Chapters 12, 13: Tautologies and Tautological Entailment

A wff of **PL** is a <u>tautology</u> if it takes the value true on every valuation of its atoms.

A *wff* of **PL** is a <u>contradiction</u> if it takes the value false on *every* valuation of its atoms.

Examples of tautologies:

- (1) $\neg (\mathbf{P} \land \neg \mathbf{P})$
- (2) $(\mathsf{P} \lor \neg \mathsf{P})$
- $(3) ((\mathsf{P} \land \mathsf{Q}) \lor (\neg \mathsf{P} \lor \neg \mathsf{Q}))$

<u>Claims</u>:

- (a) The negation of a tautology is a contradiction.
- (b) The negation of a contradiction is a tautology.
- (c) If the conclusion of an argument is a tautology, then the argument is valid.

Testing Arguments for Validity in PL

- <u>*Ex1*</u>. (1) Jack is logical.
 - (2) It isn't the case that Jack is logical but Jill isn't.
 - (3) Jill is logical.

<u>Translation key:</u>(1) PLet P = Jack is logical(2) $\neg(P \land \neg Q)$ Q = Jill is logical(3) Q

		(1)	(2)	(3)
Ρ	Q	Ρ	$\neg(P \land \negQ)$	Q
Т	Т	Т	Т	Т
Т	F	Т	${ m F}$	\mathbf{F}
\mathbf{F}	Т	F	Т	Т
F	F	F	Т	\mathbf{F}

There's no row in which the premises are all T and the conclusion is F

<u>So</u>: Argument is VALID!

- <u>*Ex2*</u>. (1) Either Jack or Jill went up the hill.
 - (2) It isn't the case that Jack went up the hill and Jo didn't.
 - (3) Hence it isn't the case that Jo went up the hill and Jill didn't.

For $P \Rightarrow T$, $Q \Rightarrow F$, $R \Rightarrow T$, the argument has all true premises and false conclusion. So it is INVALID!

The **PL** wffs $A_1, A_2, ..., A_n$ <u>tautologically entail</u> the wff C just when there is no valuation of the atoms in $A_1, A_2, ..., A_n$ and C which makes $A_1, A_2, ..., A_n$ all true and C false.

<u>Ex1</u>: The **PL** wffs P , $\neg(\mathsf{P} \land \neg \mathsf{Q})$ tautologically entail the **PL** wff Q . <u>Ex2</u>: The **PL** wffs ($\mathsf{P} \lor \mathsf{Q}$), $\neg(\mathsf{P} \land \neg \mathsf{R})$ do not tautologically entail the **PL** wff $\neg(\mathsf{R} \land \neg \mathsf{Q})$.

Expressing Arguments in PL

- Use the symbol "," to separate premises in **PL**.
- Use the symbol ":." to indicate a conclusion in \mathbf{PL} .

 $\underline{Ex1}: \quad \mathsf{P}, \neg(\mathsf{P} \land \neg \mathsf{Q}) \therefore \mathsf{Q}$ $\underline{Ex2}: \quad (\mathsf{P} \lor \mathsf{Q}), \neg(\mathsf{P} \land \neg \mathsf{R}) \therefore \neg(\mathsf{R} \land \neg \mathsf{Q})$

- These strings of symbols are completely in the language **PL**.
- Technically, we could add another Rule of Grammar that precisely defines such "argument strings". (These strings are not *wffs*!)

An argument (string) in \mathbf{PL} is <u>tautologically valid</u> just when its premises tautologically entail its conclusion.

$\underline{Ex3}: \qquad (P \lor Q), (R \lor$			∕ Q), (R ∨	$(\neg P), (\neg \neg R \lor \neg Q) \therefore R$			
				(1)	(2)	(3)	(4)
	Ρ	Q	R	$(\mathbf{P} \lor \mathbf{Q})$	$(R \lor \neg P)$	$(\neg \neg R \lor \neg Q)$	Ŕ
	Т	Т	Т	Т	Т	Т	Т
	Т	Т	F	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}
	Т	\mathbf{F}	Т	Т	Т	Т	Т
	Т	\mathbf{F}	F	Т	\mathbf{F}	Т	\mathbf{F}
	F	Т	Т	Т	Т	Т	Т
	F	Т	F	Т	Т	${ m F}$	\mathbf{F}
	F	\mathbf{F}	Т	\mathbf{F}	Т	Т	Т
	F	F	F	\mathbf{F}	Т	Т	\mathbf{F}
	I						

No row with all true premises and false conclusion.

<u>So</u>: Premises tautologically entail conclusion.

<u>So</u>: Argument in **PL** is tautologically valid.

