Chapter 29: QL Trees

(a) -—A vV Add A to each open path containing ——A.
| Check it off
A
(b) (AN B) vV Add A, B to each open path containing (A A B).
| Check it off
A
B
(¢c) —(AV BV Add —A, =B to each open path containing —~(A V B).
| Check it off
-A
-B
(d —-(AD>B) v Add A, =B to each open path containing —(A D B).
| Check it off
A

/\
A - A
B -B

Add a fork with A, B as separate branches to each open
path containing (A V B). Check it off

Add a fork with —A, =B as separate branches to each
open path containing —(A A B). Check it off

Add a fork with —A, B as separate branches to each open
path containing (A D B). Check it off

Add a fork with A, B and —A, =B as separate branches
to each open path containing (A = B). Check it off

Add a fork with A, =B and —A, B as separate branches
to each open path containing —=(A = B). Check it off

—VoC v Add dv—C'to each open path containing —=VvC. Check it off.

Jo-C
—JvC v Add Vv—C to each open path containing —3vC. Check it off.
|
Vo O
Vol(...v...0...) Add ((...c...c...) to an open path containing
| Vou((...v...v...), where c is a constant on that path
(...c...c...) |cold] which hasn't already been used to instantiate
Vo((...v...v...). Do not check it off.
Jvl(...v..v...) v Add ((...c...c...) to all open paths containing
| Jv((...v...v...), where ¢ is a constant new to the
(...c...c...) [c new] paths. Check it off.
Aduvice

(1) Deal with negated quantifiers first.

(2) Instantiate existentials before universals.

AxFx, Vxvy(Fy D —Lxy) ... Ixvy-Lyx

IXFx v
Vxvy(Fy D —Lxy)
—IXVy-Lyx v
IX—Vy-Lyx
Fa
—Vy-Lya v/
Jy—--lLya v
——-Lba
Vy(Fy D —Lby)
(Fa D —Lba) v

/\

—-Fa —Lba

3
NS

(NORE

N O Ot = W
_ o — D D D O —

—_ O o0
o
N——

s Y N Y N Y Y Y - N N i Y N
—_
—_
~—

vx3ay(Fy A Lxy), VxVy(Lxy D Mxy) ... Vx3y(Fy A Mxy)

Vx3y(Fy A Lxy)
VxVy(Lxy D Mxy)
=vx3dy(Fy A Mxy) v/
Ix—3y(Fy A Mxy) v

—3y(Fy A May) v

Vy—=(Fy A May)

dy(Fy A Lay) v/

Vy(Lay D May)

(Fb A Lab) v
—(Fb A Mab) v/
(Lab > Mab) v

Fb
Lab
-Mab
/\
—Lab Mab

E S S

x5 Vx(Gx D —3y(Fy A Lxy)), (Gm A Vx(Lxm D Lmx)), Lnm .. =Fn
(1) Vx(Gx D —3y(Fy A Lxy)) go gil%"l loves ap}lf seflcisil: pig.) 1)
(2) (Gm /\ vx(Lxm D me)) \/ szi;ﬁi\izsag;oﬁvneo oves wioever 10ves ner.
(3) Lnm Thus Henry isn't a sexist pig.
(5) Gm (b) on 2.
Vx(Lxm D Lmx)
(6) (Gm D =3y (Fy A Lmy)) v (V) on 1.
(7) -Gm —3y(Fy A Lmy) v/ (g) on 6.
(8) i Vy—(Fy A Lmy) (—3) on 7.
(9) —(Fn A Lmn)v (V) on 8.
(10) —Fn —Lmn (f) on 9.

i (Lnm D Lmn)v (V) on 5.

/\

(12) —Lnm Lmn (g) on 11.

ES x

5

DN

N TN 7N N N N N
e~ W
N— N T N N N

-J

ot

oo

AN N N N N
—_

VxVy(dzLyz O Lxy), Lmn . ¥xLxn

VxVy(dzLyz O Lxy)
Lmn
—VxLxn v/

Ix—-Lxn v’
—Lan
Vy(dzLyz O Lay)
(3zLnz O Lan)v

“

—dzLnz v Lan
Vz—-Lnz *
—Lnm

Vy(3zLyz O Lny)
(3zLmz > Lnm) v

/\

—3zLmz v/ Lnm
VYz-Lmz *
-Lmn

x

Everyone loves a lover.
Romeo loves Juliet.
Therefore everyone loves Juliet.

(—3) on 13.
(V) on 14, n/z

Claim: VXFx ... IxFx is is a ¢-valid QL argumentﬁ

Proof:
Suppose: q is any g¢-valuation such that VxFx = T.

Then: If they exist, all z-variants ¢ of q are such that Fx =, T.

