Chapters 23, 24: QL Translations

Let: "F" means "___ is wise"
Domain $=$ people

$\forall \mathrm{x} \neg \mathrm{Fx}$	"Everyone is unwise."
$\neg \forall \mathbf{x} \neg \mathrm{Fx}$	"Not everyone is unwise."
$\exists \mathrm{xFx}$	or
	"Someone is wise."

$$
\neg \forall v \neg C(\ldots v \ldots v \ldots) \text { is true } i f f \exists v C(\ldots v \ldots v \ldots) \text { is true. }
$$

$$
\begin{array}{ll}
\exists \mathrm{x} \neg \mathrm{Fx} & \text { "Someone is unwise." } \\
\neg \exists \mathrm{x} \neg \mathrm{Fx} & \text { "No one is unwise." } \\
\forall \mathrm{xFx} & \text { or } \\
& \text { "Everyone is wise." }
\end{array}
$$

$$
\neg \exists v \neg C\left(\ldots v_{\ldots} \ldots \ldots\right) \text { is true iff } \forall v C\left(\ldots v \ldots v_{\ldots}\right) \text { is true. }
$$

Motivation:

$$
\begin{array}{lll}
\exists x F x & \text { means } & (F m \vee F n \vee F o \vee \cdots) \\
\forall x F x & \text { means } & (F m \wedge F n \wedge \text { Fo } \wedge \cdots)
\end{array}
$$

(Provided that everything in our domain has a name!)

So:

$$
\neg \exists \mathrm{x} \neg \mathrm{Fx} \text { means } \quad \neg(\neg \mathrm{Fm} \vee \neg \mathrm{Fn} \vee \neg \mathrm{Fo} \vee \cdots)
$$

or
$(\mathrm{Fm} \wedge \mathrm{Fn} \wedge \mathrm{Fo} \wedge \cdots)$
or
$\forall x F x$
And:
$\neg \forall \mathrm{x} \neg \mathrm{Fx}$ means $\quad \neg(\neg \mathrm{Fm} \wedge \neg \mathrm{Fn} \wedge \neg \mathrm{Fo} \wedge \cdots)$
or
$(F m \vee F n \vee F o \vee \cdots)$
or
$\exists x F x$

Translating Restricted Quantifications into QL

"All A are $B "$	translates as	$\forall v(A v \supset B v)$
"Some A are $B "$	translates as	$\exists v(A v \wedge B v)$
"Some A are not $B "$	translates as	$\exists v(A v \wedge \neg B v)$
"No A are $B "$	translates as	$\forall v(A v \supset \neg B v)$

Ex1: All logicians are rational.

| G | means | "___ is a logician" |
| :--- | :--- | :--- | :--- |
| H | means | "___is rational" |

$\forall \mathbf{x}(\mathrm{Gx} \supset \mathbf{H x}) \quad$ "For all things x, if x is a logician, then x is rational."

Ex2: \quad Some philosophers are logicians.
F mean "__ is a philosopher"
$\exists \mathbf{x}(\mathrm{Fx} \wedge \mathbf{G x}) \quad$ "There exists an x such that x is a philosopher and x is a logician."

Ex3: $\quad \forall \mathbf{x}(\mathrm{Gx} \wedge \mathrm{Hx}) \quad$ "Everything is a logician-philosopher."

$$
\exists x(F x \supset G x) \quad \text { "There's a thing such that, if it's a philosopher, then it's a }
$$ logician."

Note: "All A are B " and "No A is B " do not make existential claims.

- To say "All logicians are rational" in QL is not to say there are such things as rational logicians.
Motivation: "All unicorns have one horn".
- This is true!
- But it does not have existential import!

More translation examples

Translation Key:			
m means Maldwyn	F	means	is a man
n means Nerys	M	means	is married to
o means Owen	R	means	prefers__to
	G	means	is a woman
Domain $=$ people	L	means	loves

Ex1. Whoever is loved by Owen is loved by Maldwyn, too.
For all x , if x is loved by Owen, then $\underline{\mathrm{x}}$ is loved by Maldwyn.
For all \mathbf{x}, if Lox, then Lmx.
$\forall x($ Lox $\supset \operatorname{Lmx})$
Ex2. Every man loves someone.
For all \mathbf{x}, if \underline{x} is a man, then \underline{x} loves someone.
For all x, if $F x$, then $\exists y L x y$.
$\forall x(F x \supset \exists y L x y)$

Translation Key:			
m means Maldwyn	F	means	is a man
n means Nerys	M	means	is married to
o means Owen	R	means	prefers__ to
	G	means	is a woman
Domain $=$ people	L	means	loves

Ex3. No woman loves every man.
For all x , if x is a woman, then \mathbf{x} does not love every man.
$\quad \forall \mathbf{y}(\mathrm{Fy} \supset \mathrm{Lxy}) \quad$ "It is not the case that x loves every man."
or
$\exists \mathbf{y}(\mathrm{Fy} \wedge \neg \mathrm{Lxy}) \quad$ "There is a man whom x does not love."

but not:

$\forall \mathbf{y}(\mathrm{Fy} \supset \neg \mathrm{Lxy}) \quad$ "No man is loved by x ."

