Chapter 29: QL Trees

B

 $\neg B$

(a) $\neg \neg A \checkmark$ Add A to each open path containing $\neg \neg A$. | A Check it off

(b) $(A \land B) \checkmark$ Add A, B to each open path containing $(A \land B)$. | ACheck it off

(c) $\neg (A \lor B) \checkmark$ Add $\neg A$, $\neg B$ to each open path containing $\neg (A \lor B)$. | Check it off $\neg A$

(d) $\neg(A \supset B) \checkmark$ Add $A, \neg B$ to each open path containing $\neg(A \supset B)$. $| \qquad \qquad \\ A \\ \neg B$

Add a fork with A, B as separate branches to each open path containing $(A \lor B)$. Check it off

Add a fork with $\neg A$, $\neg B$ as separate branches to each open path containing $\neg(A \land B)$. Check it off

Add a fork with $\neg A$, B as separate branches to each open path containing $(A \supset B)$. Check it off

Add a fork with A, B and $\neg A$, $\neg B$ as separate branches to each open path containing $(A \equiv B)$. Check it off

Add a fork with A, $\neg B$ and $\neg A$, B as separate branches to each open path containing $\neg(A \equiv B)$. Check it off

$$(\neg \forall) \qquad \neg \forall vC \checkmark$$
$$|$$
$$\exists v \neg C$$
$$(\neg \exists) \qquad \neg \exists vC \checkmark$$

 $\forall v \neg C$

Add $\exists v \neg C$ to each open path containing $\neg \forall vC$. Check it off.

Add $\forall v \neg C$ to each open path containing $\neg \exists v C$. Check it off.

$$\begin{array}{ccc} (\forall) & \forall v C(\dots v \dots v \dots) \\ & & & | \\ & C(\dots c \dots c \dots) & [c \text{ old}] \end{array} \end{array}$$

Add C(...c...c...) to an open path containing $\forall vC(...v...v...)$, where c is a constant on that path which hasn't already been used to instantiate $\forall vC(...v...v...)$. **Do not check it off**.

$$\exists) \quad \exists v C(\dots v \dots v \dots) \checkmark$$
$$| \\ C(\dots c \dots c \dots) \quad [c \text{ new}]$$

Add C(...c...c...) to all open paths containing $\exists v C(...v...v...)$, where c is a constant **new** to the paths. Check it off.

<u>Advice</u>

- (1) Deal with negated quantifiers first.
- (2) Instantiate existentials before universals.

(¬∃) on 3.
(∃) on 1.
(∀) on 4.
(¬∀) on 6.
(∃) on 7.
(∀) on 2.
(∀) on 9.

(g) on 10.

(1) $\forall \mathbf{x} \exists \mathbf{y} (\mathbf{F} \mathbf{y} \land \mathbf{L} \mathbf{x} \mathbf{y})$	
(2) $\forall \mathbf{x} \forall \mathbf{y} (\mathbf{L} \mathbf{x} \mathbf{y} \supset \mathbf{M} \mathbf{x} \mathbf{y})$	
(3) $\neg \forall \mathbf{x} \exists \mathbf{y} (\mathbf{F} \mathbf{y} \land \mathbf{M} \mathbf{x} \mathbf{y}) \checkmark$	
(4) $\exists \mathbf{x} \neg \exists \mathbf{y} (\mathbf{F} \mathbf{y} \land \mathbf{M} \mathbf{x} \mathbf{y}) \checkmark$ $(\neg \forall$	\neq) on 3.
(5) $\neg \exists \mathbf{y} (\mathbf{F}\mathbf{y} \land \mathbf{M}\mathbf{a}\mathbf{y}) \checkmark$ (\exists)	on 4.
(6) $\forall \mathbf{y} \neg (\mathbf{F} \mathbf{y} \land \mathbf{M} \mathbf{a} \mathbf{y})$ $(\neg \exists$	\exists) on 5.
(7) $\exists \mathbf{y}(\mathbf{F}\mathbf{y} \wedge \mathbf{L}\mathbf{a}\mathbf{y}) \checkmark$ (\forall)	on 1.
(8) $\forall \mathbf{y}(\mathbf{Lay} \supset \mathbf{May})$ (\forall)	on 2.
(9) $(Fb \land Lab) \checkmark$ (\exists)	on 7.
(10) $\neg (Fb \land Mab) \checkmark$ (\forall)	on 6.
(11) $(Lab \supset Mab) \checkmark$ (\forall)	on 8.
(12) Fb (b) Lab	on 9.
(13) $\neg Fb$ $\neg Mab$ (f)	on 10.
(14) * $\neg Lab$ Mab (g) * (g)	on 11.

