Chapter 29: QL Trees

(a) $\begin{gathered}\neg \neg \mathrm{A} \checkmark \\ \\ \mathrm{A}\end{gathered}$
(b) $\begin{gathered}(A \wedge B) \checkmark \\ \mid \\ A \\ B\end{gathered}$

Add A, B to each open path containing $(A \wedge B)$. Check it off

Add $\neg A, \neg B$ to each open path containing $\neg(A \vee B)$. Check it off

Add $A, \neg B$ to each open path containing $\neg(A \supset B)$. Check it off
(e)

(g)

(h)

(i)

Add a fork with A, B as separate branches to each open path containing $(A \vee B)$. Check it off

Add a fork with $\neg A, \neg B$ as separate branches to each open path containing $\neg(A \wedge B)$. Check it off

Add a fork with $\neg A, B$ as separate branches to each open path containing $(A \supset B)$. Check it off

Add a fork with A, B and $\neg A, \neg B$ as separate branches to each open path containing $(A \equiv B)$. Check it off

Add a fork with $A, \neg B$ and $\neg A, B$ as separate branches to each open path containing $\neg(A \equiv B)$. Check it off

Ex1. $\exists \mathrm{xFx}, \forall \mathrm{x} \forall \mathrm{y}(\mathrm{Fy} \supset \neg \mathrm{Lxy}) \therefore \exists \mathrm{x} \forall \mathrm{y} \neg \mathrm{Lyx}$

$$
\begin{equation*}
\forall x \forall y(F y \supset \neg L x y) \tag{1}
\end{equation*}
$$

y \neg Lya \checkmark
$\neg \neg$ Lba

$$
\begin{equation*}
(\mathrm{Fa} \supset \neg \mathrm{Lba}) \checkmark \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\forall y(F y \supset \neg L b y) \tag{8}
\end{equation*}
$$

$(\neg \exists)$ on 3.
(\exists) on 1.
(\forall) on 4.
$(\neg \forall)$ on 6.
(\exists) on 7 .
(\forall) on 2.
(\forall) on 9 .
(g) on 10 .

Ex2. $\quad \forall \mathrm{x} \exists \mathrm{y}(\mathrm{Fy} \wedge \mathrm{Lxy}), \forall \mathrm{x} \forall \mathrm{y}(\mathrm{Lxy} \supset \mathrm{Mxy}) \therefore \forall \mathrm{x} \exists \mathrm{y}(\mathrm{Fy} \wedge \mathrm{Mxy})$

$$
\begin{equation*}
\forall x \forall y(L x y \supset M x y) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\neg \forall x \exists y(\mathrm{Fy} \wedge \mathrm{Mxy}) \checkmark \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\exists x \neg \exists y(F y \wedge M x y) \checkmark \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\neg \exists y(F y \wedge \text { May }) \checkmark \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\forall \mathrm{y} \neg(\mathrm{Fy} \wedge \mathrm{May}) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\exists y(\text { Fy } \wedge \text { Lay }) \checkmark \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\forall y(\text { Lay } \supset \text { May) } \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{Fb} \wedge \mathrm{Lab}) \checkmark \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\neg(\mathrm{Fb} \wedge \mathrm{Mab}) \checkmark \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{Lab} \supset \mathrm{Mab}) \checkmark \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\forall x \exists y(F y \wedge L x y) \tag{1}
\end{equation*}
$$

Fb

(b) on 9 .
(f) on 10 .
(g) on 11 .

$$
\forall \mathrm{x}(\mathrm{Gx} \supset \neg \exists \mathrm{y}(\mathrm{Fy} \wedge \mathrm{Lxy})),(\mathrm{Gm} \wedge \forall \mathrm{x}(\mathrm{Lxm} \supset \mathrm{Lmx})), \mathrm{Lnm} \therefore \neg \mathrm{Fn}
$$

$$
\begin{equation*}
\forall x(\mathrm{Gx} \supset \neg \exists \mathrm{y}(\mathrm{Fy} \wedge \mathrm{Lxy})) \tag{1}
\end{equation*}
$$

$$
(\mathrm{Gm} \wedge \forall x(\mathrm{Lxm} \supset \mathrm{Lmx})) \checkmark
$$

Lnm

Gm $\forall x(\mathrm{Lxm} \supset \mathrm{Lmx})$ $(G m \supset \neg \exists y(F y \wedge L m y))^{\checkmark}$

*

No girl loves any sexist pig.
Caroline is a girl who loves whoever loves her. Henry loves Caroline.
Thus Henry isn't a sexist pig.

$$
\begin{equation*}
\neg \neg F n \tag{4}
\end{equation*}
$$

(b) on 2 .
(\forall) on 1 .
(g) on 6.
$(\neg \exists)$ on 7.
(\forall) on 8 .
(f) on 9 .
$(\mathrm{Lnm} \supset \mathrm{Lmn}) \checkmark \quad(\forall)$ on 5.

(g) on 11 .

