# **Chapter 11: Truth Functions**

A way of forming a complex sentence out of one or more constituent sentences is <u>truth-functional</u> if fixing the truth-values of the constituent sentences is always enough to determine the truth-value of the complex sentence.

- <u>*Claim*</u>: Every *wff* of **PL** is a truth-functional combination of atomic *wffs*.
- <u>*Why*</u>? Tree constructions are unique.
  - The Semantic Rules for the connectives guarantee that the truth-value of a conjunction, disjunction, or negation *only* depends on the truth-values of its atomic *wffs*.

#### <u>Truth Tables and Valuations</u>:

<u>*Task*</u>: Use a truth table to determine all possible truth-values of a given *wff*. <u>*Ex.*</u>  $\neg(\mathsf{P} \land \neg(\neg\mathsf{Q} \lor \mathsf{R}))$ 

| Ρ | Q | R | $\neg ( P \land \neg (\neg Q \lor R) )$ |
|---|---|---|-----------------------------------------|
| Т | Т | Т | Т                                       |
| Т | Т | F | $\mathbf{F}$                            |
| Т | F | Т | Т                                       |
| Т | F | F | Т                                       |
| F | Т | Т | Т                                       |
| F | Т | F | Т                                       |
| F | F | Т | Т                                       |
| F | F | F | Т                                       |

A <u>valuation</u> of a *wff* is an assignment of truth values to its atomic *wffs*.

<u>So</u>: Each row in a truth table for a *wff* is a valuation for it.

#### <u>Truth-Functional Equivalence</u>

The **PL** wffs A and B are <u>truth-functionally equivalent</u> just if, on each valuation of all the atoms occuring in them, A and B take the same value.



<u>Claim</u>: Any possible truth-functional combination of atomic wffs is truth-functionally equivalent to a wff in **PL** constructed using just the three connectives  $\land$ ,  $\lor$ ,  $\neg$ .

<u>What this means</u>: Any truth-functional way of combining atomic sentences to form compound sentences (using any sort of connectives you wish), is equivalent to using some combination of the three connectives,  $\land$ ,  $\lor$ ,  $\neg$ , of **PL**.

# *Terminology*:

1. A <u>basic conjunction</u> of a set of atomic *wffs* is a *wff* formed by conjoining all the members of the set, or their negations, but not both.

$$\underline{Ex.} \quad \text{Basic conjunctions of } \{\mathsf{P}, \mathsf{Q}, \mathsf{S}, \mathsf{P'}\}: \\ (a) \quad (\mathsf{P} \land \neg \mathsf{Q} \land \neg \mathsf{S} \land \mathsf{P'}) \\ (b) \quad (\neg \mathsf{P} \land \neg \mathsf{Q} \land \mathsf{S} \land \neg \mathsf{P'}) \\ (c) \quad (\neg \mathsf{P} \land \neg \mathsf{Q} \land \neg \mathsf{S} \land \neg \mathsf{P'}) \\ \end{array}$$

A basic conjunction is true on only one assignment of truth values to its atoms.

- (a) is true only when  $\mathsf{P} \Rightarrow \mathsf{T}, \mathsf{Q} \Rightarrow \mathsf{F}, \mathsf{S} \Rightarrow \mathsf{F}, \mathsf{P'} \Rightarrow \mathsf{T}.$
- (b) is true only when  $\mathsf{P} \Rightarrow \mathrm{F}, \mathsf{Q} \Rightarrow \mathrm{F}, \mathsf{S} \Rightarrow \mathrm{T}, \mathsf{P}' \Rightarrow \mathrm{F}.$
- (c) is true only when  $\mathsf{P} \Rightarrow \mathrm{F}, \mathsf{Q} \Rightarrow \mathrm{F}, \mathsf{S} \Rightarrow \mathrm{F}, \mathsf{P'} \Rightarrow \mathrm{F}$ .

- 2. A <u>truth-function</u> is a function that takes the truth-values of atomic *wff* as input and outputs a truth-value.
  - <u>So</u>: Truth-functions correspond to truth-tables!

### Proof of Claim

<u>*Task*</u>: Show that for *any* given truth function, represented by *any arbitrary* truth table, we can write down a **PL** *wff* with exactly that truth table.

