Chapter 28: Q-Validity

In PL:

The PL wffs $A_{1}, \ldots, A_{n} \underline{\text { tautologically entail the } \mathbf{P L} w f f ~ C \text { just when }}$ there is no PL valuation that makes A_{1}, \ldots, A_{n} true and C false.

An argument in PL is tautologically valid just when its premises tautologically entail its conclusion.

In QL:
The QL closed wffs $A_{1}, \ldots, A_{n} \underline{q}$-entail the $\mathbf{Q L}$ closed $w f f C$ just when there is no q-valuation of the vocabulary V associated with these wff that makes A_{1}, \ldots, A_{n} true and C false.

An argument in QL is \boldsymbol{q}-valid just when its premises q-entail its conclusion.

A q-valuation q satisfies a set of closed wffs (or is a $\underline{\text { model }}$ of this set) just when q makes all the wffs true.

So: An argument in QL is q-valid just when there is no model of its premises and negated conclusion.

A countermodel of an argument in QL is a q-valuation that makes its premises true and its conclusion false.

A \boldsymbol{g}-logical truth is a closed $\mathbf{Q L}$ wff that is true on all q-valuations of its vocabulary.

Ex1: $\quad \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}), \mathrm{Fn} \therefore \mathrm{Gn} \quad q$-valid?

$$
\left.\begin{array}{c}
\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q} \mathrm{~T} \\
\mathrm{Fn} \Rightarrow_{q} \mathrm{~T} \\
\neg \mathrm{Gn} \Rightarrow_{q} \mathrm{~T}
\end{array}\right\} \text { Assume a countermodel exists. }
$$

$(\mathrm{Fn} \supset \mathrm{Gn}) \Rightarrow{ }_{q} \mathrm{~T}$

> | No counterexample exists. |
| :--- |
| $\underline{S o: ~ Q L ~ a r g u m e n t ~ i s ~} q$-valid |

Ex2: $\exists \mathrm{xFx}, \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \therefore \exists \mathrm{xGx}$

$$
\left.\begin{array}{l}
\exists \mathrm{xFx} \Rightarrow_{q} \mathrm{~T} \tag{1}\\
\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q} \mathrm{~T} \\
\neg \exists \mathrm{xGx} \Rightarrow_{q} \mathrm{~T}
\end{array}\right\} \text { Assume a countermodel exists. }
$$

$$
\begin{equation*}
\mathrm{Fa} \Rightarrow_{q+} \mathrm{T} \tag{5}
\end{equation*}
$$

$$
\text { (V2) on } 1 .
$$

$$
\begin{equation*}
\forall \mathbf{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q+} \mathrm{T} \quad \text { (V5) on } 2 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{Fa} \supset \mathrm{Ga}) \Rightarrow_{q+} \mathrm{T} \quad(\mathrm{~V} 1) \text { on } 6 . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\forall x \neg G x \Rightarrow_{q+} T \tag{8}
\end{equation*}
$$

$$
\text { (V5) on } 4 .
$$

$$
\begin{equation*}
\text { (V1) on } 8 . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\forall \mathrm{x} \neg \mathrm{Gx} \Rightarrow_{q} \mathrm{~T} \quad \text { (V4) on } 3 \tag{4}
\end{equation*}
$$

$$
\neg \mathrm{Ga} \Rightarrow_{q+} \mathrm{T}
$$

No counterexample exists.
$\underline{\text { So: }} \mathbf{Q L}$ argument is q-valid.

Ex3: $\quad(\exists \mathbf{x}(\mathrm{Fx} \wedge \neg \mathrm{Gx}) \supset \neg \mathrm{Gn}), \mathrm{Gn} \therefore \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx})$
(5) $\quad \neg \exists \mathrm{x}(\mathrm{Fx} \wedge \neg \mathrm{Gx}) \Rightarrow{ }_{q} \mathrm{~T}$

$$
\neg \mathrm{Gn} \Rightarrow_{q} \mathrm{~T}
$$

(Q4) on 1.
(6) $\quad \forall \mathrm{x} \neg(\mathrm{Fx} \wedge \neg \mathrm{Gx}) \Rightarrow_{q} \mathrm{~T}$ (V4) on 5.
(7) $\neg(\mathrm{Fa} \supset \mathrm{Ga}) \Rightarrow_{q+} \mathrm{T} \quad$ (V2) on 4.
(8) $\forall \mathrm{x} \neg(\mathrm{Fx} \wedge \neg \mathrm{Gx}) \Rightarrow_{q_{+}} \mathrm{T} \quad$ (V5) on 6 .
(9) $\neg(\mathrm{Fa} \wedge \neg \mathrm{Ga}) \Rightarrow_{q+} \mathrm{T} \quad$ (V1) on 8 .

$$
\begin{equation*}
\neg \mathrm{Fa} \Rightarrow_{q+} \mathrm{T} \quad \neg \neg \mathrm{Ga} \Rightarrow_{q+} \mathrm{T} \quad \text { From } 9 \tag{12}
\end{equation*}
$$

No counterexample exists.
So: QL argument is q-valid.

