Chapter 27: Q-Valuations

The <u>vocabulary</u> V of a set of **QL** wffs is the set of constants and predicates that appear in those wffs.

A "q-valuation" for a set of wffs with vocabulary V does three things:

- 1. Fixes a domain of objects *D*. <u>*Convention*</u>: Must be non-empty, but can contain nameless objects.
- 2. Assigns to each constant in V, an object in D (its *reference*).
- 3. Assigns to each *n*-place predicate in V, a set of *n*-tuples of objects in D (its *extension*).

The <u>extension</u> of a predicate is the (ordered) set of objects that satisfy it.

 \underline{Ex} .Fmeans _____is wiseExtension of $F = \{ Yoda, Einstein, Socrates, Lao Tzu... \}$ Lmeans _____loves____Extension of $L = \{ \langle Barack, Michelle \rangle, \langle Hillary, Bill \rangle, \langle Angelina, Brad \rangle, ... \}$

An <u>*n-tuple*</u> is an ordered set of n objects.

<u><i>Ex.</i></u> 2-tuple: $\langle \text{Angelina, Brad} \rangle$	
--	--

3-tuple: $\langle \text{Socrates}, \text{Plato}, \text{Aristotle} \rangle$

So: A q-valutation assigns to each n-place predicate, the set of n-tuples that satisfy it.

Formal Definition of q-valuation:

A q-valuation on a vocabulary V of a set of wffs of QL

(1) specifies a non-empty set of objects as the domain D;

(2) assigns to any constant \mathbf{c}_k in V an object in D as its q-value;

(3) assigns to any 0-place predicate P_{k}^{0} in V a truth-value as its q-value;

(4) assigns to any *n*-place predicate P^{n}_{k} in V, n > 0, a (possibly empty) set of *n*-tuples of objects $\{\langle m_{1}, ..., m_{n} \rangle, ...\}$ in D as its *q*-value.

- The trickiest part of the semantics of **QL** involves the semantic rules for *Note*: quantifier expressions.
- How should the truth-conditions for " $\forall xFx$ " be set? Recall:
- <u>Suppose</u>: $\forall xFx$ is true just when all its instances in some vocabulary V are true:

 $\forall \mathbf{x} \mathbf{F} \mathbf{x} \text{ is true } if and only if (\mathbf{F} \mathbf{m} \land \mathbf{F} \mathbf{n} \land \mathbf{F} \mathbf{o} \land ...) \text{ is true.}$

- If the domain has nameless objects, it's possible for $(Fm \land Fn \land Fo \land ...)$ to be But: true, but $\forall xFx$ to be false!
- To allow for this, consider: So:

 $\forall \mathbf{x} \mathbf{F} \mathbf{x} \text{ is true } if and only if$ $\begin{pmatrix} \mathbf{F} \mathbf{x} \text{ is true, no matter } what \mathbf{x} \text{ refers to in} \\ \text{the domain (named or nameless objects)} \end{pmatrix}$

In general, consider:

(1) $\forall v C(vv)$	∀xFx	<u><i>Idea</i></u> : " v " stands for a generic variable. An
(2) $\exists v C(\dots v \dots v \dots)$	∃xFx	explicit example is the variable x . " $C(vv)$ " stands for a generic <i>wff</i> in which <i>v</i> occurs one
(3) $C(vv)$	Fx	or more times. An explicit example is Fx .

- (1) is true so long as (3) is true, no matter what the reference of the "pronoun" v is.
- (2) is true so long as (3) is true for at least *one* reference of the "pronoun" v.
- To implement this, need the notion of a "v-variant" of a q-valuation:

An <u>extended q-valuation</u> defined over vocabulary V is a q-valuation defined over V, augmented by an assignment of objects as q-values to one or more variables. σ

An extended q-valuation q' is a <u>*v-variant*</u> of another (extended) q-valuation q just when q' assigns some object to the variable v and otherwise agrees exactly with q.

