Chapter 26: The Syntax of QL

<u>Alphabet</u>:

a, b, c, m, n, o, ..., c_k W, X, Y, Z, ..., V_k A, B, C, ..., P⁰_k F, G, H, ..., P¹_k L, M, ..., P_{k}^{2} R, S, ..., P³_k : P^n_k $\land, \lor, \neg, \supset, \forall, \exists, (,)$ $\ldots, *$

individual constants $(k \ge 0)$ individual variables $(k \ge 0)$ 0-place predicates (propositional atoms) $(k \ge 0)$ 1-place predicates $(k \ge 0)$ 2-place predicates $(k \ge 0)$ 3-place predicates $(k \ge 0)$

n-place predicates $(k \ge 0, n \ge 0)$ connectives, quantifiers, punctuation argument symbols

Grammar:

Term of **QL**

1. An individual constant or individual variable is a term of **QL**.

2. Nothing else is a term of **QL**.

Atomic wff of QL

(A1) If P_{k}^{n} is an *n*-place predicate symbol, $n \geq 0$, and $t_{1}, ..., t_{n}$ are terms of \mathbf{QL} , then $\mathsf{P}_{k}^{n}t_{1}, ..., t_{n}$ is an atomic *wff* of \mathbf{QL} .

(A2) Nothing else is an atomic wff of **QL**.

Wff of QL

- (W1) Any atomic wff of **QL** is a wff of **QL**.
- (W2) If A is a wff of \mathbf{QL} , so is $\neg A$.
- (W3) If A, B are wffs of **QL**, so is $(A \land B)$.
- (W4) If A, B are wffs of \mathbf{QL} , so is $(A \lor B)$.
- (W5) If A, B are wffs of **QL**, so is $(A \supset B)$.
- (W6) If A is a *wff* of **QL** and v is a variable which occurs in A (but neither $\forall v \text{ nor } \exists v \text{ occurs in } A$), then $\forall vA$ is a *wff* of **QL**.
- (W7) If A is a *wff* of **QL** and v is a variable which occurs in A (but neither $\forall v \text{ nor } \exists v \text{ occurs in } A$), then $\exists vA$ is a *wff* of **QL**.
- (W8) Nothing else is a wff of **QL**.

 $\underline{Ex1}. \quad \neg \forall \mathbf{x} ((\mathbf{Fx} \land \exists \mathbf{z} \mathbf{Mxz}) \supset \forall \mathbf{y} ((\mathbf{Gy} \land \mathbf{Lyx}) \supset \mathbf{Lxy}))$

Ex2. **Fx**

 $\underline{Ex3}. \quad \forall \mathbf{x} (\exists \mathbf{y} \mathbf{M} \mathbf{x} \mathbf{y} \supset \exists \mathbf{y} (\neg \mathbf{M} \mathbf{x} \mathbf{y} \land \mathbf{L} \mathbf{x} \mathbf{y}))$

	Mxy		
	<u> </u>		
Mxy	$(\neg Mxy \land Lxy)$		
∃yMxy	$\exists y(\neg Mxy \land Lxy))$		
$(\exists y Mxy \supset$	$(\exists y Mxy \supset \exists y (\neg Mxy \land Lxy))$		
$\forall x(\exists yMxy \supset \exists y(\negMxy \land Lxy))$			

 $\underline{Ex4}. \quad \forall \mathbf{x}(\mathbf{Fx} \supset \exists \mathbf{x}(\mathbf{Gx} \land \mathbf{Lxn}))$

A wff A is a <u>subformula</u> fo a wff B if A appears anywhere on the construction tree of B.

The <u>main operator</u> of A is the operator (quantifier or connective) introduced in the final step in the construction tree of A.

The <u>scope</u> of a quantifier in a QL wff is the wff that occurs at the step in the construction tree where the quantifier is introduced. \checkmark

$\forall \mathbf{x}(\exists \mathbf{y} \mathbf{v} \mathbf{x} \mathbf{y} \) \exists \mathbf{y}(\neg \mathbf{v} \mathbf{x} \mathbf{y} \land \mathbf{L} \mathbf{x} \mathbf{y}))$)	
	Mxy	
	−Mxy	Lxy
Mxy	(¬Mxy /	∧ Lxy)
∃yMxy	∃y(¬Mxy	$(\land Lxy))$
(∃ yMxy ⊃	$\exists y(\neg Mxy \land $	Lxy))
∀x(∃yMxy ⊃	⇒∃y(¬Mxy ∧	Lxy))

• Scope of first $\exists y \text{ is } \exists yMxy$

Ex3.

• Scope of second $\exists y \text{ is } \exists y (\neg Mxy \land Lxy)$

 $\forall x (\neg x \Lambda a x \neg \neg x (- \Lambda A a x \wedge 1 a a))$

• Scope of $\forall x \text{ is } \forall x (\exists y Mxy \supset \exists y (\neg Mxy \land Lxy))$

An <u>occurrence</u> of a variable v in a wff A is <u>bound</u> just when it is in the scope of a quantifier $\forall v$ or $\exists v$ that occurs in A.

An <u>occurrence</u> of a variable in a wff A is <u>free</u> just when it is not bound.

- *Ex1.* (Mxy \supset Rxny)
 - $\forall y(Mxy \supset Rxny)$
 - $((Fx \land \exists zMxz) \land \forall y(Mxy \supset Rxny))$
- **x** is free, **y** is free
- **x** is free, **y** is bound
- **x** is free, **y** is bound, **z** is bound

$\underline{Ex2}. \quad (\mathsf{Mxy} \supset \exists \mathsf{y}(\mathsf{Mxy} \land \mathsf{Lxy}))$

- y is free in Mxy
- **y** is bound in $\exists y(Mxy \land Lxy)$

A variable is <u>free</u> (<u>bound</u>) in a wff just when all of its occurrences are free (bound).

A <u>sentence</u> in **QL**, or a <u>closed wff</u>, is a wff with no free occurrences of variables.

An <u>open wff</u> in \mathbf{QL} is a wff that is not closed.

An <u>instance</u> C(...c...c...) of a quantified sentence $\forall vC(...v...v...)$ or $\exists vC(...v...v...)$, is the result of stripping off the quantifier and substituting an individual constant c for all occurrences of the variable v.

 $\underline{\mathit{Ex}}$. $\exists x(Fx \land Gn)$

<u>Instances</u>:

- $(Fn \wedge Gn)$
- $\bullet \ (Fo \wedge Gn)$
- $\bullet \ (Fm \wedge Gn)$

÷