# Three Possible Cases:

**Case 1**: The truth-function has all F's in its truth table.

How to construct the corresponding **PL** wff:

(1) Take each atomic wff in the truth table and conjoin it with its negation.

(2) Form the disjunction of all of the conjunctions in Step (1).

<u>*Ex:*</u> Suppose the truth function  $!(\mathsf{P}, \mathsf{Q}, \mathsf{R}, \mathsf{S})$  is given by the truth table:

<u>*Then:*</u> The **PL** wff truth-functionally equivalent to it is:  $((\mathsf{P} \land \neg \mathsf{P}) \lor (\mathsf{Q} \land \neg \mathsf{Q}) \lor (\mathsf{R} \land \neg \mathsf{R}) \lor (\mathsf{S} \land \neg \mathsf{S}))$  **Case 2**: The truth-function has exactly one T in its truth table.

How to construct the corresponding **PL** wff:
(1) Construct the basic conjunction corresponding to the valuation of the truth-function that makes it true.

<u>*Ex*</u>: Suppose the truth function  $\%(\mathsf{P}, \mathsf{Q}, \mathsf{R}, \mathsf{S})$  is given by the truth table:

| Ρ | Q | R | S | %(P, Q, R, S) |
|---|---|---|---|---------------|
|   |   |   |   | F             |
| F | Т | F | Т | Т             |
|   |   |   |   | $\mathbf{F}$  |
|   |   |   |   |               |

<u>*Then*</u>: The **PL** wff truth-functionally equivalent to it is:

 $(\neg \mathsf{P} \land \mathsf{Q} \land \neg \mathsf{R} \land \mathsf{S})$ 

**Case 3**: The truth-function has T in more than one row in its truth table.

How to construct the corresponding **PL** wff:

- (1) Construct each basic conjunction that corresponds to each valuation that makes the truth-function true.
- (2) Form the disjunction of all the basic conjunctions in Step (1).

| <u>Ex</u> : | Ρ | Q | R | (P, Q, R, S) | <u>basic conjunctions</u>            |
|-------------|---|---|---|--------------|--------------------------------------|
|             | Т | Т | Т | F            |                                      |
|             | Т | Т | F | Т            | $(P \land Q \land \neg R)$           |
|             | Т | F | Т | $\mathbf{F}$ |                                      |
|             | Т | F | F | $\mathbf{F}$ |                                      |
|             | F | Т | Т | Т            | $(\neg P \land Q \land R)$           |
|             | F | Т | F | Т            | $(\neg P \land Q \land \neg R)$      |
|             | F | F | Т | Т            | $(\neg P \land \neg Q \land R)$      |
|             | F | F | F | Т            | $(\neg P \land \neg Q \land \neg R)$ |

<u>*Then*</u>: The **PL** wff truth-functionally equivalent to  $(\mathsf{P}, \mathsf{Q}, \mathsf{R}, \mathsf{S})$  is

$$((\mathsf{P} \land \mathsf{Q} \land \neg \mathsf{R}) \lor (\neg \mathsf{P} \land \mathsf{Q} \land \mathsf{R}) \lor (\neg \mathsf{P} \land \mathsf{Q} \land \neg \mathsf{R}) \lor (\neg \mathsf{P} \land \neg \mathsf{Q} \land \neg \mathsf{R}) \lor (\neg \mathsf{P} \land \neg \mathsf{Q} \land \neg \mathsf{R}))$$

A set of connectives is *expressively adequate* if a language containing just those connectives is rich enough to express all truth-functions of the atomic *wffs* of the language.

The standard set of **PL** connectives  $\{\land, \lor, \neg\}$  is expressively adequate. So:

*Claim*: The following sets of connectives are expressively adequate: (a)  $\{\wedge, \neg\}$ (b)  $\{\lor, \neg\}$ 

<u>*Proof*</u>: For (a), recall that any wff of the general form  $(A \vee B)$  is truth-functionally equivalent to  $\neg(\neg A \land \neg B)$ .