<u>Now stipulate</u>:

$$\begin{cases} \forall vC(\dots v\dots v\dots) \text{ is true} \\ \text{under a } q\text{-valuation } q \end{cases} \quad if and only if \qquad \begin{cases} C(\dots v\dots v\dots) \text{ is true for} \\ \text{all } v\text{-variants of } q. \end{cases} \\ \begin{cases} \exists vC(\dots v\dots v\dots) \text{ is true} \\ \text{under a } q\text{-valuation } q \end{cases} \quad if and only if \qquad \begin{cases} C(\dots v\dots v\dots) \text{ is true for at} \\ \text{least one } v\text{-variant of } q. \end{cases}$$

The Semantic Rules for **QL**

Let " \Rightarrow_q T" mean "is true under q-valuation q".

(Q0) For atomic wff A

- (a) If n = 0, then $A \Rightarrow_q T$ if the q-value of A is T. Otherwise $A \Rightarrow_q F$.
- (b) If n > 0, then $A \Rightarrow_q T$ if the *n*-tuple formed by taking the *q*-values of the terms in A in order is an element of the *q*-value of A. Otherwise $A \Rightarrow_q F$.

How to unpack (Q0b):

- <u>Note</u>: An atomic wff A takes the form $\mathsf{P}^n_k t_1, ..., t_n$ where P^n_k is an *n*-place predicate and $t_1, ..., t_n$ are terms
- <u>Now</u>: The n-tuple formed by taking the q-values of the terms in A in order takes the form ⟨o₁, ..., o_n⟩, where each o_i (i = 1, ..., n) is the q-value of the term t_i in A.
 Each of the o_i is an object in D, so ⟨o₁, ..., o_n⟩ is an n-tuple of objects in D.
- <u>Also</u>: The q-value of A is the set {\langle m_1, ..., m_n \rangle, ...} of n-tuples that q assigns to A.
 Each n-tuple is an n-tuple of objects in D, and the set of all these n-tuples is the extension in D of the predicate Pⁿ_k.
- <u>So</u>: An atomic wff of the form $\mathsf{P}^n_k t_1, ..., t_n$ for n > 0 says "The things referred to by the terms $t_1, ..., t_n$ stand in the relation P^n_k ".
- <u>And</u>: (Q0b) says this is true under a q-valuation q just when the n objects in the domain specified by q to which q assigns $t_1, ..., t_n$ actually do stand in the relation P^n_k to each other.

- (Q1) For any wff A, $\neg A \Rightarrow_q T$ if $A \Rightarrow_q F$; otherwise $\neg A \Rightarrow_q F$.
- (Q2) For wffs A, B, $(A \land B) \Rightarrow_q T$ if both $A \Rightarrow_q T$ and $B \Rightarrow_q T$; otherwise $(A \land B) \Rightarrow_q F$.
- (Q3) For wffs $A, B, (A \lor B) \Rightarrow_q F$ if both $A \Rightarrow_q F$ and $B \Rightarrow_q F$; otherwise $(A \lor B) \Rightarrow_q T$.

(Q4) For wffs A, B, $(A \supset B) \Rightarrow_q F$ if $A \Rightarrow_q T$ and $B \Rightarrow_q F$; otherwise $(A \supset B) \Rightarrow_q T$.

- (Q5) For wffs A, B, $(A \equiv B) \Rightarrow_q T$ if $A \Rightarrow_q T$ and $B \Rightarrow_q T$, or if $A \Rightarrow_q F$ and $B \Rightarrow_q F$; otherwise $(A \equiv B) \Rightarrow_q F$.
- (Q6) For wff C(...v...v...) with variable v free, $\forall vC(...v...v...) \Rightarrow_q T$ if $C(...v...v...) \Rightarrow_{q^+} T$ for every v-variant q^+ of q; otherwise $\forall vC(...v...v...) \Rightarrow_q F$.
- (Q7) For wff $C(\dots v \dots v \dots)$ with variable v free, $\exists v C(\dots v \dots v \dots) \Rightarrow_q T$ if $C(\dots v \dots v \dots) \Rightarrow_{q^+} T$ for at least one v-variant q^+ of q; otherwise $\exists v C(\dots v \dots v \dots) \Rightarrow_q F$.