Everyone loves a lover. Romeo loves Juliet. Therefore everyone loves Juliet. $(\neg \forall)$ on 3. (\exists) on 4. $(\forall) \text{ on } 1, \mathbf{a}/\mathbf{x}$ $(\forall) \text{ on } 6, \mathbf{n/y}$ (g) on 7. $(\neg \exists)$ on 8. $(\forall) \text{ on } 9, \mathbf{m/z}$ $(\forall) \text{ on } 1, \mathbf{n/x}$ (\forall) on 11, m/y (g) on 12. $(\neg \exists)$ on 13.

 $(\forall) \text{ on } 14, \mathbf{n/z}$

<u>*Claim*</u>: $\forall \mathbf{x} \mathbf{F} \mathbf{x} \therefore \exists \mathbf{x} \mathbf{F} \mathbf{x} \text{ is is a } q \text{-valid } \mathbf{QL} \text{ argument.}$

Proof:

<u>Suppose</u>: q is any q-valuation such that $\forall \mathbf{xFx} \Rightarrow_q \mathbf{T}$.

<u>Then</u>: If they exist, all x-variants q^+ of q are such that $\mathsf{Fx} \Rightarrow_{q^+} \mathsf{T}$.

<u>Now show</u>: There is at least one x-variant q^+ of q.

<u>Note</u>: The domain of q contains at least one object (by definition); call it \mathcal{O} .

<u>Now</u>: Let q' be an x-variant of q that assigns \mathbf{x} to the object \mathcal{O} .

<u>*Then*</u>: $\mathbf{Fx} \Rightarrow_{q'} \mathbf{T}.$

<u>*Hence*</u>: $\exists \mathbf{x} \mathbf{F} \mathbf{x} \Rightarrow_q \mathbf{T}.$

<u>But:</u> Is there a **QL** "tree proof" of this?

(1) $\forall \mathbf{xFx}$

(2) ¬∃**xFx ✓**

- (3) $\forall \mathbf{x} \neg \mathbf{F} \mathbf{x}$ $(\neg \exists)$ on 2.
- Tree construction halts!
- The (\forall) Rule requires a constant that already appears on the path.

<u>So</u>: Unless we modify the (\forall) Rule, our tree-proof system won't be complete: There will be **QL** arguments that are q-valid but don't have tree-proofs.

Solution:

$$\begin{array}{ccc} (\forall') & \forall v C(\dots v \dots v \dots) \\ & & & \\ & & C(\dots c \dots c \dots) \end{array} & [c \text{ old or unprecedented}] \end{array}$$

Add C(...c...c...) to an open path containing $\forall vC(...v...v...)$, where c is either a constant on that path that hasn't already been used to instantiate $\forall vC(...v...v...)$, or c is a new constant and there are no other constants appearing on that path. **Do not check it off**.

- (1) $\forall \mathbf{xFx}$
- (2) ¬∃**xFx ✓**
- (3) $\forall \mathbf{x} \neg \mathbf{F} \mathbf{x}$ ($\neg \exists$) on 2.
- (4) Fa (\forall') on 1.
- (3) $\neg \mathsf{Fa}$ (\forall') on 3.

*

- Tree construction halts!
- Can't apply (\forall') Rule anymore.
- The **QL** argument is not q-valid.
- But we should double-check by explicitly constructing a countermodel.

