Chapter 30: Soundness and Completeness for QL Trees

<u>Soundness of QL Trees</u> If a **QL** argument is not q-valid, then the corresponding **QL** tree will never close.

- <u>*Let*</u>: " \vdash_{QL} " mean "**QL** tree-entails"
- <u>*Let*</u>: " \models_{QL} " mean "*q*-entails"
- <u>*Then*</u>: Soundness of **QL** Trees means: If $A_1, ..., A_n \vdash_{QL} C$, then $A_1, ..., A_n \models_{QL} C$.
- <u>Now</u>: Recall that a path in a tree is *satisfiable* if there is a valuation that makes all *wff* on the path true.

Proof of Soundness of QL Trees

<u>Suppose</u> :	The QL argument $A_1,, A_n \therefore C$ is not q -valid.
<u>Then</u> :	There's a q-valuation q such that $A_1 \Rightarrow_q T,, A_n \Rightarrow_q T, \neg C \Rightarrow_q T.$
<u>So</u> :	The initial trunk of the corresponding \mathbf{QL} tree is satisfiable.
<u>Lemma</u> :	Every possible way of extending a satisfiable path in a QL tree leads to <i>at least one</i> longer satisfiable path.
<u>So</u> :	Since a satisfiable path doesn't close, a QL tree with a satisfiable initial trunk will never close.

<u>Lemma</u>: Every possible way of extending a satisfiable path in $^{\mathbf{Q}}$ a **QL** tree leads to *at least one* longer satisfiable path.

<u>*Proof*</u>: Need to consider all possible ways of extending a satisfiable path in a **QL** tree: <u>*Case 1: Non-branching rules (a)–(d).*</u>

If a satisfiable path is extended by a non-branching rule, it remains satisfiable.

$$\underbrace{\underline{Ex.}}_{B} \quad (A \land B) \qquad \qquad \underbrace{\underline{Suppose:}}_{q} (A \land B) \Rightarrow_{q} \mathrm{T.} \\ \underbrace{\underline{A}}_{B} \qquad \qquad \underbrace{\underline{Then:}}_{q} \mathrm{T} \text{ and } B \Rightarrow_{q} \mathrm{T} \text{ (Q2).}$$

Case 2: Branching rules (e)-(i).

If a satisfiable path is extended by a branching rule, then at least one of the branches remains satisfiable.

<u>Case 3: $(\neg \forall)$ and $(\neg \exists)$ rules.</u>

If a satisfiable path is extended using $(\neg \forall)$ or $(\neg \exists)$, then it remains satisfiable.

$$\underline{Ex.} \quad \neg \forall \mathbf{x} \mathsf{Fx} \qquad \underline{Suppose}: \quad \neg \forall \mathbf{x} \mathsf{Fx} \Rightarrow_q \mathsf{T}. \\ \exists \mathbf{x} \neg \mathsf{Fx} \qquad \underline{Then}: \quad \exists \mathbf{x} \neg \mathsf{Fx} \Rightarrow_q \mathsf{T} \ (V3).$$

Case 4: (\exists) rule.

If a satisfiable path is extended using (\exists) , then it remains satisfiable.

Ex.
$$\exists x Fx$$
 $\underline{Suppose:} \exists x Fx \Rightarrow_q T$, and q doesn't evaluate C.Fc \underline{Then} : There's an extension q^+ of q that does such that Fc $\Rightarrow_{q^+} T$ and $\exists x Fx \Rightarrow_{q^+} T$ (V2).So:The path remains satisfiable, now by q^+ .

Case 5: (\forall') rule.

If a satisfiable path is extended using (\forall') , then it remains satisfiable.

Ex.
$$\forall \mathbf{xFx}$$
 $\underline{Suppose:}$ $\forall \mathbf{xFx} \Rightarrow_q \mathbf{T}$, and q evaluates \mathbf{C} .Fc $\underline{Then:}$ $\mathbf{FC} \Rightarrow_q \mathbf{T}$ (V1). $\underline{Now:}$ Suppose q doesn't evaluate \mathbf{C} . $\underline{Then:}$ $\mathbf{FC} \Rightarrow_{q^+} \mathbf{T}$ for any extension q^+ of q that does (V1). $\underline{And:}$ $\forall \mathbf{xFx} \Rightarrow_{q^+} \mathbf{T}$ (V5). $\underline{So:}$ Either way, there's a valuation that satisfies the extended path.

Completeness of QL Trees

If every **QL** tree starting with the closed wffs $A_1, ..., A_n$, $\neg C$ remains open, then the **QL** argument $A_1, ..., A_n \therefore C$ is not q-valid.

