Assignment \#13-key.

1. (a) $f(x)$
(b) $\operatorname{Gf}(x)=m$
(c) $\operatorname{Mh}(f(x), y) f(h(m, y))$
(d) $(\operatorname{Gh}(x, f(n)) \supset \forall x \exists z((M x y \wedge G f(z)) \equiv f(x)))$

Not a wff. This is a term.
Not a $w f f . \operatorname{Gf}(\mathbf{x})$ is not a term.
This is an atomic wff.
Not a wff. The second expression in the biconditional, $\mathrm{f}(\mathrm{x})$, is a term, not a $w f f$.
2.
(a) No prime number larger than 2 is even.

For all x, if x is a prime number larger than 2, then x is not even.
For all x, if $\underline{P x \wedge L m x}$, then $\neg F x$.
$\forall x((P x \wedge L m x) \supset \neg F x)$
(b) The sum of two even numbers is always even.

For all x and all y, if x is even and y is even, then the sum of x and y is even.
For all x and all y, if $F x \wedge F y$, then $F h(x, y)$.
$\forall x \forall y((F x \wedge F y) \supset F h(x, y))$
(c) Every even number greater than 2 is the sum of two prime numbers.

For all x, if x is even and x is greater than 2 , then there is a y and there is a z, such that y is a prime and z is a prime, and x is the sum of y and z.
For all x, if $F x \wedge L m x$, then there is a y and there is a z, such that $P y \wedge P z$, and $x=h(y, z)$.
$\forall x((F x \wedge L m x) \supset \exists y \exists z((P y \wedge P z) \wedge x=h(y, z)))$
3.
(a) $\operatorname{Gf}(\mathrm{m})$ ("The successor of 2 is odd.") This is an atomic $w w f$. It is true just when the object named by $f(m)$ has the property (i.e., is in the extenssion of the property) named by G. The object named by $f(m)$ is 3 , and 3 has the property of being odd. So $\operatorname{Gf}(\mathrm{m})$ is true in $q\left(\mathrm{Q}^{\circ}\right)$.
(b) $\exists \mathrm{zGf}(\mathrm{z})$ ("There are integers whose successors are odd.") This is an existential wff. It is true in q just when there is a \mathbf{z}-variant of q that makes $\operatorname{Gf}(\mathbf{z})$ true. Let q^{\prime} be a \mathbf{z}-variant of q that maps \mathbf{z} to 4 . Then the object named by $f(z)$ in q^{\prime} is 5 , and 5 has the property named by G in q^{\prime}. So q^{\prime} makes $\operatorname{Gf}(z)$ true $\left(\mathrm{Q} 0^{f}\right)$. So $\exists z G f(z)$ is true in $q\left(\mathrm{Q}^{f}\right)$.
(c) $\forall \mathrm{z}(\mathrm{Gz} \supset \mathrm{f}(\mathrm{z})=\mathrm{m})$ ("Every odd integer has 2 as its successor.") This is a universal wff. It is true in q just when all z-variants of q make $(G z \supset f(z)=m)$ true. Let q^{\prime} be a z-variant of q that maps z to 5 . Then the object named by $f(z)$ in q^{\prime} is 6 , which is not in the relation $=$ to the object named by m (i.e., 6 is not equal to 2). So q^{\prime} makes $f(z)=m$ false $\left(Q 0^{f}\right)$. Since q^{\prime} also makes $G z$ true $\left(Q 0^{f}\right), q^{\prime}$ makes $(G z \supset f(z)=m)$ false $\left(Q 4^{f}\right)$. So not all z-variants of q make $(G z \supset f(z)=m)$ true. So $\forall z(G z \supset f(z)=m)$ is false in $q\left(Q^{f}\right)$.

