

Chapters 23, 24: QL Translations

Let: " F " means " is wise"

Domain = people

$\forall x \neg Fx$ "Everyone is unwise."

$\neg \forall x \neg Fx$ "Not everyone is unwise."

or

$\exists x Fx$ "Someone is wise."

$\neg \forall v \neg C(\dots v \dots v \dots)$ is true iff $\exists v C(\dots v \dots v \dots)$ is true.

$\exists x \neg Fx$ "Someone is unwise."

$\neg \exists x \neg Fx$ "No one is unwise."

or

$\forall x Fx$ "Everyone is wise."

$\neg \exists v \neg C(\dots v \dots v \dots)$ is true iff $\forall v C(\dots v \dots v \dots)$ is true.

Motivation:

$\exists x Fx$ means $(Fm \vee Fn \vee Fo \vee \dots)$

$\forall x Fx$ means $(Fm \wedge Fn \wedge Fo \wedge \dots)$

(Provided that everything in our domain has a name!)

So:

$\neg \exists x \neg Fx$ means $\neg(\neg Fm \vee \neg Fn \vee \neg Fo \vee \dots)$

or

$(Fm \wedge Fn \wedge Fo \wedge \dots)$

or

$\forall x Fx$

And:

$\neg \forall x \neg Fx$ means $\neg(\neg Fm \wedge \neg Fn \wedge \neg Fo \wedge \dots)$

or

$(Fm \vee Fn \vee Fo \vee \dots)$

or

$\exists x Fx$

Translating Restricted Quantifications into **QL**

"All A are B "	translates as	$\forall v(Av \supset Bv)$
"Some A are B "	translates as	$\exists v(Av \wedge Bv)$
"Some A are not B "	translates as	$\exists v(Av \wedge \neg Bv)$
"No A are B "	translates as	$\forall v(Av \supset \neg Bv)$

Ex1: All logicians are rational.

G means "____ is a logician"

H means "____ is rational"

$\forall x(Gx \supset Hx)$ "For all things x , if x is a logician, then x is rational."

Ex2: Some philosophers are logicians.

F mean "____ is a philosopher"

$\exists x(Fx \wedge Gx)$ "There exists an x such that x is a philosopher and x is a logician."

<u>Ex3:</u>	$\forall x(Gx \wedge Hx)$	"Everything is a logician-philosopher."
	$\exists x(Fx \supset Gx)$	"There's a thing such that, if it's a philosopher, then it's a logician."

$\exists x(Fx \supset Gx)$ is not the same as $\exists x(Fx \wedge Gx)$!

Suppose: There's a thing named n that is not a philosopher.

Then: $(Fn \supset Gn)$ is true!

So: $\exists x(Fx \supset Gx)$ is true!

Now: Suppose no philosophers are logicians.

Then: $\exists x(Fx \wedge Gx)$ is false!

Note: "All A are B " and "No A is B " do *not* make existential claims.

- To say "All logicians are rational" in **QL** is *not* to say there *are* such things as rational logicians.

Motivation: "All unicorns have one horn".

- This is true!
- But it does *not* have existential import!

More translation examples

Translation Key:

m means	Maldwyn	F means	_____ is a man
n means	Nerys	M means	_____ is married to _____
o means	Owen	R means	_____ prefers _____ to _____
		G means	_____ is a woman
Domain = people		L means	_____ loves _____

Ex1. Whoever is loved by Owen is loved by Maldwyn, too.

For all x, if x is loved by Owen, then x is loved by Maldwyn.

For all x, if L_{ox}, then L_{mx}.

$\forall x(L_{ox} \supset L_{mx})$

Ex2. Every man loves someone.

For all x, if x is a man, then x loves someone.

For all x, if F_x, then $\exists y L_{xy}$.

