

Chapter 8: The Syntax of PL

I. Syntactic Rules for PL

A. Alphabet (13 symbols)

(1) P Q R S '	simple propositions
(2) \wedge \vee \neg	connectives
(3) ()	punctuation
(4) , \therefore *	additional punctuation

B. Grammar: What counts as a "well-formed formula" (wff).

Definition of an "atomic well-formed formula" (atomic wff):

- (A1) P, Q, R, S are atomic wffs.
- (A2) Any atomic wff followed by a prime ' is an atomic wff.
- (A3) Nothing else is an atomic wff.

Exs:

P
P'
P^{""}
Q^{'''}

Definition of a "well-formed formula" (*wff*):

- (W1) Any atomic *wff* is a *wff*.
- (W2) If A is a *wff*, so is $\neg A$.
- (W3) If A and B are *wffs*, so is $(A \wedge B)$.
- (W4) If A and B are *wffs*, so is $(A \vee B)$.
- (W5) Nothing else is a *wff*.

II. Construction Trees

Ex1. $\neg(P \wedge \neg(Q \vee R))$ **Wff? Yes!**

Informal proof that this is a wff:

- (1) Q is a *wff*. (A1), (W1)
- (2) $\neg Q$ is a *wff*. (W2), (1)
- (3) R is a *wff*. (A1), (W1)
- (4) $(\neg Q \vee R)$ is a *wff*. (W4), (2), (3)
- (5) $\neg(\neg Q \vee R)$ is a *wff*. (W2), (4)
- (6) P is a *wff*. (A1), (W1)
- (7) $(P \wedge \neg(\neg Q \vee R))$ is a *wff*. (W3), (5), (6)
- (8) $\neg(P \wedge \neg(\neg Q \vee R))$ is a *wff*. (W2), (7)

Construction tree method:

$$\frac{\frac{\frac{\frac{Q}{\neg Q} \quad R}{(\neg Q \vee R)} \quad P}{\neg(\neg Q \vee R)}}{(\mathbf{P} \wedge \neg(\neg Q \vee R))} \quad \neg(\mathbf{P} \wedge \neg(\neg Q \vee R))$$

If branch tips are simple declarative sentences, then expression is a wff!

Trunk is the expression under consideration.

Ex2. $((P \vee (R \wedge \neg S)) \vee \neg(Q \wedge \neg P))$

$$\frac{\frac{\frac{S}{R \quad \neg S}}{P \quad (R \wedge \neg S)} \quad \frac{P}{Q \quad \neg P}}{((P \vee (R \wedge \neg S)) \vee \neg(Q \wedge \neg P)) \quad \neg(Q \wedge \neg P))}$$

III. Main Connectives

Def. 1. The main connective of a non-atomic *wff* is the connective introduced at the last stage of its construction tree.

IV. Subformula and Scope

Def. 2. A *wff* *S* is a subformula of a *wff* *A* if *S* appears anywhere on the construction tree for *A*.

Def. 3. The scope of a connective is the *wff* on the construction tree where the connective is introduced.

Chapter 9: The Semantics of PL

Idea: Valid-deductive arguments are those in which, if the premises are true, the conclusion must be true.

So: Need a way of assigning truth-values to *wffs* in PL.

Terminology: Abbreviate "*A* is true" by " $A \Rightarrow T$ "

Abbreviate "*A* is false" by " $A \Rightarrow F$ "

Semantic Rules for Connectives

- (P1) For any *wffs* A, B , if $A \Rightarrow T$ and $B \Rightarrow T$, then $(A \wedge B) \Rightarrow T$.
Otherwise $(A \wedge B) \Rightarrow F$.
- (P2) For any *wffs* A, B , if $A \Rightarrow F$ and $B \Rightarrow F$, then $(A \vee B) \Rightarrow F$.
Otherwise $(A \vee B) \Rightarrow T$.
- (P3) For any *wffs* A, B , if $A \Rightarrow T$, then $\neg A \Rightarrow F$. Otherwise $\neg A \Rightarrow T$.

