Chapters 23, 24: QL Translations

<u>Let</u>: "F" means "____is wise"

Domain = people

∀x¬Fx	"Everyone is unwise."
¬∀ x ¬Fx	"Not everyone is unwise."
	or

∃**xFx** "Someone is wise."

 $\neg \forall v \neg C(\dots v \dots v \dots)$ is true *iff* $\exists v C(\dots v \dots v \dots)$ is true.

 $\exists \mathbf{x} \neg F \mathbf{x}$ "Someone is unwise." $\neg \exists \mathbf{x} \neg F \mathbf{x}$ "No one is unwise." $\forall \mathbf{x} F \mathbf{x}$ "Everyone is wise."

 $\neg \exists v \neg C(\dots v \dots v \dots)$ is true *iff* $\forall v C(\dots v \dots v \dots)$ is true.

<u>Motivation</u>:

 $\exists xFx$ means $(Fm \lor Fn \lor Fo \lor \cdots)$ $\forall xFx$ means $(Fm \land Fn \land Fo \land \cdots)$

(Provided that everything in our domain has a name!)

```
<u>So</u>:
                  means \neg(\neg \mathsf{Fm} \lor \neg \mathsf{Fn} \lor \neg \mathsf{Fo} \lor \cdots)
\neg \exists x \neg Fx
                   or
                   (Fm \land Fn \land Fo \land \cdots)
                   or
                  ∀xFx
And:
\neg \forall x \neg Fx
                  means \neg(\neg \mathsf{Fm} \land \neg \mathsf{Fn} \land \neg \mathsf{Fo} \land \cdots)
                   or
                   (Fm \lor Fn \lor Fo \lor \cdots)
                   or
                   ∃xFx
```

Translating Restricted Quantifications into **QL**

"All A are B "	translates as	$\forall v(Av \supset Bv)$
"Some A are B "	translates as	$\exists v (Av \land Bv)$
"Some A are not B "	translates as	$\exists v (Av \land \neg Bv)$
"No A are B "	translates as	$\forall v(Av \supset \neg Bv)$

 $\underline{Ex1}$: All logicians are rational.

G	means	"	is a logician"
Н	means	"	is rational"

 $\forall \mathbf{x}(\mathbf{G}\mathbf{x} \supset \mathbf{H}\mathbf{x})$ "For all things x, if x is a logician, then x is rational."

<u>Ex2</u>: Some philosophers are logicians.

 F mean "____is a philosopher"

 $\exists \mathbf{x}(\mathbf{Fx} \wedge \mathbf{Gx})$ "There exists an x such that x is a philosopher and x is a logician."

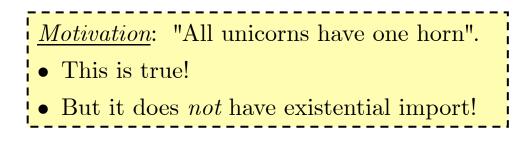
 $\underline{Ex3}: \quad \forall \mathbf{x}(\mathbf{Gx} \land \mathbf{Hx}) \qquad \text{"Everything is a logician-philosopher."}$

 $\exists x(Fx \supset Gx)$ "There's a thing such that, if it's a philosopher, then it's a logician."

$\exists x(Fx \supset Gx) \text{ is not the same as } \exists x(Fx \land Gx)!$				
Suppose:	There's a thing named \mathbf{n} that is not a philosopher.			
<u>Then</u> :	$(Fn \supset Gn)$ is true!			
<u>So</u> :	$\exists \mathbf{x}(\mathbf{F}\mathbf{x} \supset \mathbf{G}\mathbf{x}) \text{ is true!}$			
<u>Now</u> :	Suppose no philosophers are logicians.			
<u>Then</u> :	$\exists \mathbf{x}(\mathbf{F}\mathbf{x} \wedge \mathbf{G}\mathbf{x}) \text{ is false!}$			
i				

<u>Note</u>: "All A are B" and "No A is B" do not make existential claims.

• To say "All logicians are rational" in **QL** is *not* to say there *are* such things as rational logicians.



<u>More translation examples</u>

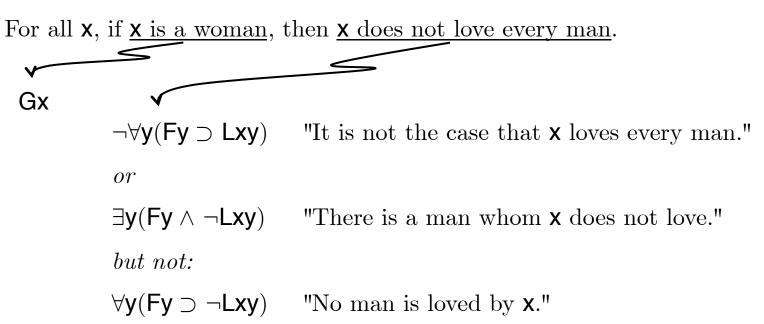
Translation Key:			
m means Maldwyn	F	means	is a man
n means Nerys	Μ	means	is married to
o means Owen	R	means	prefersto
	G	means	is a woman
Domain = people	L	means	loves

