by a multiple of 3 from____
Three equivalence classes:
$\{0,3,6,9, \ldots\},\{2,5,8,11, \ldots\},\{1,4,7,10, \ldots\}$

Claim: The identity relation is the equivalence relation that partitions a domain into the smallest equivalence classes.

1. Reflexivity: For any $a, a=a$.

$$
\text { Ex. } \quad \text { Clark Kent }=\text { Clark Kent. }
$$

2. Symmetry: \quad For any a and b, if $a=b$, then $b=a$.

$$
\underline{\text { Ex. }} \text { If Clark Kent }=\text { Superman, then Superman }=\text { Clark Kent. }
$$

3. Transitivity: For any a, b, c, if $a=b$, and $b=c$, then $a=c$.

Ex. If Clark Kent $=$ Superman, and Superman $=$ the Superhero from Krypton, then Clark Kent $=$ the Superhero from Krypton.

- For any domain on which $=$ is defined, the equivalence classes all consist of single elements.

Leibniz's Law (Indiscernibility of Identicals)

(LL) If a and b are identical, then whatever property a has, b has.

- True for the identity relation.

Identity of Indiscernibles

(IdIn) If a and b share all the same properties, then a and b are identical.

- Truth depends on the nature of the properties.

Ex1. Two peas in a pod.

- Share all monadic properties but differ on relational properties.

Ex2. Two peas in an empty universe.

- Share all monadic and relational properties, excluding spatiotemporal ones.
- If spatiotemporal properties are relational, then peas agree on these, too.
- If spatiotemporal properties are absolute, then whether or not the peas agree on them depends on the global topology of spacetime!

Chapter 33: The Language $\mathbf{Q L}=$

- Goal: Add identity to QL.
- Convention: Use " $=$ " to designate the 2-place identity relation. Write "n is identical to m " as $\mathrm{n}=\mathrm{m}$ " and not " $=\mathrm{nm}$ "

Alphabet of $\mathbf{Q L}=$
$\mathbf{m}, \mathbf{n}, \mathbf{o}, \ldots, \mathrm{C}_{k}$
$\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots, \mathbf{v}_{k}$
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{P}^{0}{ }_{k}$
$\mathbf{F}, \mathbf{G}, \mathbf{H}, \ldots, \mathrm{P}^{1}{ }_{k}$
$\mathrm{L}, \mathrm{M},=, \ldots, \mathrm{P}^{2}{ }_{k}$
\vdots
$\mathrm{P}^{n}{ }_{k}$
$\wedge, \vee, \neg, \supset, \forall, \exists,($,
$\therefore, *$
individual constants $(k \geq 0)$
individual variables ($k \geq 0$)
0 -place predicates (propositional atoms) $(k \geq 0)$
1-place predicates ($k \geq 0$)
2-place predicates $(k \geq 0)$
n-place predicates ($k \geq 0, n \geq 0$)
connectives, quantifiers, punctuation
argument symbols