<i>Ex4</i> :		$(\neg P$	$\vee F$	$R),(P\veeQ),$	$\neg (Q \land \neg S)$) ∴ (R ∨ S)		
				(1)	(2)	(3)	(4)	
P	Q	R	S	$(\neg \mathbf{P} \lor \mathbf{R})$	$(\mathbf{P} \lor \mathbf{Q})$	$\neg (\mathbf{Q} \land \neg \mathbf{S})$	(R ∨ S)	
Т	Т	T	Т					1
Т	Т	T	\mathbf{F}					_
Т	Т	F	Т					6
Т	Т	F	F	\mathbf{F}	Т		\mathbf{F}	
Т	F	Т	Т					
Т	F	Т	\mathbf{F}					
Т	F	F	Т					
Т	F	F	F	\mathbf{F}	Т		\mathbf{F}	
\mathbf{F}	Т	T	Т					
\mathbf{F}	Т	T	\mathbf{F}					
\mathbf{F}	Т	F	Т					
\mathbf{F}	Т	F	\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	Т	Т					
\mathbf{F}	F	Т	\mathbf{F}					
\mathbf{F}	F	F	Т					
\mathbf{F}	F	F	\mathbf{F}		F		\mathbf{F}	

1. Evaluate conclusion.

- 2. Evaluate simplest premise.
- 3. Evaluate other premises.

No row with all true premises and false conclusion.

- <u>So</u>: Premises tautologically entail conclusion.
- <u>So</u>: Argument in **PL** is tautologically valid.

 $\underline{So}: A_1, A_2, ..., A_n \vDash C \text{ is shorthand in English for "The$ **PL** $wffs <math>A_1, A_2, ..., A_n$ tautologically entail the **PL** wff C."

Important!1. " \vDash " is not a symbol in **PL**.2. " A_1 ", " A_2 ", " A_n ", "C" are not symbols in **PL**.

These are symbols in English and are used to talk about PL.

- $\underline{So}: \quad (\mathsf{P} \lor \mathsf{Q}), \ \neg \mathsf{P} \vDash \mathsf{Q} \text{ is shorthand English (and not } \mathbf{PL}) \text{ for}$ "The **PL** wffs ($\mathsf{P} \lor \mathsf{Q}$), $\neg \mathsf{P}$ tautologically entail the **PL** wff Q ."
- <u>But</u>: $(\mathbf{P} \lor \mathbf{Q}), \neg \mathbf{P} \therefore \mathbf{Q}$ is an expression in **PL**. It's an argument string in **PL**.
- <u>Again</u>: \therefore is a symbol in **PL**. \vDash is a symbol in English.

Terminology:

Let $\models C$ mean in English "The **PL** wff C is a tautology."

A set of **PL** wffs $A_1, A_2, ..., A_n$ is <u>satisfiable</u> if there is a valuation of their atoms that makes them all true.

A set of **PL** wffs $A_1, A_2, ..., A_n$ is <u>tautologically inconsistent</u> if it is not satisfiable.

There is no valuation of their atoms that makes them all true.

Some Claims:

(a)
$$A_1, A_2, ..., A_n \vDash C$$
 if and only if $A_1, A_2, ..., A_n, \neg C$ are tautologically inconsistent.

- $\underline{Proof}: \quad A_1, A_2, ..., A_n \vDash C \text{ if and only if there's no valuation that makes} \\ A_1, A_2, ..., A_n \text{ true and } C \text{ false.}$
 - <u>*Or*</u>: There's no valuation that makes $A_1, A_2, ..., A_n$ true and $\neg C$ true.

(b) For any **PL** wff B, if $A_1, A_2, ..., A_n \vDash C$ then $A_1, A_2, ..., A_n, B \vDash C$.

- In other words, if the truth of $A_1, A_2, ..., A_n$ entails the truth of C, then the truth of $A_1, A_2, ..., A_n$ and B entails the truth of C.
- Adding "extra info" to a valid argument doesn't affect its validity.
- <u>Ex.</u> (1) All animals with wings can fly. <u>Add</u>: (2.5) Wilbur has wings.
 - (2) Pigs have wings. Or: (2.5) Pigs don't have wings.
 - (3) Pigs can fly.

<u>*Or*</u>: (2.5) Pigs can't fly.

<u>Proof</u>:

- <u>Suppose</u>: $A_1, A_2, ..., A_n \vDash C$ and B is any wff.
- <u>Then</u>: Whenever $A_1, A_2, ..., A_n$ are all true, so is C.
- <u>Now</u>: Consider any valuation that makes $A_1, A_2, ..., A_n$ true and B true.
- <u>Then</u>: Under this valuation, C will also be true.
- <u>So</u>: Any valuation that makes $A_1, A_2, ..., A_n$ true and B true will also make C true. In other words, $A_1, A_2, ..., A_n, B \models C$.

(c) If C is a tautology, then $A_1, A_2, ..., A_n \vDash C$, for any A_i .

A tautology is tautologically entailed by any set of premises.

(d) Any **PL** wffs A and B are truth-functionally equivalent just when $A \vDash B$ and $B \vDash A$.

(e) If C is a contradiction and $A_1, A_2, ..., A_n, B \vDash C$, then $A_1, A_2, ..., A_n \vDash \neg B$.

<u>Proof</u>:

<u>Suppose</u> :	C is a contradiction and $A_1, A_2,, A_n, B \vDash C$.
Then:	Whenever $A_1, A_2,, A_n, B$ are all true, so is C.
<u>But</u> :	C is never true.
<u>So</u> :	$A_1, A_2,, A_n, B$ can never all be true.
<u>So</u> :	Whenever $A_1, A_2,, A_n$ are all true, B must be false.
<u>Thus</u> :	Whenever $A_1, A_2,, A_n$ are all true, $\neg B$ must be true.
<u>Thus</u> :	$A_1, A_2, \ldots, A_n \vDash \neg B.$