- The primitive *wffs* that turned out true are $\{Fa, \neg Ga, Ha\}$.
- The corresponding vocabulary is $V = \{a, F, G, H\}$.

<u>*Task*</u>: Define a *q*-valuation that makes $\{Fa, \neg Ga, Ha\}$ all true, and check to make sure it also makes the premises true and the conclusion false.

Claim 1:
$$\forall \mathbf{x}(\mathsf{F}\mathbf{x} \supset \mathsf{H}\mathbf{x}) \Rightarrow_q T^{\mathsf{b}}$$

Proof:

- <u>Note:</u> There's only one x-variant q^+ of q, and it assigns \mathbf{x} to 0.
- <u>And</u>: $F\mathbf{x} \Rightarrow_{q+} T$, since 0 is in the extension of F.
- <u>And</u>: $\mathsf{Hx} \Rightarrow_{q+} \mathsf{T}$, since 0 is in the extension of H .
- <u>So</u>: $(\mathsf{Fx} \supset \mathsf{Hx}) \Rightarrow_{q+} \mathsf{T}.$
- <u>*Thus*</u>: All *x*-variants of q make ($\mathsf{Fx} \supset \mathsf{Hx}$) true.

<u>Hence</u>: $\forall \mathbf{x}(\mathbf{F}\mathbf{x} \supset \mathbf{H}\mathbf{x}) \Rightarrow_q T$

- The primitive *wffs* that turned out true are $\{Fa, \neg Ga, Ha\}$.
- The corresponding vocabulary is $V = \{a, F, G, H\}$.

<u>*Task*</u>: Define a *q*-valuation that makes $\{Fa, \neg Ga, Ha\}$ all true, and check to make sure it also makes the premises true and the conclusion false.

$$\underline{Claim \ 2}: \ \forall \mathbf{x}(\mathbf{G}\mathbf{x} \supset \mathbf{H}\mathbf{x}) \Rightarrow_q \mathbf{T}$$

<u>Proof</u>:

- <u>Note:</u> There's only one x-variant q^+ of q, and it assigns **x** to 0.
- <u>And</u>: $\mathbf{Gx} \Rightarrow_{q+} \mathbf{F}$, since 0 is not in the extension of \mathbf{G} .
- $\underline{So}: \qquad (\mathbf{Gx} \supset \mathbf{Hx}) \Rightarrow_{q+} \mathbf{T}.$
- <u>*Thus*</u>: All *x*-variants of q make ($\mathbf{Gx} \supset \mathbf{Hx}$) true.

Hence:
$$\forall \mathbf{x}(\mathbf{G}\mathbf{x} \supset \mathbf{H}\mathbf{x}) \Rightarrow_q \mathbf{T}$$

- The primitive *wffs* that turned out true are $\{Fa, \neg Ga, Ha\}$.
- The corresponding vocabulary is $V = \{a, F, G, H\}$.

<u>*Task*</u>: Define a *q*-valuation that makes $\{Fa, \neg Ga, Ha\}$ all true, and check to make sure it also makes the premises true and the conclusion false.

 $\underline{Claim \ 3}: \ \forall \mathbf{x}(\mathbf{F}\mathbf{x} \supset \mathbf{G}\mathbf{x}) \Rightarrow_q \mathbf{F}$

<u>Proof</u>:

- <u>Note:</u> There's only one x-variant q^+ of q, and it assigns **x** to 0.
- <u>And</u>: $F\mathbf{x} \Rightarrow_{q+} T$, since 0 is in the extension of F.
- <u>And</u>: $\mathbf{Gx} \Rightarrow_{q+} \mathbf{F}$, since 0 is not in the extension of \mathbf{G} .
- $\underline{So}: \qquad (\mathsf{Fx} \supset \mathsf{Gx}) \Rightarrow_{q+} \mathrm{F}.$
- <u>*Thus*</u>: Not all *x*-variants of q make ($Fx \supset Gx$) true.
- <u>*Hence*</u>: $\forall \mathbf{x}(\mathbf{Gx} \supset \mathbf{Hx}) \Rightarrow_q \mathbf{F}.$