Term of $\boldsymbol{Q} \boldsymbol{L}^{=}$

(T1=) An individual constant or individual variable is a term of $\mathbf{Q L}{ }^{=}$.
($\mathrm{T} 2^{=}$) Nothing else is a term.
Atomic wff of $\boldsymbol{Q L} \mathbf{L}^{=}$
(A1 $=$) If $\mathbf{P}^{n}{ }_{k}$ is an n-place predicate symbol, $n \geq 0$, and t_{1}, \ldots, t_{n} are terms of $\mathbf{Q L}=$, then $\mathbf{P}^{n}{ }_{k} t_{1}, \ldots, t_{n}$ is an atomic $w f f$ of $\mathbf{Q L}^{=}$.
(A2 ${ }^{=}$) If t_{1}, t_{2} are terms of $\mathbf{Q L}{ }^{=}$then $t_{1}=t_{2}$ is an atomic wff of $\mathbf{Q L}{ }^{=}$.
(A3 ${ }^{=}$) Nothing else is an atomic $w f f$ of $\mathbf{Q L}=$.
Wff of $\boldsymbol{Q L}^{=}$
(W1=) Any atomic $w f f$ of $\mathbf{Q L}{ }^{=}$is a $w f f$ of $\mathbf{Q L}{ }^{=}$.
(W2 ${ }^{=}$) If A is a wff of $\mathbf{Q L}{ }^{=}$, so is $\neg A$.
(W3 ${ }^{=}$) If A, B are $w f f s$ of $\mathbf{Q L}^{=}$, so is $(A \wedge B)$.
(W4 $=$) If A, B are $w f f s$ of $\mathbf{Q L}^{=}$, so is $(A \vee B)$.
(W5 ${ }^{=}$) If A, B are $w f f s$ of $\mathbf{Q L}^{=}$, so is $(A \supset B)$.
(W6 ${ }^{=}$) If A is a $w f f$ of $\mathbf{Q L}^{=}$and v is a variable which occurs in A (but neither $\forall v$ nor $\exists v$ occurs in A), then $\forall v A$ is a wff of $\mathbf{Q L}=$.
(W7 ${ }^{=}$) If A is a $w f f$ of $\mathbf{Q L}^{=}$and v is a variable which occurs in A (but neither $\forall v$ nor $\exists v$ occurs in A), then $\exists v A$ is a wff of $\mathbf{Q L}=$.
(W8 ${ }^{=}$) Nothing else is a wff of $\mathbf{Q L}=$.

QL= Semantics

A q-valuation on a vocabulary V of a set of wffs of $\boldsymbol{Q L} \boldsymbol{L}^{=}$
(1) specifies a non-empty set of objects as the domain D;
(2) assigns to any constant \mathbf{c}_{k} in V an object in D as its q-value;
(3) assigns a truth-value to any 0 -place predicate $\mathrm{P}^{0}{ }_{k}$ in V as its q-value;
(4) assigns to any n-place predicate P_{k}^{n} in $V, n>0$, a set of n-tuples of objects $\left\{\left\langle m_{1}, \ldots, m_{n}\right\rangle, \ldots\right\}$ in D as its q-value;

The Semantic Rules for $\boldsymbol{Q} \boldsymbol{L}^{=}$
$\left(\mathrm{Q} 0^{=}\right)$If A is an atomic $w f f$ of $\mathbf{Q L}=$ of the form $\mathbf{P}^{n}{ }_{k} t_{1}, \ldots, t_{n}$, where $\mathbf{P}^{n}{ }_{k}$ is an n-place predicate and t_{1}, \ldots, t_{n} are terms of $\mathbf{Q L}^{=}$, then
(a) if $n=0$, then $A \Rightarrow_{q} \mathrm{~T}$ if the q-value of A is T . Otherwise $A \Rightarrow{ }_{q} \mathrm{~F}$.
(b) If $n>0$, then $A \Rightarrow_{q} \mathrm{~T}$ if the n-tuple formed by taking the q-values of the terms in A in order is an element of the q-value of A. Otherwise $A \Rightarrow{ }_{q} \mathrm{~F}$. If A is an atomic wff of $\mathbf{Q L}=$ of the form $t_{1}=t_{2}$, where t_{1}, t_{2} are terms of $\mathbf{Q L}=$, then $A \Rightarrow{ }_{q} \mathrm{~T}$ if the q-values of the terms t_{1} and t_{2} are the same object.
Otherwise $A \Rightarrow_{q} \mathrm{~F}$.
(Q1 $=$) For any wff $A, \neg A \Rightarrow_{q} \mathrm{~T}$ if $A \Rightarrow_{q} \mathrm{~F}$; otherwise $\neg A \Rightarrow_{q} \mathrm{~F}$.
(Q2 ${ }^{=}$) For wffs $A, B,(A \wedge B) \Rightarrow_{q} \mathrm{~T}$ if both $A \Rightarrow_{q} \mathrm{~T}$ and $B \Rightarrow_{q} \mathrm{~T}$;
otherwise $(A \wedge B) \Rightarrow_{q} \mathrm{~F}$.
(Q3 ${ }^{=}$) For $w f f s A, B,(A \vee B) \Rightarrow_{q} \mathrm{~F}$ if both $A \Rightarrow_{q} \mathrm{~F}$ and $B \Rightarrow{ }_{q} \mathrm{~F}$;
otherwise $(A \vee B) \Rightarrow_{q} \mathrm{~T}$.
$(\mathrm{Q} 4=)$ For $w f f s A, B,(A \supset B) \Rightarrow_{q} \mathrm{~F}$ if $A \Rightarrow{ }_{q} \mathrm{~T}$ and $B \Rightarrow{ }_{q} \mathrm{~F}$; otherwise $(A \supset B) \Rightarrow_{q} \mathrm{~T}$.
(Q5 ${ }^{=}$) For wffs $A, B,(A \equiv B) \Rightarrow_{q} \mathrm{~T}$ if $A \Rightarrow_{q} \mathrm{~T}$ and $B \Rightarrow_{q} \mathrm{~T}$, or if $A \Rightarrow_{q} \mathrm{~F}$ and $B \Rightarrow_{q} \mathrm{~F}$; otherwise $(A \equiv B) \Rightarrow_{q} \mathrm{~F}$.
$\left(\mathrm{Q} 6^{=}\right)$For $w f f C(\ldots v . . . v \ldots)$ with variable v free, $\forall v C(\ldots v \ldots v \ldots) \Rightarrow_{q} \mathrm{~T}$ if $C(\ldots v \ldots v \ldots) \Rightarrow_{q^{+}} \mathrm{T}$ for every v-variant q^{+}of q; otherwise $\forall v C(\ldots v \ldots v \ldots) \Rightarrow{ }_{q} \mathrm{~F}$.
$(\mathrm{Q} 7=)$ For $w f f C(\ldots v \ldots v \ldots)$ with variable v free, $\exists v C(\ldots v \ldots v \ldots) \Rightarrow_{q} \mathrm{~T}$ if $C(\ldots v \ldots v . ..) \Rightarrow_{q+} \mathrm{T}$ for at least one v-variant q^{+}of q; otherwise $\exists v C(\ldots v \ldots v \ldots) \Rightarrow{ }_{q} \mathrm{~F}$.

