
Chapter 29:  QL Trees 

(a)  ¬¬A 
 | 
 A 

Add A to each open path containing ¬¬A.  
Check it off 

ü 

(b)  (A ∧ B) 
 | 
 A 
 B 

Add A, B to each open path containing (A ∧ B).  
Check it off 

ü 

(c)  ¬(A ∨ B) 
 | 

 ¬A 
 ¬B 

Add ¬A, ¬B to each open path containing ¬(A ∨ B).  
Check it off 

ü 

(d)  ¬(A ⊃ B) 
 | 
 A 
 ¬B 

Add A, ¬B to each open path containing ¬(A ⊃ B).  
Check it off 

ü 



(i)  ¬(A ≡ B) 

 A  ¬A 
 ¬B  B 

Add a fork with A, ¬B and ¬A, B as separate branches 
to each open path containing ¬(A ≡ B).  Check it off 

ü 

(h)  (A ≡ B) 

 A  ¬A 
 B  ¬B 

Add a fork with A, B and ¬A, ¬B as separate branches 
to each open path containing (A ≡ B).  Check it off 

ü 

(g)  (A ⊃ B) 

 ¬A  B 

Add a fork with ¬A, B as separate branches to each open 
path containing (A ⊃ B).  Check it off 

ü 

(f)  ¬(A ∧ B) 

 ¬A  ¬B 

Add a fork with ¬A, ¬B as separate branches to each 
open path containing ¬(A ∧ B).  Check it off 

ü 

(e)  (A ∨ B) 

 A  B 

Add a fork with A, B as separate branches to each open 
path containing (A ∨ B).  Check it off 

ü 



(¬∀)  ¬∀vC 
 | 

 ∃v¬C 

Add ∃v¬C to each open path containing ¬∀vC.  Check it off. ü 

(¬∃)  ¬∃vC 
 | 

 ∀v¬C 

Add ∀v¬C to each open path containing ¬∃vC.  Check it off. ü 

(∀)  ∀vC(...v...v...) 
 | 

 C(...c...c...)  [c old] 

Add C(...c...c...) to an open path containing 
∀vC(...v...v...), where c is a constant on that path 
which hasn't already been used to instantiate 
∀vC(...v...v...).  Do not check it off. 

(∃)  ∃vC(...v...v...) 
 | 

 C(...c...c...)  [c new] 

Add C(...c...c...) to all open paths containing 
∃vC(...v...v...), where c is a constant new to the 
paths.  Check it off. 

ü 

Advice 

(1)  Deal with negated quantifiers first. 

(2)  Instantiate existentials before universals. 



Ex1.  ∃xFx, ∀x∀y(Fy ⊃ ¬Lxy) ∴ ∃x∀y¬Lyx 

(1) ∃xFx 

(2) ∀x∀y(Fy ⊃ ¬Lxy) 

(3) ¬∃x∀y¬Lyx

(4) ∃x¬∀y¬Lyx (¬∃) on 3. 

ü 

(5) Fa (∃) on 1. 

ü 

(6) ¬∀y¬Lya (∀) on 4. 

(7) ∃y¬¬Lya (¬∀) on 6. 

ü 

(8) ¬¬Lba (∃) on 7. 

ü 

(9) ∀y(Fy ⊃ ¬Lby) (∀) on 2. 

(10) (Fa ⊃ ¬Lba) (∀) on 9. 

(11) ¬Fa ¬Lba (g) on 10. 

 ∗ ∗ 

ü 



(11) (Lab ⊃ Mab) (∀) on 8. 

Ex2.  ∀x∃y(Fy ∧ Lxy), ∀x∀y(Lxy ⊃ Mxy) ∴ ∀x∃y(Fy ∧ Mxy)

(1) ∀x∃y(Fy ∧ Lxy) 

(2) ∀x∀y(Lxy ⊃ Mxy) 

(3) ¬∀x∃y(Fy ∧ Mxy)

(7) ∃y(Fy ∧ Lay) (∀) on 1. 

(8) ∀y(Lay ⊃ May) (∀) on 2. 

(10) ¬(Fb ∧ Mab) (∀) on 6. 

(9) (Fb ∧ Lab) (∃) on 7. 

ü 

(4) ∃x¬∃y(Fy ∧ Mxy) (¬∀) on 3. 

ü 

(5) ¬∃y(Fy ∧ May) (∃) on 4. 

ü 

(6) ∀y¬(Fy ∧ May) (¬∃) on 5. 