For (b), recall that any wff of the general form  $(A \wedge B)$  is truth-functionally equivalent to  $\neg(\neg A \lor \neg B)$ .

| <u>Claim</u> : | The set $\{\land, \lor\}$ is not expressively adequate. |              |                |              |                                                     |  |
|----------------|---------------------------------------------------------|--------------|----------------|--------------|-----------------------------------------------------|--|
| Proof:         | A                                                       | В            | $(A \wedge B)$ | $(A \lor B)$ |                                                     |  |
|                | Т                                                       | Т            | Т              | Т            | <u>Can't replicate negation!</u>                    |  |
|                | Т                                                       | $\mathbf{F}$ | $\mathbf{F}$   | Т            | • Conjunctions and disjunctions are always          |  |
|                | $\mathbf{F}$                                            | Т            | $\mathbf{F}$   | Т            | true when their atoms are true!                     |  |
|                | F                                                       | F            | $\mathbf{F}$   | $\mathbf{F}$ | • <u>But</u> : $\neg A$ is false when atom is true. |  |

#### <u>The "nand" connective. $\downarrow$ </u>

# Semantic Rule for $\downarrow$ For any wffs A, B, if $A \Rightarrow F$ and $B \Rightarrow F$ , then $(A \downarrow B) \Rightarrow T$ . Otherwise $(A \downarrow B) \Rightarrow F$ .

| A | В            | $(A \downarrow B)$ |
|---|--------------|--------------------|
| Т | Т            | $\mathbf{F}$       |
| Т | $\mathbf{F}$ | $\mathbf{F}$       |
| F | Т            | $\mathbf{F}$       |
| F | $\mathbf{F}$ | Т                  |

"A nand B" means "Neither A nor B" (or  $\neg(\mathsf{P} \lor \mathsf{Q}))$ .

 $\frac{Claims}{(1) \neg A} \text{ is truth-functionally equivalent to } (A \downarrow A). \qquad \frac{A \neg A}{T}$ 

$$\begin{array}{c|c} A & \neg A & (A \downarrow A) \\ \hline T & F & F \\ F & T & T \\ \end{array}$$

(2)  $(A \lor B)$  is truth-functionally equivalent to  $((A \downarrow A) \downarrow (B \downarrow B))$ .

| A | В | $(A \land B)$ | $((A \downarrow A) \downarrow (B \downarrow B))$ |             |                                                    |
|---|---|---------------|--------------------------------------------------|-------------|----------------------------------------------------|
| Т | Т | Т             | Т                                                |             |                                                    |
| Т | F | F             | $\mathbf{F}$                                     | <u>So</u> : | Since $\{\wedge, \neg\}$ is expressively adequate, |
| F | Т | F             | $\mathbf{F}$                                     |             | so is $\{\downarrow\}!$                            |
| F | F | $\mathbf{F}$  | $\mathbf{F}$                                     |             |                                                    |

#### The "Sheffer stroke" connective.

| Semantic Rule for                                                                                     | L.                                   |
|-------------------------------------------------------------------------------------------------------|--------------------------------------|
| For any wffs A, B, if $A \Rightarrow T$ and $B \Rightarrow T$ , then $(A \mid B) \Rightarrow F$ . Oth | nerwise $(A \mid B) \Rightarrow T$ . |

| A | В | $(A \mid B)$ |
|---|---|--------------|
| Т | Т | F            |
| Т | F | Т            |
| F | Т | Т            |
| F | F | Т            |

"A stroke B" means "Not both A and B" (or  $\neg(\mathsf{P} \land \mathsf{Q})$ ).

<u>Claims</u>:

(1)  $\neg A$  is truth-functionally equivalent to  $(A \mid A)$ .

$$\begin{array}{c|c} A & \neg A & (A \mid A) \\ \hline T & F & F \\ F & T & T \\ \end{array}$$

(2)  $(A \lor B)$  is truth-functionally equivalent to  $((A \mid A) \mid (B \mid B))$ .

| A | B            | $(A \lor B)$ | $((A \mid A) \mid (B \mid B))$ |             |                                                  |
|---|--------------|--------------|--------------------------------|-------------|--------------------------------------------------|
| Т | Т            | Т            | Т                              |             |                                                  |
| Т | $\mathbf{F}$ | Т            | Т                              | <u>So</u> : | Since $\{\lor, \neg\}$ is expressively adequate, |
| F | Т            | Т            | Т                              |             | so is { }!                                       |
| F | F            | F            | $\mathbf{F}$                   |             |                                                  |