Ex4. $\quad \forall \mathbf{x} \forall \mathrm{y}(\exists \mathrm{zLyz} \supset \mathrm{Lxy}), \mathrm{Lmn} \therefore \forall \mathrm{xLxn}$
(1)
$\forall x \forall y(\exists z L y z \supset L x y)$
Lmn
$\neg \forall x L x n \checkmark$
$\exists x \neg L x n \checkmark$
\neg Lan
$\forall y(\exists z L y z ~ \supset$ Lay $)$
$\begin{array}{cc} \\ \neg \exists \mathrm{zLnz} \checkmark & \text { Lan } \\ \forall \mathrm{z} \neg \mathrm{Lnz} & *\end{array}$

Everyone loves a lover.
Romeo loves Juliet.
Therefore everyone loves Juliet.
$(\neg \forall)$ on 3.
(\exists) on 4 .
(\forall) on $1, a / x$
(\forall) on $6, \mathrm{n} / \mathrm{y}$
(g) on 7.
$(\neg \exists)$ on 8 .
(\forall) on $9, m / z$
(\forall) on $1, \mathrm{n} / \mathrm{x}$
(\forall) on $11, m / y$
(g) on 12 .
$(\neg \exists)$ on 13.
(\forall) on $14, \mathrm{n} / \mathrm{z}$

Claim: $\forall \mathrm{xFx} \therefore \exists \mathrm{xFx}$ is is a q-valid $\mathbf{Q L}$ argument.

Proof:

Suppose: q is any q-valuation such that $\forall \mathrm{xFx} \Rightarrow_{q} \mathrm{~T}$.
Then: If they exist, all x-variants q^{+}of q are such that $\mathrm{Fx} \Rightarrow_{q+} \mathrm{T}$.
Now show: There is at least one x-variant q^{+}of q.
Note: \quad The domain of q contains at least one object (by definition); call it \mathcal{O}.
Now: Let q^{\prime} be an x-variant of q that assigns \mathbf{x} to the object \mathcal{O}.
Then: $\quad \mathrm{Fx} \Rightarrow_{q^{\prime}} \mathrm{T}$.
Hence: $\quad \exists \mathrm{xFx} \Rightarrow_{q} \mathrm{~T}$.
But: Is there a QL "tree proof" of this?
(1) $\quad \forall x F x$
(2) $\neg \exists \mathrm{xFx} \checkmark$
(3) $\quad \forall \mathrm{x} \neg \mathrm{Fx} \quad(\neg \exists)$ on 2 .

- Tree construction halts!
- The (\forall) Rule requires a constant that already appears on the path.

So: Unless we modify the (\forall) Rule, our tree-proof system won't be complete: There will be QL arguments that are q-valid but don't have tree-proofs.

Solution:

$\left(\forall^{\prime}\right) \quad \forall v C(\ldots v . . . v \ldots)$
$C(\ldots c . . . c \ldots) \quad[c$ old or unprecedented]
Add $C(\ldots c \ldots c . .$.$) to an open path containing \forall v C(\ldots v \ldots v \ldots)$, where c is either a constant on that path that hasn't already been used to instantiate $\forall v C(\ldots v \ldots v . .$.$) , or c$ is a new constant and there are no other constants appearing on that path. Do not check it off.
(1) $\quad \forall \mathrm{xFx}$
(2) $\neg \exists \mathrm{xFx} \checkmark$

$$
\begin{array}{cl}
\forall \mathrm{x} \neg \mathrm{Fx} & (\neg \exists) \text { on } 2 . \\
\mathrm{Fa} & \left(\forall^{\prime}\right) \text { on } 1 . \\
\neg \mathrm{Fa} & \left(\forall^{\prime}\right) \text { on } 3 .
\end{array}
$$

Ex5. $\quad \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Hx}), \forall \mathrm{x}(\mathrm{Gx} \supset \mathrm{Hx}) \therefore \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx})$
(1)

$$
\forall x(F x \supset H x)
$$

$$
\forall x(G x \supset H x)
$$

$$
\neg \forall x(\mathrm{Fx} \supset \mathrm{Gx})^{\checkmark}
$$

$$
\exists \mathrm{x} \neg(\mathrm{Fx} \supset \mathrm{Gx}) \checkmark
$$

$$
\neg(\mathrm{Fa} \supset \mathrm{Ga})^{\checkmark}
$$

Fa

$$
\neg G a
$$

$$
(\mathrm{Fa} \supset \mathrm{Ha})^{\checkmark}
$$

All cats are mammals. All dogs are mammals. Therefore all cats are dogs.
$(\neg \forall)$ on 3.
(\exists) on $4, \mathrm{a} / \mathrm{x}$
(d) on 5 .
$\left(\forall^{\prime}\right)$ on $1, a / x$
$\left(\forall^{\prime}\right)$ on $2, \mathrm{a} / \mathrm{x}$
(g) on 7 .
(g) on 8 .

