Chapters 21, 22: The Language of QL ("Quantifier Logic")

Motivation:

- (1) Fido is a cat.
- (2) All cats are scary. Valid argument!
- (3) Fido is scary.

Informal Introduction to Alphabet & Grammar of QL

1. Names and Predicates

(a) Use lower-case letters m, n, o, ..., to represent the names of individuals. Call these letters "*individual constants*".

<u>ex.</u> "m" = "Socrates" "n" = "Plato" "o" = "Aristotle" (b) Use capital letters to represent properties attributed to individuals. Call them "*predicate letters*".

Convention:

- $\mathsf{F},\,\mathsf{G},\,\mathsf{H},\,\dots\quad \mathrm{one-place\ predicates}$
- $\mathsf{L}, \mathsf{M}, \dots \qquad \text{two-place predicates}$
- $\mathsf{R}, \mathsf{S} \dots$ three-place predicates

<u>ex</u> .	"F"	means	"	_is wise"		
	"L"	means	"	_loves	"	
	"R"	means	"	_prefers	to	

First Grammatical rule for **QL**

An n-place predicate combines with n names to form an atomic wff.

<u>ex</u> .	"Fn"	means	"Plato is wise."
	"Fo"	means	"Aristotle is wise."
	"Romo"	means	"Aritstole prefers Socrates to himself."
	"Lmm"	means	"Socrates loves himself."

2. Connectives

Use **PLC** connectives $\land, \lor, \neg, \supset, \equiv$ to form *wffs* from atomic *wffs*.

<u>ex</u> :	$(Fm \lor Fn)$	means	"Either Socrates or Plato is wise."
	and not $F(m \lor n)$		
	$\neg(Lnm \land Lmn)$		"It's not the case that Plato loves Socrates and Socrates loves Plato."
	$(Rnmo \supset (Lnm \land \neg$	¬Lno))	"If Plato prefers Socrates to Aristotle, then he loves Socrates and doesn't love Aristotle."
	$(Fn\wedgeLnn)$		"Plato is wise and loves himself."

3. Quantifiers

- (a) Use lower-case letters ..., X, Y, Z to represent pronouns. Call these letters "individual variables".
- (b) Use the symbols \forall, \exists to represent universal and existential quantifiers.

<u>ex</u> .	"∀ x "	means	"For all x " or "Everyone" or "Everything"
	"∃ x "	means	"There exists an x " or "Someone" or "Something"

Grammatical rule for wffs involving quantifiers

If $C(\ldots c \ldots c \ldots)$ is a **QL** wff containing at least one occurrence of the individual constant c, then the expression obtained by replacing all occurrences of c with some individual variable v, new to C, and prefixing the result with $\forall v$ or $\exists v$, is a wff.

So if C(...c...c...) is a **QL** wff containing at least one occurrence of the individual constant c, then $\forall v C(...v...v...)$ and $\exists v C(...v...v...)$ are both **QL** wffs.

Rmno is a QL wff	"Socrates prefers Plato to Aristotle."		
<u>Thus so are:</u>			
∀xRxno	"For all x, x prefers Plato to Aristotle." or		
	"Everyone prefers Plato to Aristotle."		
∃zRzno	"There exists a z such that z prefers Plato to Aristotle." or		
	"Someone prefers Plato to Aristotle."		
∀x∃zRznx	"For all x , there exists a z such that z prefers Plato to x ."		
	or "Everyone is such that someone prefers Plato to them."		
∀y∀x∃zRzyx	"Anyone is preferred to everyone by someone."		

And so are:

$\forall x Rxno$

 $\forall x \forall x Rxnx$

 $\forall x \forall x \forall x \mathsf{R} x x x$

As well as:

Fn

Rmno

 $(\text{Fn} \land \text{Rmno})$

 $\exists x(Fn \land Rmnx)$

 $\forall y \exists x (Fn \land Rynx)$

 $(\mathsf{Fn} \supset \neg \forall y \exists x (\mathsf{Fn} \land \mathsf{Rynx}))$

 $\forall z(\mathsf{F} z \supset \neg \forall y \exists x(\mathsf{F} z \land \mathsf{R} y z x))$

The <u>domain of discourse</u> of a quantifier expression is the collection of individuals that expression quantifies over.

$\forall v C(\dots v \dots v \dots)$ means	"Everything in the domain of discourse has the property that $C(cc)$ attributes to the individual named by c ".
$\exists v C(\dots v \dots v \dots)$ means	"At least one thing in the domain of discourse has the property that $C(\dots c \dots c \dots)$ attributes to the individual named by c ".

So again:

Let the domain of discourse be people.

∃xFx	"Someone is wise."
¬∃xFx	"No one is wise."
∃x¬Fx	"Someone isn't wise."
$\forall \mathbf{x}(\mathbf{F}\mathbf{x} \supset \mathbf{L}\mathbf{m}\mathbf{x})$	"For all people, if they are wise, then Socrates loves them." or "All wise people are loved by Socrates." or "Socrates loves anyone wise."

Named versus Nameless Individuals

Suppose:The following QL wff is true:Fn<u>Then</u>:Is the following QL wff true as well? $\exists xFx$

- $\exists x Fx$ says "Something in the domain of discourse is an F".
- $\bullet\,$ This will be true if the thing named by n is in fact in the domain of discourse.

<u>So</u>: Given that everything named by some individual constant is in the domain, then any wff of the form C(...c...c...) entails a wff of the form $\exists v C(...v...v...)$.

<u>But</u>: $\exists v C(\dots v \dots v \dots)$ does not necessarily imply $C(\dots c \dots c \dots)$.

- $\bullet\,$ There can be domains with nameless individuals in which
 - (a) No *named* individual has the property C.
 - (b) At least one *nameless* individual has the property C.
- In such a domain, ∃vC(...v...v...) is true, but C(...c...) is false, for any named individual c.

<u>Similarly</u>: Given that everything named by some individual constant is in the domain, then any wff of the form $\neg C(...c...c...)$ entails a wff of the form $\neg \forall vC(...v...v...)$.

<u>But</u>: $\neg \forall v C(\dots v \dots v \dots)$ does not necessarily imply $\neg C(\dots c \dots c \dots)$.

- There can be a domain in which all named things have the property C, but some nameless things don't.
 - <u>So</u>: It's not the case that
 - (a) An existential quantifier wff is true if and only if one of its instances is true.
 - (b) A universal quantifier *wff* is true if and only if all of its instances are true.