 $V = \{\mathsf{m}, \mathsf{n}, \mathsf{F}, \mathsf{G}, \mathsf{L}\}, \quad \{\forall \mathsf{x}\mathsf{F}\mathsf{x}, \forall \mathsf{y}\neg(\mathsf{F}\mathsf{y}\land\mathsf{G}\mathsf{y}), \forall \mathsf{x}\exists \mathsf{y}\mathsf{L}\mathsf{x}\mathsf{y}\}\}$ *Example*: To determine the truth-values of these wffs, first specify a q-valuation, call it q: (1)Domain $D = \{Socrates, Plato, Aristotle\}$ (2) $\mathbf{m} \Rightarrow Socrates, \mathbf{n} \Rightarrow Plato$ Assignment of constants in V: (3)Assignment of predicates in V: <u>Note</u>: D has a "nameless" $\mathsf{F} \Rightarrow \{\text{Socrates, Aristotle}\}\$ object: the Aristotle-object $\mathbf{G} \Rightarrow \{\}$ (empty set) $L \Rightarrow \{ \langle \text{Socrates, Plato} \rangle, \langle \text{Plato, Aristotle} \rangle, \langle \text{Plato, Socrates} \rangle, \langle \text{Aristotle, Aristotle} \rangle \}$ Under q, what is the truth-value of $\forall xFx$? $\forall \mathbf{x} \mathbf{F} \mathbf{x} \Rightarrow_{q} T$ just when $\mathbf{F} \mathbf{x} \Rightarrow_{q+} T$ for all x-variants q^{+} of q. (Q6) Note: Now: There are three possible x-variants of q: q_1 : $\mathbf{X} \Rightarrow Socrates$ q_2 : $\mathbf{X} \Rightarrow Plato$ q_3 : $\mathbf{X} \Rightarrow Aristotle$ $\mathsf{Fx} \Rightarrow_{q_1} \mathrm{T}, \mathsf{Fx} \Rightarrow_{q_2} \mathrm{F}, \mathsf{Fx} \Rightarrow_{q_2} \mathrm{T}.$ (Q0) <u>And</u>: Thus: Not all x-variants of q make Fx true.

<u>*Hence*</u>: $\forall \mathbf{xFx} \Rightarrow_q \mathbf{F}$

 $V = \{\mathsf{m}, \mathsf{n}, \mathsf{F}, \mathsf{G}, \mathsf{L}\}, \quad \{\forall \mathsf{x}\mathsf{F}\mathsf{x}, \forall \mathsf{y}\neg(\mathsf{F}\mathsf{y}\land\mathsf{G}\mathsf{y}), \forall \mathsf{x}\exists \mathsf{y}\mathsf{L}\mathsf{x}\mathsf{y}\}\}$ Example: To determine the truth-values of these wffs, first specify a q-valuation, call it q: (1)Domain $D = \{Socrates, Plato, Aristotle\}$ (2) $\mathbf{m} \Rightarrow Socrates, \mathbf{n} \Rightarrow Plato$ Assignment of constants in V: Assignment of predicates in V: (3)<u>Note</u>: D has a "nameless" $\mathsf{F} \Rightarrow \{\text{Socrates, Aristotle}\}\$ object: the Aristotle-object $\mathbf{G} \Rightarrow \{\}$ (empty set) $\mathsf{L} \Rightarrow \{ \langle \text{Socrates}, \text{Plato} \rangle, \langle \text{Plato}, \text{Aristotle} \rangle, \langle \text{Plato}, \text{Socrates} \rangle, \langle \text{Aristotle}, \text{Aristotle} \rangle \}$ Under q, what is the truth-value of $\forall y \neg (Fy \land Gy)$? $\forall \mathbf{y} \neg (\mathbf{F}\mathbf{y} \land \mathbf{G}\mathbf{y}) \Rightarrow_q T \text{ just when } \neg (\mathbf{F}\mathbf{y} \land \mathbf{G}\mathbf{y}) \Rightarrow_{q+} T \text{ for all y-variants } q^+ \text{ of } q.$ (Q6) Note: $\neg(\mathsf{Fy} \land \mathsf{Gy}) \Rightarrow_{a^+} T \text{ just when } (\mathsf{Fy} \land \mathsf{Gy}) \Rightarrow_{a^+} F. (Q1)$ And: $(\mathsf{Fy} \land \mathsf{Gy}) \Rightarrow_{+} F$ just when either $\mathsf{Fy} \Rightarrow_{q+} F$ or $\mathsf{Gy} \Rightarrow_{q+} F$. (Q2) And: For any y-variant q^+ , $\mathbf{Gy} \Rightarrow_{q^+} \mathbf{F}$. (Since the q^+ -value of \mathbf{G} is $\{\}$.) Now: So: $\forall \mathbf{y} \neg (\mathbf{F}\mathbf{y} \land \mathbf{G}\mathbf{y}) \Rightarrow_{a} \mathbf{T}.$