$\forall x(F_x \supset \exists y L_{xy})$

Translation Key:

m means Maldwyn

F means ____ is a man

n means Nerys

M means ____ is married to ____

o means Owen

R means ____ prefers ____ to ____

G means ____ is a woman

Domain = people

L means ____ loves ____

Ex3. No woman loves every man.

For all x , if x is a woman, then x does not love every man.

Gx

$\neg \forall y(Fy \supset Lxy)$ "It is not the case that x loves every man."

or

$\exists y(Fy \wedge \neg Lxy)$ "There is a man whom x does not love."

but not:

$\forall y(Fy \supset \neg Lxy)$ "No man is loved by x ."

For all x , if Gx , then $\neg \forall y(Fy \supset Lxy)$.

$\forall x(Gx \supset \neg \forall y(Fy \supset Lxy))$

Translation Key:

m means Maldwyn	F means _____ is a man
n means Nerys	M means _____ is married to _____
o means Owen	R means _____ prefers _____ to _____
	G means _____ is a woman

Domain = people

L	means _____ loves _____
----------	-------------------------

Ex4. Nerys loves any married man who prefers her to whomever they are married to.

For all x , if x is a married man who prefers Nerys to whomever x is married to, then Nerys loves x .

Lnx

" x is a married man" means " x is a man and there is someone to whom x is married"

$(Fx \wedge \exists y Mxy)$

" x prefers Nerys to whomever x is married to" means

"For all z , if x is married to z , then x prefers Nerys to z "

$\forall z (Mxz \supset Rxnz)$

Note: This z might be different from the y above!

For all x , if $(Fx \wedge \exists y Mxy)$ and $\forall z (Mxz \supset Rxnz)$, then Lnx .

$\forall x ((Fx \wedge \exists y Mxy) \wedge \forall z (Mxz \supset Rxnz)) \supset \text{Lnx}$

Special Cases of Mixed Quantifiers

Case 1:

$$\exists v \exists w C(\dots v \dots w \dots) \equiv \exists w \exists v C(\dots v \dots w \dots)$$

$$\forall v \forall w C(\dots v \dots w \dots) \equiv \forall w \forall v C(\dots v \dots w \dots)$$

Immediately adjacent quantifiers of the same kind can be interchanged.

Case 2:

$$(A \wedge \forall v B(\dots v \dots)) \equiv \forall v (A \wedge B(\dots v \dots))$$

$$(A \wedge \exists v B(\dots v \dots)) \equiv \exists v (A \wedge B(\dots v \dots))$$

Provided v does not occur in A.

Exs: Nerys is a woman everyone loves.

$$(Gn \wedge \forall x Lxn) \text{ same as } \forall x (Gn \wedge Lxn)$$

Someone who is married loves Nerys.

$$\exists x (\exists y Mxy \wedge Lxn) \text{ same as } \exists x \exists y (Mxy \wedge Lxn)$$

Case 3:

$$(A \vee \forall v B(\dots v \dots)) \equiv \forall v (A \vee B(\dots v \dots))$$

$$(A \vee \exists v B(\dots v \dots)) \equiv \exists v (A \vee B(\dots v \dots))$$

Provided v does not occur in A.

Case 4:

$$(A \supset \forall B(\dots v \dots)) \equiv \forall v (A \supset B(\dots v \dots))$$

$$(A \supset \exists v B(\dots v \dots)) \equiv \exists v (A \supset B(\dots v \dots))$$

Provided v does not occur in A.

Case 5:

$$(\forall v B(\dots v \dots) \supset A) \equiv \exists v (B(\dots v \dots) \supset A)$$

$$(\exists v B(\dots v \dots) \supset A) \equiv \forall v (B(\dots v \dots) \supset A)$$

Provided v does not occur in A.

Check: $(\forall x Fx \supset Fn) \equiv (\neg \forall x Fx \vee Fn)$

$$\equiv (\exists x \neg Fx \vee Fn)$$
$$\equiv \exists x (\neg Fx \vee Fn)$$
$$\equiv \exists x (Fx \supset Fn)$$