<u>Note</u>: Completeness of **QL** Trees means: If $A_1, ..., A_n \vDash_{QL} C$, then $A_1, ..., A_n \vdash_{QL} C$.

 $\bullet\,$ To prove completeness of \mathbf{QL} Trees, we first need the following definitions:

<u>Def 1</u>. A set of wffs Σ is syntactically consistent if it contains no pairs of wffs of the form $A, \neg A$.

<u>Def 2</u>. A set Σ of closed **QL** wffs is **saturated** if it contains a *truth-maker* for every non-primitive wff in it.

• A truth-maker for a non-primitive wff A is a wff that must be true in order for A to be true.

<u>So</u>: A set Σ of closed **QL** wffs is saturated if it contains a truth-maker for every nonprimitive wff in it; which means Σ is saturated if all of the following hold:

- (a) If $\neg \neg A$ occurs in Σ , then so does A.
- (b) If $(A \wedge B)$ occurs in Σ , then so do both A and B.
- (c) If $\neg (A \lor B)$ occurs in Σ , then so do both $\neg A$ and $\neg B$.
- (d) If $\neg(A \supset B)$ occurs in Σ , then so do both A and $\neg B$.
- (e) If $(A \vee B)$ occurs in Σ , then so does at least one of A or B.
- (f) If $\neg (A \land B)$ occurs in Σ , then so does at least one of $\neg A$ or $\neg B$.
- (g) If $(A \supset B)$ occurs in Σ , then so does at least one of $\neg A$ or B.
- (h) If $(A \equiv B)$ occurs in Σ , then so does at least one of A, B or $\neg A$, $\neg B$.
- (i) If $\neg(A \equiv B)$ occurs in Σ , then so does at least one of A, $\neg B$ or $\neg A$, B.
- (j) If $\neg \forall v C(\dots v \dots v \dots)$ occurs in Σ , then so does $\exists v \neg C(\dots v \dots v \dots)$.
- (k) If $\neg \exists v C(\dots v \dots v \dots)$ occurs in Σ , then so does $\forall v \neg C(\dots v \dots v \dots)$.
- (ℓ) If ∀vC(...v...v...) occurs in Σ, then so does C(...c...c...) for every constant c that appears in Σ, or if no constants appear in Σ, then C(...c...) must for some constant c.

(m) If $\exists v C(\dots v \dots v \dots)$ occurs in Σ , then so does $C(\dots c \dots c \dots)$ for some constant c.

<u>Potential problem with (ℓ) </u>

- (ℓ) specifies a truth-maker for a universal as an instance of it.
- <u>But</u>: If the domain contains unnamed objects, then all instances of a universal can be true, yet the universal can be false! In such cases, (ℓ) does not specify all truth-makers.
- <u>However</u>: (ℓ) will specify all truth-makers for a universal for a q-valuation that has a domain with one object for every constant in Σ and nothing else.
- Under this "chosen valuation", if all instances of a universal are true, so is the universal.

<u>Now</u>: Suppose the following claims are true:

(Sys) There is a systematic way to construct a QL tree such that either
(i) it closes, or (ii) it has an open path (possibly infinite), the
wffs on which all form a syntactically consistent, saturated set.

(Sat) Every syntactically consistent, saturated set of closed \mathbf{QL} wffs is satisfiable.

<u>Proof of Completeness of QL Trees</u>

- <u>Suppose</u>: Every **QL** tree starting with closed wffs $A_1, ..., A_n, \neg C$ stays open.
- <u>Then</u>: By (Sys), there's a systematically constructible \mathbf{QL} tree with an open path whose *wffs* form a syntactically consistent, saturated set.
- <u>So</u>: By (Sat), this path is satisfiable.
- <u>So</u>: There's a q-valuation that makes $A_1, ..., A_n, \neg C$ all true.

<u>Thus</u>: The **QL** argument $A_1, ..., A_n \therefore C$ is not q-valid.

<u>*Proof of (Sat).*</u> Need to show:

- (C1) For any syntactically consistent, saturated set of closed **QL** wffs Σ , there is a q-valuation that makes the primitive wffs in Σ true.
- (C2) We can choose the domain of a q-valuation which makes the primitives in Σ true so that it makes all the *wffs* in Σ true.

(C1) For any syntactically consistent, saturated set of closed **QL** wffs Σ , there is a q-valuation that makes the primitive wffs in Σ true.

<u>Proof</u>.

<u>Suppose</u>: Σ is a syntactically consistent, saturated set of closed **QL** wffs.

