Assignment \#13. Due Thurs 5/5.

1. Suppose G is a one-place predicate, M is a two-place predicate, f is a one-place function, and h is a two-place function. Which of the following are $w f f$ s of $\mathbf{Q L}^{f}$? For those that are $w f f$ s, identify what type of $w f f$ it is.
(a) $f(x)$
(b) $\mathrm{Gf}(\mathrm{x})=\mathrm{m}$
(c) $\operatorname{Mh}(f(x), y) f(h(m, y))$
(d) $(\operatorname{Gh}(x, f(n)) \supset \forall x \exists z((M x y \wedge G f(z)) \equiv f(x)))$
2. Use the translation key below to translate the following claims in English into $\mathbf{Q} \mathbf{L}^{f}$.

Domain: \{integers\}

$\mathrm{m} \Rightarrow 2$	$\mathrm{~h} \Rightarrow$ 2-place sum function
$\mathrm{F} \Rightarrow$ _is even	$\mathrm{f} \Rightarrow$ 1-place successor function
$\mathrm{G} \Rightarrow$ _-is odd	
$\mathrm{P} \Rightarrow$ _is prime	
$\mathrm{L} \Rightarrow$ _is less than__	

(a) No prime number larger than 2 is even.
(b) The sum of two even numbers is always even.
(c) Every even number greater than 2 is the sum of two prime numbers.
3. Let q be a q-valuation for the vocabulary $V=\{\mathrm{m}, \mathrm{F}, \mathrm{G}, \mathrm{P}, \mathrm{L}, \mathrm{h}, \mathrm{f}\}$ of symbols that appear in the translation key in \#2. Let the domain of q be $D=\{$ integers $\}$. Let q assign m to 2, and let q assign to each predicate letter and each function letter, their intended extension in D (so, for example, q maps F to $\{2,4,6, \ldots\}$, and it maps h to $\{\langle 0,0,0\rangle,\langle 0,1,1\rangle,\langle 0,2,2\rangle, \ldots,\langle 1,0,1\rangle,\langle 1,1,2\rangle,\langle 1,2,3\rangle, \ldots\})$. Determine the truth values in q of the following wffs that have V as their vocabulary. Explain your answer by refering to the appropriate semantic rules of $\mathbf{Q} \mathbf{L}^{f}$.
(a) $\operatorname{Gf}(m) \quad$ ("The successor of 2 is odd.")
(b) $\exists z G f(z) \quad$ ("There are integers whose successors are odd.")
(c) $\forall \mathrm{z}(\mathrm{Gz} \supset \mathrm{f}(\mathrm{z})=\mathrm{m}) \quad$ ("Every odd integer has 2 as its successor.")