 $\underline{Ex1}$.Whoever is loved by Owen is loved by Maldwyn, too.For all \mathbf{x} , if $\underline{\mathbf{x}}$ is loved by Owen, then $\underline{\mathbf{x}}$ is loved by Maldwyn.For all \mathbf{x} , if \mathbf{Lox} , then \mathbf{Lmx} . $\forall \mathbf{x}(\mathbf{Lox} \supset \mathbf{Lmx})$

<u>Ex2</u>.Every man loves someone.For all \mathbf{x} , if $\underline{\mathbf{x}}$ is a man, then $\underline{\mathbf{x}}$ loves someone.For all \mathbf{x} , if \mathbf{Fx} , then $\exists \mathbf{y} \mathsf{Lxy}$. $\forall \mathbf{x}(\mathsf{Fx} \supset \exists \mathbf{y} \mathsf{Lxy})$

Translation Key:			
m means Maldwyn	F	means	is a man
n means Nerys	Μ	means	is married to
o means Owen	R	means	prefersto
	G	means	is a woman
Domain = people	L	means	loves

<u>Ex3</u>. No woman loves every man.



$$\label{eq:formula} \begin{split} &\operatorname{For all} x, \, \mathrm{if} \; Gx, \, \mathrm{then} \; \neg \forall y (Fy \supset Lxy). \\ &\forall x (Gx \supset \neg \forall y (Fy \supset Lxy)) \end{split}$$

Translation Key:			
m means Maldwyn	F	means	is a man
n means Nerys	Μ	means	is married to
o means Owen	R	means	prefersto
	G	means	is a woman
Domain = people	L	means	loves

<u>Ex4</u>. Nerys loves any married man who prefers her to whomever they are married to. For all \mathbf{x} , if $\underline{\mathbf{x}}$ is a married man who prefers Nerys to whomever \mathbf{x} is married to, then <u>Nerys loves \mathbf{x} </u>. Lnx

"<u>x is a married man</u>" means "<u>x is a man and there is someone to whom x is married</u>" $(Fx \land \exists yMxy)$

"<u>x prefers Nerys to whomever x is married to</u>" means

For all **x**, if $(Fx \land \exists yMxy)$ and $\forall z(Mxz \supset Rxnz)$, then Lnx.

 $\forall x(((Fx \land \exists yMxy) \land \forall z(Mxz \supset Rxnz)) \supset Lnx)$

<u>Case 1</u>:

 $\exists v \exists w C(\dots v \dots w \dots) \equiv \exists w \exists v C(\dots v \dots w \dots)$

 $\forall v \forall w C(\dots v \dots w \dots) \equiv \forall w \forall v C(\dots v \dots w \dots)$

Immediately adjacent quantifiers <u>of</u> <u>the same kind</u> can be interchanged.

<u>Case 2</u>:

$$(A \land \forall vB(...v..)) \equiv \forall v(A \land B(...v..))$$
$$(A \land \exists B(...v..)) \equiv \exists v(A \land B(...v..))$$
$$Provided \ v \ does \ not \ occur \ in \ A.$$

Exs:Nerys is a woman everyone loves. $(Gn \land \forall xLxn)$ same as $\forall x(Gn \land Lxn)$ Someone who is married loves Nerys. $\exists x(\exists yMxy \land Lxn)$ same as $\exists x \exists y(Mxy \land Lxn)$

$$\underline{Case 3}: \qquad (A \lor \forall vB(...v..)) \equiv \forall v(A \lor B(...v..))$$
$$(A \lor \exists vB(...v..)) \equiv \exists v(A \lor B(...v..))$$
$$Provided \ v \ does \ not \ occur \ in \ A.$$

<u>Case 4</u>:

$$(A \supset \forall B(...v..)) \equiv \forall v(A \supset B(...v..))$$
$$(A \supset \exists vB(...v..)) \equiv \exists v(A \supset B(...v..))$$
$$Provided \ v \ does \ not \ occur \ in \ A.$$

<u>Case 5</u>:

$$(\forall vB(...v..) \supset A) \equiv \exists v(B(...v..) \supset A)$$
$$(\exists vB(...v..) \supset A) \equiv \forall v(B(...v..) \supset A)$$
Provided v does not occur in A.

$$\underline{Check}: \quad (\forall \mathbf{x} \mathbf{F} \mathbf{x} \supset \mathbf{F} \mathbf{n}) \equiv (\neg \forall \mathbf{x} \mathbf{F} \mathbf{x} \lor \mathbf{F} \mathbf{n})$$
$$\equiv (\exists \mathbf{x} \neg \mathbf{F} \mathbf{x} \lor \mathbf{F} \mathbf{n})$$
$$\equiv \exists \mathbf{x} (\neg \mathbf{F} \mathbf{x} \lor \mathbf{F} \mathbf{n})$$
$$\equiv \exists \mathbf{x} (\mathbf{F} \mathbf{x} \supset \mathbf{F} \mathbf{n})$$