Now show: There is at least one wx-variant ¢ of g¢.

Note: The domain of ¢ contains at least one object (by definition); call it O.
Now: Let ¢’ be an z-variant of ¢ that assigns X to the object O.

Then: Fx =, T.

Hence: IxFx = T.

But: Is there a QL "tree proof" of this?

(1) VxFx
(2) —3IXFX v/
(3) VX—FXx (—E|) on 2.

e Tree construction halts!

e The (V) Rule requires a constant that already appears on the path.

So: Unless we modify the (V) Rule, our tree-proof system won't be complete:

will be QL arguments that are ¢-valid but don't have tree-proofs.

Solution:

(V" VvC’(...lv...v...)

(...c...c...) |c old or unprecedented]

Add ((...c...c...) to an open path containing Vo((...v...v...), where ¢
is either a constant on that path that hasn't already been used to
instantiate VoC(...v...v...), or ¢ is a new constant and there are no
other constants appearing on that path. Do not check it off.

(1) VXFXx

(2) —3IXFX v/

(3) VX—FXx (—3) on 2.
(4) Fa (V) on 1.
(3) —Fa (V') on 3.

*

There

S
S

(10)

VX(Fx D Hx), ¥x(Gx D Hx)

VX(Fx D Hx)
Vx(Gx D Hx)
—Vx(Fx D Gx) v/

Ix-(Fx D Gx) v
-~(Fa>Ga)v
Fa

-Ga
(Fa>Ha)v

(GaD>Ha)v

/\

—-Fa Ha

- YX(Fx D Gx)

N /\

-Ga

Tree construction halts!
Can't apply (V') Rule anymore.
The QL argument is not g-valid.

Ha

All cats are mammals.
All dogs are mammals.
Therefore all cats are dogs.

(=V) on 3.
(3) on 4, a/x

(d) on 5.
(V) on 1, a/x
(V) on 2, a/x

(g) on 7.

(g) on 8.

But we should double-check by explicitly constructing a countermodel.

e The primitive wffs that turned out true are {Fa, -Ga, Ha}.
e The corresponding vocabulary is V = {a, F, G, H}.

Task: Define a ¢-valuation that makes {Fa, -Ga, Ha} all true, and check
to make sure it also makes the premises true and the conclusion false.

E Q-valuation: ! .

' (1) Domain = {0} | |Lheck

| ' Fa= T
' (3) F= {0} | ;a:>rqr
! G = {} ! a=,

| H = {0} :

Claim 1: VX(Fx D Hx) = T ﬁ

Proof:

Note: There's only one a-variant ¢" of ¢, and it assigns X to O.
And: Fx =, T, since 0 is in the extension of F.

And: Hx =, T, since 0 is in the extension of H.

So: (Fx D Hx) =, T.

Thus: All a-variants of ¢ make (Fx D HX) true.

Hence: VX(FXx D Hx) = T

e The primitive wffs that turned out true are {Fa, -Ga, Ha}.
e The corresponding vocabulary is V = {a, F, G, H}.

Task: Define a ¢-valuation that makes {Fa, -Ga, Ha} all true, and check
to make sure it also makes the premises true and the conclusion false.

i Q-valuation: : .

' (1) Domain = {0} Ulaecls

: ! Fa= T

1 (2) a=0 ! G q -
' (3) F= {0} ..
| G={} : 4=,

' H= {0} |

Claim 2: VX(Gx D Hx) = Tﬁ

Proof:

Note: There's only one z-variant ¢ of ¢, and it assigns X to 0.
And: Gx = .+ I, since 0 is not in the extension of G.

So: (Gx D Hx) =, T.

Thus: All z-variants of ¢ make (Gx D Hx) true.

Hence: vx(Gx D Hx) =, T

e The primitive wffs that turned out true are {Fa, -Ga, Ha}.
e The corresponding vocabulary is V = {a, F, G, H}.

Task: Define a ¢-valuation that makes {Fa, -Ga, Ha} all true, and check
to make sure it also makes the premises true and the conclusion false.

E Q-valuation: ! .

' (1) Domain = {0} | |Lheck

| ' Fa= T
' (3) F= {0} | ;a:>rqr
! G = {} ! a=,

| H = {0} :

Claim 3: VX(Fx D Gx) =, Fj

Proof:

Note: There's only one z-variant ¢ of ¢, and it assigns X to 0.
And: Fx =, T, since 0 is in the extension of F.

And: Gx =, F, since 0 is not in the extension of G.

So: (Fx > Gx) =, F.

Thus: Not all z~variants of ¢ make (Fx D Gx) true.

Hence: ¥x(Gx D Hx) = F.

