Assignment #12-key.

- 1(a) The Welsh speaker loves Mrs Jones. There exists an x such that <u>x speaks Welsh</u>, and <u>there's only one such x</u>, and <u>x loves Mrs Jones</u>. There exists an x such that Fx and $\forall y(Fy \supset y = x)$, and Lxm. $\exists x((Fx \land \forall y(Fy \supset y = x)) \land Lxm)$
- (b) Angharad loves the girl who loves Bryn. There exists an x such that \underline{x} is a girl and \underline{x} loves Bryn, and there's only one such x, and Angharad loves x. There exists an x such that Gx and Lxb, and $\forall y((Gy \land Lyb) \supset y = x)$, and Lax. $\exists x(((Gx \land Lxb) \land \forall y((Gy \land Lyb) \supset y = x)) \land Lax)$
- (c) The girl other than the girl who loves Bryn is Angharad. There exists an x such that <u>x is a girl and x loves Bryn</u>, and <u>there's only one such x</u>, and <u>the girl other than x is Angharad</u>.
 - (i) There exists an x such that <u>x is a girl and x loves Bryn</u>, and <u>there's only one such x</u>: ∃x((Gx ∧ Lxb) ∧ ∀y((Gy ∧ Lyb) ⊃ y = x))
 (ii) The girl other than x is Angharad.
 - (ii) <u>The girl other than x is Angharad</u>: There exists a z such that <u>z is a girl</u> and <u>z is not x</u>, and <u>there's only one such z</u>, and <u>z is Angharad</u>. ∃z((Gz ∧ ¬z = x) ∧ ∀w(((Gw ∧ ¬w = x) ⊃ w = z) ∧ z = a)) Combining (i) and (ii): ∃x(((Gx ∧ Lxb) ∧ ∀y((Gy ∧ Lyb) ⊃ y = x)) ∧ ∃z(((Gz ∧ ¬z = x) ∧ ∀w((Gw ∧ ¬w = x) ⊃ w = z)) ∧ z = a))
- (d) The shortest Welsh speaker loves the tallest Welsh speaker. There exists an x such that x speaks Welsh and x is a shortest Welsh speaker, and there's only one such x, and x loves the tallest Welsh speaker.
 - (i) <u>x is a shortest Welsh speaker</u>: For all w, if <u>w speaks Welsh</u> and <u>w is not x</u>, then <u>w is taller than x</u>. $\forall w((Fw \land \neg w = x) \supset Mwx)$
 - (ii) <u>there's only one such x</u>: $\forall y((Fy \land \forall w((Fw \land \neg w = y) \supset Mwy)) \supset y = x)$
 - (iii) <u>x loves the tallest Welsh speaker</u>: There's a v such that <u>v speaks Welsh</u>, and <u>v is a tallest Welsh speaker</u>, and <u>there's only one such v</u>, and <u>x loves v</u>. $\exists v(((Fv \land \forall w((Fw \land \neg w = v) \supset Mvw)) \land \forall z((Fz \land \forall w((Fw \land \neg w = z) \supset Mzw)) \supset z = v)) \land Lxv)$ Combining (i), (ii) and (iii):

```
 \exists x(((Fx \land \forall w((Fw \land \neg w = x) \supset Mwx)) \land \forall y((Fy \land \forall w((Fw \land \neg w = y) \supset Mwy)) \supset y = x)) \\ \land \exists v(((Fv \land \forall w((Fw \land \neg w = v) \supset Mvw)) \land \forall z((Fz \land \forall w((Fw \land \neg w = z) \supset Mzw)) \supset z = v)) \land Lxv))
```

```
2a)
1.
                m = n
2.
                  Fn
3.
          \forall \mathbf{x}(\mathbf{F}\mathbf{x} \supset \mathbf{G}\mathbf{x})
4.
                −Gm
5.
            (Fn \supset Gn) \checkmark
                                                      (\forall') on 3, n/x
6.
             ¬Fn Gn
                                                       (g) on 5
7.
                       Gm
                                                       (L) on 1, 6
                *
                          *
```

2b)			
1.	∀x∃yRyx		
2.	¬∃xRxx ✓		
3.	$\neg \forall x \exists y (\neg x = y \land Ryx) \checkmark$		
4.	∀x¬Rxx	$(\neg \exists)$ on 2	
5.	$\exists x \neg \exists y (\neg x = y \land Ryx) \checkmark$	$(\neg \forall)$ on 3	
6.	$\neg \exists y(\neg a = y \land Rya) \checkmark$	(\exists) on 5, a/x	
7.	$\forall y \neg (\neg a = y \land Rya)$	$(\neg \exists)$ on 6	
8.	∃yRya ✓	(∀') on 1, a/x	
9.	⊸Raa	(\forall') on 4, a/x	
10.	Rba	$(\exists) \text{ on } 8, b/y$	
11.	¬(¬a = b ∧ Rba) ✓	(∀') on 7, b/y	
12	$\neg \neg a = b \checkmark \neg Bba$	(f) on 11	
12.	a = b	(1) 011 11 (a) on 12	
14	Baa	(L) on 10, 13	
17.	*	(1) 01110, 15	
3)			
1.	$\exists x \forall y ((Fy \equiv y =$	$\mathbf{x})\wedge\mathbf{G}\mathbf{x})\checkmark$	
2.	$\neg \exists x ((F x \land \forall y (F y \supset y = x)) \land G x) \checkmark$		
3.	$\forall x \neg ((Fx \land \forall y(Fy \Box$	$(y = x)) \land Gx$	$(\neg \exists)$ on 2
4.	$\forall \mathbf{y} ((F\mathbf{y} \equiv \mathbf{y} = \mathbf{a}) \land G\mathbf{a})$		(∃) on 1, a / x
5.	$\neg((Fa \land \forall y(Fy \supset y = a)) \land Ga) \checkmark$		(∀') on 3, a/x
6.	$((Fa \equiv a = a) \land Ga) \checkmark$		(∀') on 4, a/y
7.	$(Fa \equiv a =$	= a) ✓	
	Ga		(b) on 6
	\sim		
8.	Fa	¬Fa	
	a = a	$\neg a = a$	(h) on 7
	\sim	*	
9.	$\neg(Fa \land \forall y(Fy \supset y = a)) \checkmark \neg Ga$		(f) on 5
	*		
10.	$\neg Fa \qquad \neg \forall y(Fy \supset y = a) \checkmark$		(f) on 9
11.	$\exists y \neg (Fy \supset y = a) \checkmark$		(¬∀) on 10
12.	$\neg(Fb\supsetb=a)\checkmark$		(∃) on 1, b/y
	Fb		
13.	$\neg b = a$		(d) on 12
14.	$((Fb \equiv b = a) \land Ga) \checkmark$		(∀') on 4, b/y
	$(Fb \equiv b = a) \checkmark$		
15.	Ga		(b) on 14
	\sim		
16.	Fb ¬Fb		
	$b = a \qquad \neg b = a$		(h) on 14
	* *		