Claim: The following are q-logical truths in $\mathbf{Q L}^{=}$.
(1) $\forall x x=x$
(2) $\forall \mathbf{x} \forall \mathbf{y}(\mathbf{x}=\mathrm{y} \supset \mathrm{y}=\mathrm{x})$
(reflexivity)
(3) $\forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}((\mathrm{x}=\mathrm{y} \wedge \mathrm{y}=\mathrm{z}) \wedge \mathrm{x}=\mathrm{z}) \quad$ (transitivity)

- Is Leibniz's Law (LL) a q-logical truth in $\mathbf{Q L =}$? (Can it be translated into a $\mathbf{Q L}=$ wff?)
(LL) $\quad \forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{X}(\mathrm{x}=\mathrm{y} \supset(\mathrm{Xx} \supset \mathrm{Xy}))$
where \mathbf{x}, y range over objects and X ranges over properties.
- But: QL= is a "first-order" language.
- Which means: The quantifiers \forall, \exists only range over objects, not properties.
- Formal languages that contain quantifiers that range over properties and objects are called "second-order" languages.
- SO: Can only translate Leibniz's Law into $\mathbf{Q L}=$ as a scheme, and not as a wff.

$$
\text { (LS) } \forall v \forall w(v=w \supset(C(\ldots v \ldots v \ldots) \supset C(\ldots w \ldots w \ldots)))
$$

where v, w are variables and $C(\ldots v \ldots v . .$.$) is a wff with$ v free, and $C(\ldots w \ldots w \ldots)$ is a $w f f$ with w free.

- Instances of LS are wffs of $\mathbf{Q L}=$.

$$
\begin{aligned}
& \forall \mathbf{x} \forall \mathbf{y}(\mathrm{x}=\mathrm{y} \supset(\mathrm{Fx} \supset \mathrm{Fy})) \\
& \forall \mathbf{y} \forall \mathrm{z}(\mathrm{y}=\mathrm{z} \supset((\mathrm{Lay} \wedge \mathrm{Lby}) \supset(\mathrm{Laz} \wedge \mathrm{Lbz}))
\end{aligned}
$$

- Note: To say all instances of LS are q-logical truths in $\mathbf{Q L}=$ is to say identical objects share every feature expressible in $\mathbf{Q L}=$.
- $\underline{S o}$: LS is weaker than LL.