- Tree construction halts!
- Can't apply (∇^{\prime}) Rule anymore.
- The QL argument is not q-valid.
- But we should double-check by explicitly constructing a countermodel.
- The primitive wffs that turned out true are $\{\mathrm{Fa}, \neg \mathrm{Ga}, \mathrm{Ha}\}$.
- The corresponding vocabulary is $V=\{\mathrm{a}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$.

Task: Define a q-valuation that makes $\{\mathrm{Fa}, \neg \mathrm{Ga}, \mathrm{Ha}\}$ all true, and check to make sure it also makes the premises true and the conclusion false.
Q-valuation:
(1) Domain $=\{0\}$
(2) $\mathrm{a} \Rightarrow 0$
(3) $\mathrm{F} \Rightarrow\{0\}$
$\mathrm{G} \Rightarrow\}$
$\mathrm{H} \Rightarrow\{0\}$

Claim 1: $\forall \mathbf{x}(\mathrm{Fx} \supset \mathrm{Hx}) \Rightarrow_{q} \mathrm{~T}$
Proof:
Note: There's only one x-variant q^{+}of q, and it assigns \mathbf{x} to 0 .
And: $\mathrm{Fx} \Rightarrow_{q+} \mathrm{T}$, since 0 is in the extension of F .
And: $\quad \mathrm{Hx} \Rightarrow_{q+} \mathrm{T}$, since 0 is in the extension of H .
So: $\quad(\mathrm{Fx} \supset \mathrm{Hx}) \Rightarrow_{q+} \mathrm{T}$.
Thus: All x-variants of q make ($\mathrm{Fx} \supset \mathrm{Hx}$) true.
Hence: $\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Hx}) \Rightarrow_{q} \mathrm{~T}$

- The primitive wffs that turned out true are $\{\mathrm{Fa}, \neg \mathrm{Ga}, \mathrm{Ha}\}$.
- The corresponding vocabulary is $V=\{\mathrm{a}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$.

Task: Define a q-valuation that makes $\{\mathrm{Fa}, \neg \mathrm{Ga}, \mathrm{Ha}\}$ all true, and check to make sure it also makes the premises true and the conclusion false.
Q-valuation:
(1) Domain $=\{0\}$
(2) $\mathrm{a} \Rightarrow 0$
(3) $\mathrm{F} \Rightarrow\{0\}$
$\mathrm{G} \Rightarrow\}$
$\mathrm{H} \Rightarrow\{0\}$

Claim 2: $\forall \mathbf{x}(\mathrm{Gx} \supset \mathrm{Hx}) \Rightarrow_{q} \mathrm{~T}$
Proof:
Note: There's only one x-variant q^{+}of q, and it assigns \mathbf{x} to 0 .
And: $\mathrm{Gx} \Rightarrow_{q+} \mathrm{F}$, since 0 is not in the extension of G .
So: $\quad(\mathrm{Gx} \supset \mathrm{Hx}) \Rightarrow_{q+} \mathrm{T}$.
Thus: All x-variants of q make $(\mathrm{Gx} \supset \mathrm{Hx})$ true.
Hence: $\forall \mathbf{x}(\mathrm{Gx} \supset \mathrm{Hx}) \Rightarrow_{q} \mathrm{~T}$

- The primitive wffs that turned out true are $\{\mathrm{Fa}, \neg \mathrm{Ga}, \mathrm{Ha}\}$.
- The corresponding vocabulary is $V=\{\mathrm{a}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$.

Task: Define a q-valuation that makes $\{\mathrm{Fa}, \neg \mathrm{Ga}, \mathrm{Ha}\}$ all true, and check to make sure it also makes the premises true and the conclusion false.

Q-valuation:
(1) Domain $=\{0\}$
(2) $\mathbf{a} \Rightarrow 0$
(3) $\mathrm{F} \Rightarrow\{0\}$
$\mathrm{G} \Rightarrow\}$
Check:
$\mathrm{Fa} \Rightarrow_{q} \mathrm{~T}$
$\neg \mathrm{Ga} \Rightarrow{ }_{q} \mathrm{~T}$
$\mathrm{Ha} \Rightarrow{ }_{q} \mathrm{~T}$

Claim 3: $\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q} \mathrm{~F}$

Proof:

Note: There's only one x-variant q^{+}of q, and it assigns \mathbf{x} to 0 .
And: $\mathrm{Fx} \Rightarrow_{q+} \mathrm{T}$, since 0 is in the extension of F .
And: $\mathrm{Gx} \Rightarrow_{q^{+}} \mathrm{F}$, since 0 is not in the extension of G .
So: $\quad(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q^{+}} \mathrm{F}$.
Thus: Not all x-variants of q make ($\mathrm{Fx} \supset \mathrm{Gx}$) true.
Hence: $\forall \mathrm{x}(\mathrm{Gx} \supset \mathrm{Hx}) \Rightarrow_{q} \mathrm{~F}$.