ü 

(12) Fb (b) on 9. 
 Lab 

ü 

(13) ¬Fb ¬Mab (f) on 10. 
 ∗ 

ü 

ü 

(14) ¬Lab Mab (g) on 11. 
 ∗  ∗ 



(1) ∀x(Gx ⊃ ¬∃y(Fy ∧ Lxy)) 
(2) (Gm ∧ ∀x(Lxm ⊃ Lmx)) 
(3) Lnm
(4)  ¬¬Fn

Ex3.  ∀x(Gx ⊃ ¬∃y(Fy ∧ Lxy)), (Gm ∧ ∀x(Lxm ⊃ Lmx)), Lnm ∴ ¬Fn
No girl loves any sexist pig. 
Caroline is a girl who loves whoever loves her. 
Henry loves Caroline. 
Thus Henry isn't a sexist pig. 

(6) (Gm ⊃ ¬∃y(Fy ∧ Lmy)) (∀) on 1. 

(5) Gm (b) on 2. 
 ∀x(Lxm ⊃ Lmx)

ü 

(7) ¬Gm ¬∃y(Fy ∧ Lmy) (g) on 6. 
 ∗ 

ü 

(8) ∀y¬(Fy ∧ Lmy) (¬∃) on 7. 

ü 

(9) ¬(Fn ∧ Lmn) (∀) on 8. 

(10) ¬Fn ¬Lmn (f) on 9. 
 ∗ 

ü 

(11) (Lnm ⊃ Lmn) (∀) on 5. ü 

(12) ¬Lnm Lmn (g) on 11. 
 ∗  ∗ 



(1) ∀x∀y(∃zLyz ⊃ Lxy) 
(2) Lmn 
(3) ¬∀xLxn

Ex4.  ∀x∀y(∃zLyz ⊃ Lxy), Lmn ∴ ∀xLxn Everyone loves a lover. 
Romeo loves Juliet. 
Therefore everyone loves Juliet. 

(4) ∃x¬Lxn (¬∀) on 3. 
ü 

(5) ¬Lan (∃) on 4. 

ü 

(6) ∀y(∃zLyz ⊃ Lay) (∀) on 1, a/x 
(7) (∃zLnz ⊃ Lan) (∀) on 6, n/y

(8) ¬∃zLnz Lan (g) on 7. 
   ∗ 

ü 

(9) ∀z¬Lnz (¬∃) on 8. 
ü 

(10) ¬Lnm (∀) on 9, m/z 

(11) ∀y(∃zLyz ⊃ Lny) (∀) on 1, n/x
(12) (∃zLmz ⊃ Lnm) (∀) on 11, m/y 

(13) ¬∃zLmz Lnm (g) on 12. 
   ∗ 

ü 

(14) ∀z¬Lmz (¬∃) on 13. 

ü 

(15) ¬Lmn (∀) on 14, n/z
∗ 



Claim:  ∀xFx ∴ ∃xFx is is a q-valid QL argument. 

Suppose:  q is any q-valuation such that ∀xFx ⇒q T. 

Then:  If they exist, all x-variants q+ of q are such that Fx ⇒q+ T. 

Now show:  There is at least one x-variant q+ of q. 

Note:  The domain of q contains at least one object (by definition); call it O. 

Now:  Let q' be an x-variant of q that assigns x to the object O. 

Then:  Fx ⇒q' T. 

Hence:  ∃xFx ⇒q T. 

But:  Is there a QL "tree proof" of this? 

(1)  ∀xFx
(2)  ¬∃xFx
(3)  ∀x¬Fx (¬∃) on 2.

ü 

•  Tree construction halts! 

•  The (∀) Rule requires a constant that already appears on the path. 

Proof: 



So:  Unless we modify the (∀) Rule, our tree-proof system won't be complete:  There 
will be QL arguments that are q-valid but don't have tree-proofs. 

Solution: 

(∀')  ∀vC(...v...v...) 
 | 

 C(...c...c...)  [c old or unprecedented] 

Add C(...c...c...) to an open path containing ∀vC(...v...v...), where c 
is either a constant on that path that hasn't already been used to 
instantiate ∀vC(...v...v...), or c is a new constant and there are no 
other constants appearing on that path.  Do not check it off. 

(1)  ∀xFx
(2)  ¬∃xFx
(3)  ∀x¬Fx (¬∃) on 2.

ü 

(4)  Fa (∀') on 1. 