 $V = \{\mathsf{m}, \mathsf{n}, \mathsf{F}, \mathsf{G}, \mathsf{L}\}, \quad \{\forall \mathsf{x}\mathsf{F}\mathsf{x}, \forall \mathsf{y}\neg(\mathsf{F}\mathsf{y} \land \mathsf{G}\mathsf{y}), \forall \mathsf{x}\exists \mathsf{y}\mathsf{L}\mathsf{x}\mathsf{y}\}$ Example: To determine the truth-values of these wffs, first specify a q-valuation, call it q: (1)Domain $D = \{Socrates, Plato, Aristotle\}$ (2) $\mathbf{m} \Rightarrow Socrates, \mathbf{n} \Rightarrow Plato$ Assignment of constants in V: Assignment of predicates in V: (3)<u>Note</u>: D has a "nameless" $\mathsf{F} \Rightarrow \{\text{Socrates, Aristotle}\}\$ object: the Aristotle-object $\mathbf{G} \Rightarrow \{\} \quad (\text{empty set})$ $L \Rightarrow \{ \langle \text{Socrates, Plato} \rangle, \langle \text{Plato, Aristotle} \rangle, \langle \text{Plato, Socrates} \rangle, \langle \text{Aristotle, Aristotle} \rangle \}$ Under q, what is the truth-value of $\forall x \exists y \bot x ?$ $\forall x \exists y Lxy \Rightarrow_{q} T$ just when $\exists y Lxy \Rightarrow_{q+} T$ for all x-variants q^{+} of q. (Q6) Note: There are three possible x-variants of q: And: q_1 : $\mathbf{X} \Rightarrow Socrates$ q_2 : $\mathbf{X} \Rightarrow Plato$ q_3 : $\mathbf{X} \Rightarrow Aristotle$ $\exists y Lxy \Rightarrow_{a+} T$ just when $Lxy \Rightarrow_{a++} T$ for at least one y-variant q^{++} of q^{+} . (Q7) Now: And: There are three possible y-variants of q^+ : $q_1': \mathbf{y} \Rightarrow Socrates \qquad q_2': \mathbf{y} \Rightarrow Plato \qquad q_3': \mathbf{y} \Rightarrow Aristotle$ <u>Now Check</u>: For each q^+ , is there at least one q^{++} such that Lxy is true? For q_1 , there's q_2' . For q_2 , there're q_1' and q_3' . For q_3 , there's q_3' . For each q^+ , there is at least one q^{++} such that $\mathsf{Lxy} \Rightarrow_{q^{++}} \mathsf{T}$. Thus: $\forall \mathbf{x} \exists \mathbf{y} \mathbf{L} \mathbf{x} \mathbf{y} \Rightarrow_{a} \mathbf{T}.$ So:

(V1)	If a q-valuation	q makes a	universal	$\ quantification$	true,	it makes i	ts instances
	true, too:						

If a q-valuation makes $\forall vC(...v...v...)$ true, then, given q assigns a value to c, q makes C(...c...c...) true. And if q doesn't assign a value to c, there is an extension q^+ of q which does and which makes C(...c...c...) true.

