Assignment \#9-key.

1.(a) $\exists x L m x \Rightarrow_{q} T$. There is at least one x-variant of q that makes Lmx true; namely, the x-variant that assigns x to Juliet.
(b) $\quad(\exists x \mathrm{Lmx} \supset \mathrm{Lmn}) \Rightarrow_{q} \mathrm{~T}$. Since the consequent Lmn is true under q, the conditional is true under q.
(c) $\quad \forall \mathrm{x}(\mathrm{Gx} \supset \exists \mathrm{yLxy}) \Rightarrow_{q} \mathrm{~T}$. All x-variants of q make the consequent $\exists \mathrm{yLxy}$ true (all 4 ways of assigning x to a member of the domain make $\exists y L x y$ true because all four members of the domain stand in the L relation to some other member), Thus all x-variants of q make the conditional ($\mathrm{Gx} \supset \exists \mathrm{yLxy}$) true. Thus q makes the universal $\forall \mathrm{x}(\mathrm{Gx} \supset \exists \mathrm{y} L \mathrm{xy})$ true.
(d) $\quad \exists x(F x \wedge \forall y(G y \supset L x y)) \Rightarrow_{q} F$. There are no x-variants of q that make $(F x \wedge \forall y(G y \supset L x y))$ true. There are $4 x$-variants, but only two are relevent here: the one that assigns \mathbf{X} to Romeo and the one that assigns \mathbf{X} to Benedick (because only Romeo and Benedick have the F property). But it's not true that, in addition to having the F property, Romeo also loves everyone with the G property (i.e., he does love Juliet, but he doesn't love Beatrice). And it's not true that, in addition to having the F property, Benedick also loves everyone with the G property (i.e., he does Beatrice, but he doesn't love Juliet).

2(a)

$$
\begin{array}{cl}
\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q} \mathrm{~T} & \\
\neg \forall \mathrm{x}(\mathrm{Gx} \supset \mathrm{Fx}) \Rightarrow_{q} \mathrm{~T} & \\
\exists \mathrm{x} \neg(\mathrm{Gx} \supset \mathrm{Fx}) \Rightarrow_{q} \mathrm{~T} & (\mathrm{~V} 3) \\
\neg(\mathrm{Ga} \supset \mathrm{Fa}) \Rightarrow_{q^{+}} \mathrm{T} & (\mathrm{~V} 2) \\
\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q^{+}} \mathrm{T} & (\mathrm{~V} 5) \\
(\mathrm{Fa} \supset \mathrm{Ga}) \Rightarrow_{q^{+}} \mathrm{T} & (\mathrm{~V} 1) \\
\mathrm{Ga} \Rightarrow_{q^{+}} \mathrm{T} & \\
\neg \mathrm{Fa} \Rightarrow_{q^{+}} \mathrm{T} & (\mathrm{Q} 1),(\mathrm{Q} 4),(\mathrm{Q} 3) \\
& \tag{Q4}\\
\neg \mathrm{Fa} \Rightarrow_{q^{+}} \mathrm{T} & \mathrm{Ga} \Rightarrow_{q^{+}} \mathrm{T}
\end{array}
$$

Contradiction doesn't occur, so the argument is not q-valid.
Countermodel q : Let $D=\{0\}, \mathrm{a} \Rightarrow 0, \mathrm{~F} \Rightarrow\{ \}, \mathrm{G} \Rightarrow\{0\}$.
Then: $\quad \mathrm{Ga} \Rightarrow_{q} \mathrm{~T}$, because the object named by a under q has the property named by G .
And: $\quad \neg \mathrm{Fa} \Rightarrow_{q} \mathrm{~T}$, because the object named by a under q does not have the property named by F .
And: $\quad \forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q} \mathrm{~T}$, since there's only one x-variant of q, and it makes Fx false, so it makes ($\mathrm{Fx} \supset \mathrm{Gx}$) true.
And: $\quad \forall \mathrm{x}(\mathrm{Gx} \supset \mathrm{Fx}) \Rightarrow_{q} \mathrm{~F}$, since there's only one x-variant of q, and it makes Gx true and Fx false, so it makes $(G x \supset F x)$ false.

2(b)

$\forall \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx}) \Rightarrow_{q} \mathrm{~T}$	
$\neg \forall \mathrm{x}(\neg \mathrm{Gx} \supset \neg \mathrm{Fx}) \Rightarrow_{q} \mathrm{~T}$	
$\exists \mathrm{x} \neg(\neg \mathrm{Gx} \supset \neg \mathrm{Fx}) \Rightarrow_{q} \mathrm{~T}$	(V3)
$\neg(\neg \mathrm{Ga} \supset \neg \mathrm{Fa}) \Rightarrow_{q^{+}} \mathrm{T}$	(V2)
$\forall x(F x \supset G x) \Rightarrow_{q^{+}} \mathrm{T}$	(V5)
$(\mathrm{Fa} \supset \mathrm{Ga}) \Rightarrow_{q^{+}} \mathrm{T}$	(V1)
$\neg \mathrm{Ga} \Rightarrow{ }_{q^{+}} \mathrm{T}$	
$\neg \neg \mathrm{Fa} \Rightarrow_{q^{+}} \mathrm{T}$	(Q1), (Q4), (Q3)
$\neg \mathrm{Fa} \Rightarrow_{q^{+}} \mathrm{T} \quad \mathrm{Ga} \Rightarrow_{q^{+}} \mathrm{T}$	(Q4)

Contradiction occurs, so the argument is q-valid.
3. $\quad \neg \forall x((F x \wedge G x) \supset(F x \vee G x)) \Rightarrow_{q} T$
$\exists x \neg((F x \wedge G x) \supset(F x \vee G x)) \Rightarrow_{q} T$

$$
\begin{equation*}
\neg((\mathrm{Fa} \wedge \mathrm{Ga}) \supset(\mathrm{Fa} \vee \mathrm{Ga})) \Rightarrow_{q^{+}} \mathrm{T} \tag{V3}
\end{equation*}
$$

$(\mathrm{Fa} \wedge \mathrm{Ga}) \Rightarrow_{q^{+}} \mathrm{T}$
$\neg(\mathrm{Fa} \vee \mathrm{Ga}) \Rightarrow_{q^{+}} \mathrm{T}$
(Q1), (Q4), (Q3)
$\mathrm{Fa} \Rightarrow_{q^{+}} \mathrm{T}$
$\mathrm{Ga} \Rightarrow_{q^{+}} \mathrm{T}$
$\neg \mathrm{Fa} \Rightarrow{ }_{q+} \mathrm{T}$
$\neg \mathrm{Ga} \Rightarrow{ }_{q^{+}} \mathrm{T}$
(Q1), (Q3), (Q2)
Contradiction occurs, so there's no q-valuation that makes the negation of the $w f f$ true. Thus all q-valuations must make the $w f f$ true. Thus it's a q-logical truth.