(3)  ¬Fa (∀') on 3. 
 ∗ 



(8) (Ga ⊃ Ha) (∀') on 2, a/x

(9) ¬Fa Ha (g) on 7. 
∗

ü 

(1) ∀x(Fx ⊃ Hx) 
(2) ∀x(Gx ⊃ Hx) 
(3) ¬∀x(Fx ⊃ Gx)

Ex5.  ∀x(Fx ⊃ Hx), ∀x(Gx ⊃ Hx) ∴ ∀x(Fx ⊃ Gx) All cats are mammals. 
All dogs are mammals. 
Therefore all cats are dogs. 

•  Tree construction halts! 
•  Can't apply (∀') Rule anymore. 
•  The QL argument is not q-valid. 
•  But we should double-check by explicitly constructing a countermodel. 

(4) ∃x¬(Fx ⊃ Gx) (¬∀) on 3.
ü 

(5) ¬(Fa ⊃ Ga) (∃) on 4, a/x
ü 

(7) (Fa ⊃ Ha) (∀') on 1, a/x
ü 

(10) ¬Ga Ha (g) on 8. 

(6) Fa  
¬Ga (d) on 5. 

ü 



Task:  Define a q-valuation that makes {Fa, ¬Ga, Ha} all true, and check 
to make sure it also makes the premises true and the conclusion false. 

Q-valuation: 
(1)  Domain = {0} 
(2)  a ⇒ 0 
(3)  F ⇒ {0} 

 G ⇒ {} 
 H ⇒ {0} 

Check: 
Fa ⇒q T 
¬Ga ⇒q T 
Ha ⇒q T 

Claim 1:  ∀x(Fx ⊃ Hx) ⇒q T 

Proof: 
Note:  There's only one x-variant q+ of q, and it assigns x to 0. 
And:  Fx ⇒q+ T, since 0 is in the extension of F. 
And:  Hx ⇒q+ T, since 0 is in the extension of H. 
So:  (Fx ⊃ Hx) ⇒q+ T. 
Thus:  All x-variants of q make (Fx ⊃ Hx) true. 
Hence:  ∀x(Fx ⊃ Hx) ⇒q T 

• The primitive wffs that turned out true are {Fa, ¬Ga, Ha}. 
• The corresponding vocabulary is V = {a, F, G, H}. 



Proof: 
Note:  There's only one x-variant q+ of q, and it assigns x to 0. 
And:  Gx ⇒q+ F, since 0 is not in the extension of G. 
So:  (Gx ⊃ Hx) ⇒q+ T. 
Thus:  All x-variants of q make (Gx ⊃ Hx) true. 
Hence:  ∀x(Gx ⊃ Hx) ⇒q T 

Claim 2:  ∀x(Gx ⊃ Hx) ⇒q T 

Task:  Define a q-valuation that makes {Fa, ¬Ga, Ha} all true, and check 
to make sure it also makes the premises true and the conclusion false. 

Q-valuation: 
(1)  Domain = {0} 
(2)  a ⇒ 0 
(3)  F ⇒ {0} 

 G ⇒ {} 
 H ⇒ {0} 

Check: 
Fa ⇒q T 
¬Ga ⇒q T 
Ha ⇒q T 

• The primitive wffs that turned out true are {Fa, ¬Ga, Ha}. 
• The corresponding vocabulary is V = {a, F, G, H}. 



Claim 3:  ∀x(Fx ⊃ Gx) ⇒q F 

Task:  Define a q-valuation that makes {Fa, ¬Ga, Ha} all true, and check 
to make sure it also makes the premises true and the conclusion false. 

Q-valuation: 
(1)  Domain = {0} 
(2)  a ⇒ 0 
(3)  F ⇒ {0} 

 G ⇒ {} 
 H ⇒ {0} 

Check: 
Fa ⇒q T 
¬Ga ⇒q T 
Ha ⇒q T 

• The primitive wffs that turned out true are {Fa, ¬Ga, Ha}. 
• The corresponding vocabulary is V = {a, F, G, H}. 

Proof: 
Note:  There's only one x-variant q+ of q, and it assigns x to 0. 
And:  Fx ⇒q+ T, since 0 is in the extension of F. 
And:  Gx ⇒q+ F, since 0 is not in the extension of G. 
So:  (Fx ⊃ Gx) ⇒q+ F. 
Thus:  Not all x-variants of q make (Fx ⊃ Gx) true. 
Hence:  ∀x(Gx ⊃ Hx) ⇒q F. 


