Assignment \#12-key.

1(a) The Welsh speaker loves Mrs Jones.
There exists an x such that x speaks Welsh, and there's only one such x, and x loves Mrs Jones.
There exists an x such that $F x$ and $\forall y(F y \supset y=x)$, and $L x m$.
$\exists x((F x \wedge \forall y(F y \supset y=x)) \wedge L x m)$
(b) Angharad loves the girl who loves Bryn.

There exists an x such that x is a girl and x loves Bryn, and there's only one such x, and Angharad loves x.
There exists an x such that $G x$ and $L x b$, and $\forall y((G y \wedge L y b) \supset y=x)$, and Lax.
$\exists x(((G x \wedge L x b) \wedge \forall y((G y \wedge L y b) \supset y=x)) \wedge L a x)$
(c) The girl other than the girl who loves Bryn is Angharad.

There exists an x such that \underline{x} is a girl and \underline{x} loves Bryn, and there's only one such \boldsymbol{x}, and the girl other than x is Angharad.
(i) There exists an x such that x is a girl and x loves Bryn, and there's only one such x :
$\exists x((G x \wedge L x b) \wedge \forall y((G y \wedge L y b) \supset y=x))$
(ii) The girl other than x is Angharad:

There exists a \mathbf{z} such that \underline{z} is a girl and \underline{z} is not \mathbf{x}, and there's only one such \mathbf{z}, and \underline{z} is Angharad.
$\exists \mathrm{z}((\mathrm{Gz} \wedge \neg \mathrm{z}=\mathrm{x}) \wedge \forall \mathrm{w}(((\mathrm{Gw} \wedge \neg \mathrm{w}=\mathrm{x}) \supset \mathrm{w}=\mathrm{z}) \wedge \mathrm{z}=\mathrm{a}))$
Combining (i) and (ii):
$\exists x(((G x \wedge L x b) \wedge \forall y((G y \wedge L y b) \supset y=x)) \wedge \exists z(((G z \wedge \neg z=x) \wedge \forall w((G w \wedge \neg w=x) \supset w=z)) \wedge z=a))$
(d) The shortest Welsh speaker loves the tallest Welsh speaker.

There exists an x such that x speaks Welsh and x is a shortest Welsh speaker, and there's only one such x, and x loves the tallest Welsh speaker.
(i) X is a shortest Welsh speaker:

For all w, if \underline{w} speaks Welsh and \underline{w} is not \mathbf{x}, then \underline{w} is taller than x.
$\forall w((F w \wedge \neg w=x) \supset M w x)$
(ii) there's only one such x :
$\forall y((F y \wedge \forall w((F w \wedge \neg w=y) \supset M w y)) \supset y=x)$
(iii) x loves the tallest Welsh speaker:

There's a v such that v speaks Welsh, and v is a tallest Welsh speaker, and there's only one such v , and x loves v .
$\exists \mathrm{v}(((\mathrm{Fv} \wedge \forall \mathrm{w}((\mathrm{Fw} \wedge \neg \mathrm{w}=\mathrm{v}) \supset \mathrm{Mvw})) \wedge \forall \mathrm{z}((\mathrm{Fz} \wedge \forall \mathrm{w}((\mathrm{Fw} \wedge \neg \mathrm{w}=\mathrm{z}) \supset \mathrm{Mzw})) \supset \mathrm{z}=\mathrm{v})) \wedge \mathrm{Lxv})$
Combining (i), (ii) and (iii):
$\exists x(((F x \wedge \forall w((F w \wedge \neg w=x) \supset M w x)) \wedge \forall y((F y \wedge \forall w((F w \wedge \neg w=y) \supset M w y)) \supset y=x))$
$\wedge \exists \mathrm{v}(((\mathrm{Fv} \wedge \forall \mathrm{w}((\mathrm{Fw} \wedge \neg \mathrm{w}=\mathrm{v}) \supset \mathrm{Mvw})) \wedge \forall \mathrm{z}((\mathrm{Fz} \wedge \forall \mathrm{w}((\mathrm{Fw} \wedge \neg \mathrm{w}=\mathrm{z}) \supset \mathrm{Mzw})) \supset \mathrm{z}=\mathrm{v})) \wedge \mathrm{Lx} \mathrm{v}))$
2a)

1. $\mathrm{m}=\mathrm{n}$

$\begin{gathered} \mathrm{Fn} \\ \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \end{gathered}$	
$\neg \mathrm{Gm}$	
$(\mathrm{Fn} \supset \mathrm{Gn}) \checkmark$	$\left(\forall^{\prime}\right)$ on $3, \mathrm{n} / \mathrm{x}$
入	
$\neg \mathrm{Fn} \quad \mathrm{Gn}$	(g) on 5
* Gm	(L) on 1, 6

2b)
1.
2.
3. $\quad \neg \forall x \exists y(\neg x=y \wedge R y x) \checkmark$
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
3)
1.
2.
3.
4.
5.
6.
7.
8.

$$
\begin{array}{cl}
\exists x \forall y((F y \equiv y=x) \wedge G x) \checkmark \\
\neg \exists x((F x \wedge \forall y(F y \supset y=x)) \wedge G x) \checkmark & \\
\forall x \neg((F x \wedge \forall y(F y \supset y=x)) \wedge G x) & (\neg \exists) \text { on } 2 \\
\forall y((F y \equiv y=a) \wedge G a) & (\exists) \text { on } 1, a \\
\neg((F a \wedge \forall y(F y \supset y=a)) \wedge G a) \checkmark & \left(\forall^{\prime}\right) \text { on } 3, a \\
\quad((F a \equiv a=a) \wedge G a) \checkmark & \left(\forall^{\prime}\right) \text { on } 4, a \\
\quad(F a \equiv a=a) \checkmark & \text { (b) on } 6
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{Fa} & \neg \mathrm{Fa} \\
\mathrm{a}=\mathrm{a} & \neg \mathrm{a}=\mathrm{a}
\end{array}
$$

(f) on 11
(a) on 12
(L) on 10, 13
$(\neg \exists)$ on 2
$(\neg \forall)$ on 3
(\exists) on $5, \mathrm{a} / \mathrm{x}$ $(\neg \exists)$ on 6 $\left(\forall^{\prime}\right)$ on $1, a / x$ $\left(\forall^{\prime}\right)$ on $4, a / x$
(\exists) on $8, \mathrm{~b} / \mathrm{y}$ $\left(\forall^{\prime}\right)$ on $7, b / y$

