
Chapter 25: Introducting QL Trees (Informally)
Recall the tree method:

To show that A1, ..., An ∴ C is tautologically valid, show that A1, ..., An, ¬C is
tautologically inconsistent.

How will this work for QL:

Ex1: Fn, ∀x(Fx ⊃ Gx) ∴ Gn

Fn
∀x(Fx ⊃ Gx)

¬Gn

F means "⎯⎯⎯is a philosopher"
G means "⎯⎯⎯is a jerk"
n means Jack

n is in the domain (and it's an F).
Every F in the domain is a G.

(Fn ⊃ Gn) Note: If ∀x(Fx ⊃ Gx) is true, and n is in the domain, then
(Fn ⊃ Gn) is true.

But: So might alot of other wffs, depending on how many
other individuals are in the domain.

So: (Fn ⊃ Gn) doesn't exhaust the truth of ∀x(Fx ⊃ Gx)!
Thus: We should not check off at this point.

¬Fn Gn
 ∗ ∗

ü

Ex2: ∀x(Fx ⊃ Gx), (Fn ∧ ¬Hn) ∴ ¬∀x(Gx ⊃ Hx)

n is in the domain.

¬Fn Gn
 ∗

ü

∀x(Fx ⊃ Gx)

(Fn ∧ ¬Hn)

¬¬∀x(Gx ⊃ Hx)

∀x(Gx ⊃ Hx)

ü

Fn
¬Hn

ü

(Fn ⊃ Gn)

(Gn ⊃ Hn)

¬Gn Hn
 ∗ ∗

ü

(Fm ⊃ Gm) (Fn ⊃ Gn)

∀x(Fx ⊃ Gx)

(Fm ∨ Fn)

¬(Gm ∨ Gn)

 Fm Fn

ü

¬Gm
¬Gn

ü

ü

¬Fm Gm
 ∗ ∗

∀-Instantiation Rule
(∀) If ∀vC(...v...v...) appears on an open path, add C(...c...c...) to the

path, where c is any constant that already appears on the path.
Do not check off ∀vC(...v...v...).

Ex3: ∀x(Fx ⊃ Gx), (Fm ∨ Fn) ∴ (Gm ∨ Gn)

ü

¬Fn Gn
 ∗ ∗

Note: A non-primitive wff that
remains unchecked! It's truth
content has not been exhausted.

¬∃x(Fx ∧ Gx)
Fm

¬¬Gm

Negated Quantifier Rules
(¬∀) If ¬∀vC(...v...v...) appears on an open path, add ∃v¬C(...v...v...) each open

path and check it off.

(¬∃) If ¬∃vC(...v...v...) appears on an open path, add ∀v¬C(...v...v...) each open
path and check it off.

Ex4: ¬∃x(Fx ∧ Gx), Fm ∴ ¬Gm

ü

¬Fm ¬Gm
 ∗ ∗

ü

∀x¬(Fx ∧ Gx)

¬(Fm ∧ Gm)

(Fm ∨ Fn)
∀x(Fx ⊃ Gx)

¬∃xGx

Ex5: (Fm ∨ Fn), ∀x(Fx ⊃ Gx) ∴ ∃xGx

ü

∀x¬Gx

 Fm Fn

ü

(Fm ⊃ Gm) (Fn ⊃ Gn)
¬Gm ¬Gn

¬Fm Gm
 ∗ ∗

ü

¬Fn Gn
 ∗ ∗

ü

∃xFx
∀x(Fx ⊃ Gx)

¬∃xGx

Ex6: ∃xFx, ∀x(Fx ⊃ Gx) ∴ ∃xGx

ü

¬Fa Ga
 ∗ ∗

ü

∀x¬Gx

ü

Fa

At least one thing in the domain is an F.

Call it a. This exhausts
the truth content of ∃xFx!

(Fa ⊃ Ga)

¬Ga

∀x(Fx ⊃ Gx)

 ∀x(Gx ⊃ Hx)

¬∀x(Fx ⊃ Hx)

Ex7: ∀x(Fx ⊃ Gx), ∀x(Gx ⊃ Hx) ∴ ∀x(Fx ⊃ Hx)

ü

¬Fa Ga
 ∗

∃x¬(Fx ⊃ Hx)

ü

(Fa ⊃ Ga)

(Ga ⊃ Ha)

ü

¬(Fa ⊃ Ha) ü

Fa
¬Ha

¬Ga Ha
 ∗ ∗

ü

∃xFx

∃xGx
¬∃x(Fx ∧ Gx)

∃xFx
 ¬Fn

Ex8: ∃xFx ∴ Fn

∀x¬(Fx ∧ Gx)

ü

Tautologically invalid!
But: Without further do, we can construct a closed tree.

Moral: When you instantiate an existential, don't
use a constant that has already appeared in the tree!

Ex9: ∃xFx, ∃xGx ∴ ∃x(Fx ∧ Gx) Tautologically invalid!

ü

Fa

Fn
∗

ü

¬(Fa ∧ Ga)

¬Fa ¬Ga
 ∗ ∗

ü

ü

Ga Suppose we instantiate Premise #2 using the
constant a that has already appeared in the tree...

... then we erroneously get
a completed closed tree!

∀x∃y(Fy ∧ Lxy)
∀x(Gx ⊃ ¬Fx)

Gn
¬¬∀xGx

Ex10: ∀x∃y(Fy ∧ Lxy), ∀x(Gx ⊃ ¬Fx), Gn ∴ ¬∀xGx

ü
Fa
Lna

Ga

¬Ga ¬Fa
 ∗ ∗

ü

∃-Instantiation Rule
(∃) If ∃vC(...v...v...) appears on an open path, add C(...c...c...) to each open path,

where c is new to the tree. Check off ∃vC(...v...v...).

ü
∀xGx

From Premise #1 ∃y(Fy ∧ Lny) ü
(Fa ∧ Lna)

(Ga ⊃ ¬Fa) From Premise #2

Ex10: ∀x∃y(Fy ∧ Lxy), ∀x(Gx ⊃ ¬Fx), Gn ∴ ¬∀xGx

ü
∀xGx

∃y(Fy ∧ Lny) ü
(Fa ∧ Lna)

(Fb ∧ Lab)

(Fc ∧ Lbc)

!"
Tree construction will never halt!

∃-Instantiation Rule
(∃) If ∃vC(...v...v...) appears on an open path, add C(...c...c...) to each open path,

where c is new to the tree. Check off ∃vC(...v...v...).

∀x∃y(Fy ∧ Lxy)
∀x(Gx ⊃ ¬Fx)

Gn
¬¬∀xGx

From Premise #1

∃y(Fy ∧ Lay) From Premise #1

∃y(Fy ∧ Lby) From Premise #1

• For QL trees, there is no guarantee that tree construction will halt!

• Some QL trees will halt, others will not.

• There is no mechanical test (algorithm) for deciding whether QL arguments are
tautologically valid.