<u>Now</u>: Construct a q-valuation q in the following way (the "chosen valuation"):

(i) Domain = all numbers k such that the constant C_k is in Σ.
(ii) <u>Constant assignments</u>: Each constant C_k is assigned the corresponding k-object.
(iii) <u>Predicate letter assignments</u>:
- Each one-place predicate letter F is assigned the set of objects k such that the wff FC_k is in Σ.

- Each two-place predicate letter **R** is assigned the set of ordered pairs $\langle j, k \rangle$ such that the *wff* $\mathsf{Rc}_j \mathsf{c}_k$ is in Σ .

____etc...

$$\underline{Ex}. \quad \Sigma = \{\mathsf{Fc}_5, \mathsf{Fc}_{10}, \mathsf{Rc}_{11}\mathsf{c}_{25}, \neg \mathsf{Fc}_{25}\}, \quad q \text{ is given by:} \\ \text{Domain} = \{5, 10, 11, 25\} \\ \mathsf{c}_5 \Rightarrow 5, \quad \mathsf{c}_{10} \Rightarrow 10, \quad \mathsf{c}_{11} \Rightarrow 11, \quad \mathsf{c}_{25} \Rightarrow 25 \\ \mathsf{F} \Rightarrow \{5, 10\}, \quad \mathsf{R} \Rightarrow \{\langle 11, 25 \rangle\} \end{cases}$$

Now:By design, q makes all atomic wff in Σ true.But:Does q make all primitive wff in Σ true?

<u>Suppose</u>: $\neg A$ is a primitive wff in Σ and q makes $\neg A$ false.

<u>Then</u>: q makes A true.

- <u>Note</u>: A consists of a predicate letter followed by constants (since it's a *closed* primitive *wff*).
- <u>And</u>: The objects named by the constants that occur in A must be assigned by q to the predicate letter that occurs in A. (Q0).
- <u>And</u>: This means A must be in Σ . (This is how q assigns objects to predicate letters: each predicate letter F is assigned by q those objects i, j, k, ... such that the wff $\mathsf{Fc}_i \mathsf{c}_j \mathsf{c}_k ...$ is in S.)
- <u>But</u>: A cannot be in Σ (since Σ is syntactically consistent).
- <u>Thus</u>: q must make $\neg A$ true!

(C2)	We can choose the domain of a q -valuation which makes the
	primitives in Σ true so that it makes all the <i>wffs</i> in Σ true.

<u>Proof</u>.

- <u>Suppose</u>: q makes all primitive wffs in Σ true.
- <u>Now</u>: Consider any non-primitive wff A that occurs in Σ .
- <u>Note</u>: Since Σ is saturated, it must contain truth-makers for A, and truth-makers for the truth-makers of A; and so on...
- <u>Then</u>: At some point in this chain of truth-makers, they become primitive wffs, which q makes true.
- <u>Thus</u>: Since these initial primitive truth-makers in the chain leading to A are true, so are all the rest, including A.
- <u>So</u>: q makes all wff in Σ true.

<u>Special Case</u>:

<u>Suppose</u>: A is of the form $\forall vC(\dots v\dots v\dots)$.

<u>Then</u>: Since Σ is saturated, a *wff* of the form $C(\dots c \dots c \dots)$ occurs in Σ for every constant c in Σ (or, if no constants occur in Σ , then $C(\dots c \dots c \dots)$ does, for some constant c).

<u>Now</u>: q has been designed so that the objects in its domain correspond 1-1 with all constants that appear in Σ .

<u>*Hence*</u>: q makes every possible instance in Σ of $\forall vC(...v...v...)$ true, and thus it makes $\forall vC(...v...v...)$ true.

(Sys) There is a systematic way to construct a QL tree such that either
(i) it closes, or (ii) it has an open path (possibly infinite), the *wffs* on which all form a syntactically consistent, saturated set.

<u>Proof.</u>

<u>Algorithm to construct a **QL** tree such that either (i) it closes, or (ii) it has a possibily infinite open path, the wffs on which all form a syntactically consistent, saturated set:</u>

- (1) Start at trunk and apply tree rules to each wff.
- (2) Use (\forall) to instantiate universal *wffs* with all constants that have previously appeared.
- (3) Use (\exists) to instantiate any existential with a new constant c, and then go back and apply (\forall) again to all universals on that path with the new constant c.

Possible Results:

- (a) All branches close.
- (b) At least one path continues to remain open and
 - (i) it is finite; which means tree construction has halted; or
 - (ii) it is infinite; which means tree construction does not halt.

<u>Claim</u>: In all three cases, the *wffs* form a syntactically consistent, saturated set.