Example:

<u>Suppose</u> :	q is a q -valuation defined for a vocabulary V that includes the constant
	n , and suppose $\forall \mathbf{x} \mathbf{F} \mathbf{x} \Rightarrow_q \mathbf{T}$.
<u>Then</u> :	Every x-variant of q makes Fx true. (Q6).
<u>Now</u> :	Suppose the q-value of n is the object \mathcal{O} .
<u>So</u> :	The x-variant q^+ which assigns x to \mathcal{O} makes Fx true.
<u>So</u> :	\mathcal{O} is in the extension of F.
<u>So</u> :	$Fn \Rightarrow_q \mathrm{T.} \ (\mathrm{Q0})$
Now supp	<u>bose</u> : V contains no constants, and $\forall \mathbf{xFx} \Rightarrow_q \mathbf{T}$.
<u>Then</u> :	There's at least one object in the domain of q (by definition): call it \mathcal{O} .
<u>Now</u> :	Define q^+ as the same as q except for assigning to \mathcal{O} the new constant a .
<u>Then</u> :	$Fa \Rightarrow_{q^+} T$, since \mathcal{O} is in the extension of F .

(V2) If a q-valuation q makes an existential quantification true, it has an extension which makes an instance of the quantification true:
If a q-valuation q makes ∃vC(...v...v...) true, and c is a constant not in the vocabulary of q, then there is an extension q⁺ of q which gives a q-value to c and makes C(...c...c...) true.

<i>Example</i> :	

<u>Suppose</u> :	The vocabulary V of a q-valuation q doesn't have the constant a . And suppose $\exists \mathbf{x} \mathbf{F} \mathbf{x} \Rightarrow_q \mathbf{T}$.
<u>Then</u> :	There's at least one x-variant of q that makes Fx true. (Q7)
So	There's some object in the domain (same for a and all variants)

- <u>So</u>: There's some object in the domain (same for q and all variants), call it \mathcal{O} , that can be assigned **x** so that **Fx** is true.
- <u>Now</u>: Let q^+ be an extension of q that agrees with q and assigns **a** to \mathcal{O} .

<u>Then</u>: $Fa \Rightarrow_{q^+} T.$

(V3)	If a q-valuation q makes $\neg \forall vC(vv)$) true,
	then it also makes true $\exists v \neg C(vv)$.	-

Example:

<u>Suppose</u> :	A q-valuation q makes $\neg \forall \mathbf{xFx}$ true.
Then:	$\forall \mathbf{xFx} \Rightarrow_q \mathbf{F}. (\mathbf{Q1})$
<u>So</u> :	Not all x-variants of q make Fx true. (There's at least one x-variant of q that makes Fx false.
<u>And</u> :	This x-variant makes $\neg Fx$ true.
<u>So</u> :	There's an x-variant of q that makes $\neg Fx$ true.
Thus:	$\exists \mathbf{x} \neg \mathbf{F} \mathbf{x} \Rightarrow_q T. (Q7)$

(V4) If a q-valuation q makes $\neg \exists v C(...v...v...)$ true, then it also makes true $\forall v \neg C(...v...v...)$.

(V5) Extending a q-valuation q to cover a new constant c doesn't affect the truth-values q assigns to wffs that do not contain c: Suppose a q-valuation q is defined on a vocabulary V that does not contain the constant c; and suppose q^+ is an extension of q that assigns to c some object in the domain. Let W be a wff using symbols in V. Then if $W \Rightarrow_q T$, then $W \Rightarrow_{q^+} T$.