Translating from English to $\mathbf{Q} \mathbf{L}^{=}$

$$
\begin{array}{ll}
\mathrm{a} \Rightarrow \text { Ahgharad } & \mathrm{L} \Rightarrow \\
\mathrm{~b} \Rightarrow \text { Bryn } & \mathrm{G} \Rightarrow \quad \text { loves } \\
\mathrm{m} \Rightarrow \text { Mrs Jones } & \\
\hline
\end{array}
$$

Ex1. Angharad is none other than Mrs. Jones.

$$
a=m
$$

Ex2. Everyone except Angharad loves Bryn.

For all x, if $\neg x=a$, then Lxb.
$\forall x(\neg x=a \supset L x b)$
Ex3. Only Mrs. Jones loves Bryn.
For all \mathbf{x}, if $\underline{\mathbf{x}}$ is not Mrs. Jones, then $\underline{\mathbf{x} \text { doesn't love Bryn. }}$
For all x, if $\neg x=m$, then $\neg L x b$.
$\forall x(\neg x=m \supset \neg L x b) \quad$ OR $\quad \forall x(L x b \supset x=m)$
Ex4. Every girl other than Angharad loves someone other than Bryn.

For all x, if $G x$ and $\neg x=a$, then $\exists y(L x y \wedge \neg y=b)$
$\forall x((G x \wedge \neg x=a) \supset \exists y(L x y \wedge \neg y=b))$

Numerical Claims

1. "There is at most one F."

$$
\forall x \forall y((F x \wedge F y) \supset x=y)
$$

2. "There is at least one F."

$$
\exists x F x
$$

3. "There is exactly one F."

$$
(\forall x \forall y((F x \wedge F y) \supset x=y) \wedge \exists x F x)
$$

OR $\quad \exists \mathrm{x}(\mathrm{Fx} \wedge \forall \mathrm{y}(\mathrm{Fy} \supset \mathrm{y}=\mathrm{x}))$
OR $\quad \exists \mathbf{x} \forall \mathbf{y}(\mathrm{Fy} \equiv \mathrm{y}=\mathrm{x})$
4. "There are at most two Fs." $\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z}(((\mathrm{Fx} \wedge \mathrm{Fy}) \wedge \mathrm{Fy}) \supset((\mathrm{x}=\mathrm{y} \vee \mathrm{y}=\mathrm{z}) \vee \mathrm{z}=\mathrm{x}))$
5. "There are at least two Fs."

$$
\exists x \exists y((F x \wedge F y) \wedge \neg x=y)
$$

6. "There are exactly two Fs."

$$
\exists x \exists y((F x \wedge F y) \wedge \neg x=y) \wedge \forall z(F z \supset(z=x \vee z=y)))
$$

Let $\exists_{n} v \mathbf{F} v$ be shorthand for the $\mathbf{Q L}=w f f$ that says "There are exactly n Fs".

Consider:

$$
\left(\left(\left(\exists_{2} v \mathbf{F} v \wedge \exists_{1} v \mathbf{G} v\right) \wedge \neg \exists v(\mathbf{F} v \wedge \mathbf{G} v)\right) \supset \exists_{3} v(\mathbf{F} v \vee \mathbf{G} v)\right)
$$

"If there are 2 Fs and 1 G and nothing is both an F and a G, then there are 3 things that are either F or G."

$$
\text { Claim: The above wff in } \mathbf{Q L}=\text { (fully written out) is a } q \text {-logical truth of } \mathbf{Q L}=\text {. }
$$

Questions:

- How much more of natural number arithmetic is $\mathbf{Q L}=$ in disguise?
- Can natural number arithmetic be completely reduced to $\mathbf{Q L}=$?
- If so, is the formal system that results sound? Is it complete?
- Godel: No!
- Can other branches of mathematics be competely reduced to $\mathbf{Q L}^{=}$(or some appropriate extention of $\mathbf{Q L}^{=}$)?

