PL-UY 2004 Symbolic Logic
Assignment \#9. Due Thurs April 7.

1. Consider the q-valuation q defined by:
(i) Domain $=\{$ Romeo, Juliet, Benedick, Beatrice $\}$
(ii) $\mathrm{m} \Rightarrow$ Romeo
$\mathrm{n} \Rightarrow$ Juliet
(iii) $\mathrm{F} \Rightarrow\{$ Romeo, Benedick $\}$
$\mathrm{G} \Rightarrow\{$ Juliet, Beatrice $\}$
$\mathrm{L} \Rightarrow\{\langle$ Romeo, Juliet \rangle,\langle Juliet, Romeo \rangle,\langle Benedick, Beatrice \rangle,\langle Beatrice, Benedick \rangle,\langle Benedick, Benedick \rangle \}

Determine the truth values of the following $w f f s$ with respect to q :
(a) $\exists x L m x$
(b) $(\exists x L m x \supset L m n)$
(c) $\forall x(G x \supset \exists y L x y)$
(d) $\exists x(F x \wedge \forall y(G y \supset L x y))$
2. Determine if the following arguments in $\mathbf{Q L}$ are q-valid by constructing appropriate $\mathbf{Q L}$ "truth trees". (This means each step involves the assignment of T to a wff; and each step must be justified by a QL semantic rule Q1-Q7, or a semantic result V1-V5, and not a QL formal tree rule.) For non- q-valid arguments, construct an explicit countermodel.
(a) $\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \therefore \forall \mathrm{x}(\mathrm{Gx} \supset \mathrm{Fx})$
(b) $\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \therefore \forall \mathrm{x}(\neg \mathrm{Gx} \supset \neg \mathrm{Fx})$
3. Show that the $w f f \forall x((F x \wedge G x) \supset(F x \vee G x))$ is a q-logical truth by constructing an appropriate $\mathbf{Q L}$ "truth tree". (This means each step involves the assignment of T to a wff; and each step must be justified by a QL semantic rule Q1-Q7, or a semantic result V1-V5, and not a QL formal tree rule.)