Truth Table Representation of Rules:

A	B	$(A \wedge B)$	$(A \vee B)$	$\neg A$
T	T	T	T	F
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

Calculating Truth Values

Ex1: $\neg(P \wedge \neg(Q \vee R))$

suppose: $P \Rightarrow T, Q \Rightarrow F, R \Rightarrow T$

(1) $Q \Rightarrow F.$	premise
(2) $\neg Q \Rightarrow T.$	(P3), (1)
(3) $R \Rightarrow T.$	premise
(4) $(\neg Q \vee R) \Rightarrow T.$	(P2), (2), (3)
(5) $\neg(\neg Q \vee R) \Rightarrow F.$	(P3), (4)
(6) $P \Rightarrow T.$	premise
(7) $(P \wedge \neg(\neg Q \vee R)) \Rightarrow F.$	(P1), (5), (6)
(8) $\neg(P \wedge \neg(\neg Q \vee R)) \Rightarrow T.$	(P3), (7)

Informal Proof Hint:
Work from inner-most parentheses out.

$$\begin{array}{c}
 \frac{\begin{array}{c} Q \Rightarrow F \\ \neg Q \Rightarrow T \quad R \Rightarrow T \\ \hline (\neg Q \vee R) \Rightarrow T \end{array}}{P \Rightarrow T \quad \neg(\neg Q \vee R) \Rightarrow F} \\[10pt]
 \frac{(P \wedge \neg(\neg Q \vee R)) \Rightarrow F}{\neg(P \wedge \neg(\neg Q \vee R)) \Rightarrow T}
 \end{array}$$

Tree form Hint:
Introduce one branch tip for every atomic wff.

Short-Cut: $(P \Rightarrow T, Q \Rightarrow F, R \Rightarrow T)$

P	Q	R	$\neg(P \wedge \neg Q \vee R)$
T	F	T	T

8 6 7 5 2 1 4 3

Ex2: $((P \vee (R \wedge \neg S)) \wedge \neg(Q \wedge \neg P))$

suppose: $P \Rightarrow F, Q \Rightarrow F, R \Rightarrow T, S \Rightarrow F$

$$\begin{array}{c}
 \frac{\begin{array}{c} S \Rightarrow F \\ R \Rightarrow T \quad \neg S \Rightarrow T \end{array}}{P \Rightarrow F \quad (R \wedge \neg S) \Rightarrow T} \quad \frac{\begin{array}{c} P \Rightarrow F \\ Q \Rightarrow F \quad \neg P \Rightarrow T \end{array}}{(Q \wedge \neg P) \Rightarrow F} \\
 \hline
 ((P \vee (R \wedge \neg S)) \wedge \neg(Q \wedge \neg P)) \Rightarrow T
 \end{array}$$

Ex3: $\neg(P \vee ((Q \wedge \neg P) \vee R))$

Construction tree:

$$\begin{array}{c}
 P \\
 \hline
 Q \qquad \frac{}{\neg P} \\
 \hline
 (Q \wedge \neg P) \qquad R \\
 \hline
 P \qquad \frac{(Q \wedge \neg P) \vee R}{(P \vee ((Q \wedge \neg P) \vee R))} \\
 \hline
 \neg(P \vee ((Q \wedge \neg P) \vee R))
 \end{array}$$

suppose: $P \Rightarrow T, R \Rightarrow T, Q \Rightarrow F$

$$\begin{array}{c}
 P \Rightarrow T \\
 Q \Rightarrow F \qquad \frac{}{\neg P \Rightarrow F} \\
 \hline
 (Q \wedge \neg P) \Rightarrow F \qquad R \Rightarrow T
 \end{array}$$

$$\begin{array}{c}
 P \Rightarrow T \qquad \frac{}{(Q \wedge \neg P) \vee R} \Rightarrow T \\
 \hline
 (P \vee ((Q \wedge \neg P) \vee R)) \Rightarrow T \\
 \hline
 \neg(P \vee ((Q \wedge \neg P) \vee R)) \Rightarrow F
 \end{array}$$

Short-Cut:

P	Q	R	$\neg(P \vee ((Q \wedge \neg P) \vee R))$	9	7	8	3	4	2	1	6	5
T	F	T	F				F	F	F	T	T	T