For all x, if $G x$, then $\neg \forall y(F y \supset L x y)$.
$\forall x(G x \supset \neg \forall y(F y \supset L x y))$

Translation Key:			
m means Maldwyn	F	means	is a man
n means Nerys	M	means	is married to
o means Owen	R	means	prefers__to
	G	means	is a woman
Domain $=$ people	L	means	loves

Ex4. Nerys loves any married man who prefers her to whomever they are married to. For all \mathbf{x}, if $\underline{\mathbf{x}}$ is a married man who prefers Nerys to whomever \mathbf{x} is married to, then Nerys loves \mathbf{x}.

Lnx
" x is a married man" means " x is a man and there is someone to whom x is married $"$
(Fx^ ヨyMxy)
" $\underline{\mathbf{x}}$ prefers Nerys to whomever \mathbf{x} is married to" means
"For all \mathbf{z}, if \mathbf{x} is married to \mathbf{z}, then \mathbf{x} prefers Nerys to \mathbf{z} "

For all x, if $(F x \wedge \exists y M x y)$ and $\forall z(M x z \supset R x n z)$, then $L n x$.
$\forall \mathrm{x}(((\mathrm{Fx} \wedge \exists \mathrm{yM} \mathrm{xy}) \wedge \forall \mathrm{z}(\mathrm{Mxz} \supset \mathrm{Rxnz})) \supset \mathrm{Lnx})$

Case 1:
$\exists v \exists w C(\ldots v \ldots w \ldots) \equiv \exists w \exists v C(\ldots v \ldots w \ldots)$
$\forall v \forall w C(\ldots v \ldots w \ldots) \equiv \forall w \forall v C(\ldots v \ldots w \ldots)$
Immediately adjacent quantifiers of the same kind can be interchanged.

Case 2:

$$
\begin{aligned}
(A \wedge \forall v B(\ldots v \ldots)) & \equiv \forall v(A \wedge B(\ldots v \ldots)) \\
(A \wedge \exists B(\ldots v \ldots)) & \equiv \exists v(A \wedge B(\ldots v \ldots))
\end{aligned}
$$

Provided v does not occur in A.

Exs: Nerys is a woman everyone loves. (Gn $\wedge \forall x L x n) \quad$ same as $\quad \forall x(G n \wedge L x n)$

Someone who is married loves Nerys.
$\exists x(\exists y M x y \wedge L x n) \quad$ same as $\quad \exists x \exists y(M x y \wedge L x n)$

Case 3: $\quad(A \vee \forall v B(\ldots v \ldots)) \equiv \forall v(A \vee B(\ldots v \ldots))$
$(A \vee \exists v B(\ldots v \ldots)) \equiv \exists v(A \vee B(\ldots v \ldots))$ Provided v does not occur in A.

Case 4:

$$
\begin{aligned}
& (A \supset \forall B(\ldots v \ldots)) \equiv \forall v(A \supset B(\ldots v \ldots)) \\
& (A \supset \exists v B(\ldots v \ldots)) \equiv \exists v(A \supset B(\ldots v \ldots)) \\
& \text { Provided } v \text { does not occur in } A .
\end{aligned}
$$

Case 5: $\quad(\forall v B(\ldots v \ldots) \supset A) \equiv \exists v(B(\ldots v \ldots) \supset A)$ $(\exists v B(\ldots v . ..) \supset A) \equiv \forall v(B(\ldots v \ldots) \supset A)$ Provided v does not occur in A.

Check: $\quad(\forall \mathrm{xFx} \supset \mathrm{Fn}) \equiv(\neg \forall \mathrm{xFx} \vee \mathrm{Fn})$

$$
\begin{aligned}
& \equiv(\exists x \neg F x \vee F n) \\
& \equiv \exists x(\neg F x \vee F n) \\
& \equiv \exists x(F x \supset F n)
\end{aligned}
$$

